24 October 2017 - سه شنبه 2 آبان 1396
جستجوی مقالات
کلید واژگان
جستجوی پیشرفته
شناسنامه ی نشریه
صاحب امتیاز:
موسسه پژوهشی علوم و فناوری رنگ و پوشش
مدیر مسئول:
پروفسور زهرا رنجبر
سردبیر:
دکتر شهره روحانی
مدیر اجرایی:
دکتر مریم عطائی فرد
شاپا چاپی:
2251-7278
شاپا الکترونیکی:
2383-2223
دسترسی سریع
آخرین شماره ها
نظر سنجی
نظر شما در مورد سایت نشریه دنیای رنگ چیست؟
مطلوب
نسبتا مطلوب
نیاز به بهسازی دارد
ضعیف

پوشش‌های هوشمند ضدخوردگی: انواع و سازوکارهای حفاظت از خوردگی

نشریه: سال هفتم- شماره اول- بهار 1396 - مقاله 5   صفحات :  29 تا 46



کد مقاله:
JSCW-19-02-2017-10307

مولفین:
مهدی یگانه: دانشگاه شهید چمران اهواز - گروه مهندسی مواد، دانشکده مهندسی
سید مهدی مرعشی: دانشگاه شهید چمران اهواز - گروه مهندسی مواد، دانشکده مهندسی
نیلوفر محمدی: دانشگاه شهید چمران اهواز - گروه مهندسی مواد، دانشکده مهندسی


چکیده مقاله:



محبوس نمودن بازدارنده‌ی خوردگی در یک ساختار میزبان خنثی (مخزن) و سپس رهایش آن و یا اصطلاحاً بکارگیری سیستم‌بازدارندگی هوشمند ضدخوردگی توجه زیادی را در بین محققان به خود جلب نموده است. این سیستم‌ها براین اساس طراحی می‌شوند که هم از واکنش‌های ناخواسته بین بازدارنده و زمینه جلوگیری به عمل آید و هم بازدارنده در جایی که مورد نیاز است مصرف شود. همچنین، در صورت ایجاد خراش در پوشش‌ها، این خراش‌ها بتوانند ترمیم گردند. برای رسیدن به این هدف، تاکنون استراتژی‌های متفاوتی پیشنهاد شده است. در برخی روش‌ها، بازدارنده را درون یک ساختار میزبان با ابعاد نانو یا میکرومتری کپسول نموده که فقط در حین آسیب رسیدن به کپسول، بازدارنده آزاد ‌شود و سبب جلوگیری از خوردگی گردد. همچنین، می‌توان از مخازن مختلف دیگری برای محبوس نمودن بازدارنده‌ها بهره برد. از جمله‌ی این مخزن‌ها می‌توان به نانولوله‌ها، ذرات مبادله‌گر یونی، مواد هادی و پلی‌الکترولیت‌های لایه به لایه، مواد متخلخل و غيره اشاره نمود. به‌عنوان نمونه می‌توان از نانوذراتی که دارای لایه‌های متناوب پلی‌الکترولیتي هستند برای ساکن کردن بازدارنده‌ها بهره برد. تغییر در شرایط محیطی، پلی‌الکترولیت‌ها را تضعیف نموده و سبب آزادسازی بازدارنده در محیط می‌شود. به طورکلی در سیستم‌های بازدارندگی هوشمند ممکن است یک تبادل یونی بین یون خورنده و بازدارنده درون سیستم رخ دهد و یا بازدارنده با تغییر pH در منطقه خوردگی آزاد شود و یا اینکه به صورت نفوذ بلند مدت از درون سیستم مانع از خوردگی شود. بنابراین بايد تغییراتی در محیط پیرامون رخ دهد تا شاهد آزاد شدن و عملکرد بازدارنده درون پوشش بود.


Article's English abstract:

Doping corrosion inhibitor in a host structure (container) draws much attention among the researchers. This system, called smart corrosion inhibition, is designed not only to avoid undesirable reactions between the corrosion inhibitor and the matrix but also letting the inhibitor to be consumed just where it is needed. Moreover, in some cases, this system can undergo self-healing properties, if the coating is scratched. A lot of strategies are suggested to achieve these purposes, including loading corrosion inhibitor in nano-micro capsules, doping corrosion inhibitor in porous containers and etc. Other reservoirs that can be loaded with corrosion inhibitor are nanotubes, ion exchange particles, conductive materials, layer by layer polyelectrolytes, and porous materials. For instance, multi-layer polyelectrolytes can be used to immobilize the corrosion inhibitor. Changing the system conditions can cause polyelectrolytes to weaken, and letting the corrosion inhibitor release. In general, an ion exchange occurs between corrosive ions and inhibitors' in the system, or the inhibitor is released due to local pH changes, or as a long-term diffusion, the inhibitor can avoid corrosion reaction. Therefore, some changes are needed in the system to commence smart corrosion inhibition process.


کلید واژگان:
پوشش هوشمند، خوردگی، رهایش، بازدارنده خوردگی.

English Keywords:
Smart Coating, Corrosion, Release, Corrosion inhibitor.

منابع:
1. ع.ا. جاوید پرور، ب. رمضانزاده، ا. قاسمی، ”مروری بر پوشش‌های بر پایه سل-ژل مورد استفاده جهت حفاظت زیرآیدهای فلزی در برابر خوردگی“، نشریه علمي ترويجي مطالعات در دنياي رنگ، جلد 5، 31–44، 1394. 5. ا. درمياني، غ.ر. راشد، د. زارعي، ا. دانايي، ”پوشش‌هاي ضدخوردگي سيلاني جايگزين پوشش‌هاي تبديلي كرومات و اثر نمكهاي عناصر كمياب خاكي بر عملكرد آنها“، نشريه علمي-ترويجي مطالعات در دنياي رنگ، جلد 2، 9–20، 1391. 10. ع.ا. جاوید پرور، ب. رمضانزاده، ا. قاسمی، ”مروري بر خواص ضدخوردگي نانو رنگدانه‌هاي بر پايه اكسيد آهن“، نشريه علمي ترويجي مطالعات در دنياي رنگ، جلد 4، 47–60، 1393. 15ا. بابایی، م. پیشوایی، ف. نجفی، ”مروری بر پوشش های پلیمری خود ترمیم کننده: پوشش های خود ترمیم‌کننده پایه کپسولی“، نشريه علمي ترويجي مطالعات در دنياي رنگ، جلد 2، 3–10، 1391. 16. م. دانش، م. خطیب زاده، ”مروری بر روش میکروکپسول‌کردن با روش پلیمریزاسیون در‌جا و اهمیت آن در سیستم ترموکرومیک“، نشريه علمي ترويجي مطالعات در دنياي رنگ، جلد 5، 25–32، 1394. 17. پ. کاردر، ح. یاری، ”پوشش‌های خود ترمیم‌شونده جهت بازیابی آسیب‌های مکانیکی-مبانی، طراحی و کاربرد“، نشريه علمي ترويجي مطالعات در دنياي رنگ، جلد 5، 85–95، 1394.

English References:
2. D. Kotnarowska, “Influence of ultraviolet radiation and aggressive media on epoxy coating degradation,” Prog Org. coat. 37, 149–159, 1999. 3. H. Xiao, F. Mansfeld, “Evaluation of coating degradation with electrochemical impedance spectroscopy and electrochemical noise analysis,” J. Electrochem. Soc. 141 2332–2337, 1994. 4. V.A.D. Souza, A. Neville, “Mechanisms and kinetics of WC-Co? Cr high velocity oxy-fuel thermal spray coating degradation in corrosive environments,” J. T. Spray Technol. 15 106–117, 2006. 6.O. Lopez-Garrity, G.S. Frankel, “Synergistic Corrosion Inhibition of AA2024-T3 by Sodium Silicate and Sodium Molybdate,” ECS Electrochemical lett. 3 C33–C35, 2014. 7. W.D. Robertson, “Molybdate and Tungstate as Corrosion Inhibitors and the Mechanism of Inhibition,” J. Electrochem. Soc. 98 94, 1951. 8. B.S. Skerry, C.-T. Chen, C.J. Ray, “Pigment volume concentration and its effect on the corrosion resistance properties of organic paint films,” JCT, J. Coat. Technol. 64 77–86, 1992. 9. J.R. Vilche, E.C. Bucharsky, C.A. Giudice, “Application of EIS and SEM to evaluate the influence of pigment shape and content in ZRP formulations on the corrosion prevention of naval steel,” Corr. Sci. 44 1287–1309, 2002. 11. M. Mahdavian, M.M. Attar, “Electrochemical behaviour of some transition metal acetylacetonate complexes as corrosion inhibitors for mild steel,” Corr. Sci. 51 409–414, 2009. 12. P. Wang, D. Zhang, R. Qiu, J. Wu, “Super-hydrophobic metal-complex film fabricated electrochemically on copper as a barrier to corrosive medium,” Corr. Sci.. 83 317–326, 2014. 13. J. Tedim, S.K. Poznyak, A. Kuznetsova, D. Raps, T. Hack, M.L. Zheludkevich, M.G.S. Ferreira, “Enhancement of active corrosion protection via combination of inhibitor-loaded nanocontainers,” ACS Appl. Mater & Interfac. 2 1528–1535, 2010. 14. S.K. Ghosh, Self-healing materials: fundamentals, design strategies, and applications, John Wiley & Sons, 2009. 18. C. Thies, Microencapsulation, in Encyclopedia of Polymer Science and Engineering, John Wiley & Sons, New York, 1987. 19. S. Benita, Microencapsulation: methods and industrial applications, Marcel Dekker, New York, 1996. 20. R. Arshady, Microspheres, Microcapsules and Liposomes, Citrus Books, London, 1999. 21. S.R. White, N.R. Sottos, P.H. Geubelle, J.S. Moore, M. Kessler, S.R. Sriram, E.N. Brown, S. Viswanathan, “Autonomic healing of polymer composites,” Nature. 409 794–797, 2001. 22. A.S. Jones, J.D. Rule, J.S. Moore, S.R. White, N.R. Sottos, “Catalyst morphology and dissolution kinetics of self-healing polymers,” Chem. Mater. 18 1312–1317, 2006. 23. A. Kumar, L.D. Stephenson, J.N. Murray, “Self-healing coatings for steel,” Progress in Organic Coatings. 55 244–253, 2006. 24. V. Sauvant-Moynot, S. Gonzalez, J. Kittel, “Self-healing coatings: An alternative route for anticorrosion protection,” Prog. Org. Coat. 63 307–315, 2008. 25. I. Kartsonakis, I. Daniilidis, G. Kordas, “Encapsulation of the corrosion inhibitor 8-hydroxyquinoline into ceria nanocontainers,” J. Sol-Gel Sci. Technol. 48 24–31, 2008. 26. I.A. Kartsonakis, G. Kordas, “Synthesis and characterization of cerium molybdate nanocontainers and their inhibitor complexes,” J. Am. Ceram. Soc. 93 65–73, 2010. 27. Y. Feng, Y.F. Cheng, “An intelligent coating doped with inhibitor-encapsulated nanocontainers for corrosion protection of pipeline steel,” Chem. Eng. J. 315 537–551, 2017. 28. R.J. Marathe, V. V Gite, “Encapsulation of 8-HQ as a corrosion inhibitor in PF and UF shells for enhanced anticorrosive properties of renewable source based smart PU coatings,” RSC Advanc. 6 114436–114446, 2016. 29. F. Cotting, I.V. Aoki, “Smart protection provided by epoxy clear coating doped with polystyrene microcapsules containing silanol and Ce (III) ions as corrosion inhibitors,” Surface. Coat. Technol. 303 310–318, 2016. 30. H. Choi, Y.K. Song, K.Y. Kim, J.M. Park, “Encapsulation of triethanolamine as organic corrosion inhibitor into nanoparticles and its active corrosion protection for steel sheets,” Surface. Coat. Technol. 206 2354–2362, 2012. 31. H. Wang, R. Akid, “Encapsulated cerium nitrate inhibitors to provide high-performance anti-corrosion sol–gel coatings on mild steel,” Corr. Sci. 50 1142–1148, 2008. 32. A.N. Khramov, N.N. Voevodin, V.N. Balbyshev, M.S. Donley, “Hybrid organo-ceramic corrosion protection coatings with encapsulated organic corrosion inhibitors,” Thin Solid Films. 447 549–557, 2004. [33] M. Hucker, I. Bond, A. Foreman, J. Hudd, “Optimisation of hollow glass fibres and their composites,” Advanc. Composit. Lett. 8 181–189, 1999. 34. D.G. Shchukin, S. V Lamaka, K.A. Yasakau, M.L. Zheludkevich, M.G.S. Ferreira, H. M?hwald, “Active anticorrosion coatings with halloysite nanocontainers,” J. Phys. Chem. C. 112 958–964, 2008. 35. Y.M. Lvov, D.G. Shchukin, H. Mohwald, R.R. Price, “Halloysite clay nanotubes for controlled release of protective agents,” Acs Nano. 2 814–820, 2008. 36. E. Abdullayev, R. Price, D. Shchukin, Y. Lvov, “Halloysite tubes as nanocontainers for anticorrosion coating with benzotriazole,” ACS Appl. Mater & Interfac. 1 1437–1443, 2009. 37. E. Abdullayev, Y. Lvov, “Clay nanotubes for corrosion inhibitor encapsulation: release control with end stoppers,” J. Mater. Chem. 20 6681–6687, 2010. 38. A. Joshi, E. Abdullayev, A. Vasiliev, O. Volkova, Y. Lvov, “Interfacial modification of clay nanotubes for the sustained release of corrosion inhibitors,” Langmuir. 29 7439–7448, 2012. 39. T.Q. Doan, L.S. Leslie, S.Y. Kim, R. Bhargava, S.R. White, N.R. Sottos, “Characterization of core-shell microstructure and self-healing performance of electrospun fiber coatings,” Polymer. 107 263–272, 2016. 40. Y. Lvov, W. Wang, L. Zhang, R. Fakhrullin, “Halloysite clay nanotubes for loading and sustained release of functional compounds,” Advanced Materials. 28 1227–1250, 2016. 41. S.L. Clark, E.S. Handy, M.F. Rubner, P.T. Hammond, “Creating Microstructures of Luminescent Organic Thin Films Using Layer-by-Layer Assembly,” Advanced Materials. 11 1031–1035, 1999. 42. D.G. Shchukin, M. Zheludkevich, H. M?hwald, “Feedback active coatings based on incorporated nanocontainers,” J. Mater. Chem. 16 4561–4566, 2006. 43. M.L. Zheludkevich, D.G. Shchukin, K.A. Yasakau, H. M?hwald, M.G.S. Ferreira, “Anticorrosion coatings with self-healing effect based on nanocontainers impregnated with corrosion inhibitor,” Chem. Mater. 19 402–411, 2007. 44. D.G. Shchukin, M. Zheludkevich, K. Yasakau, S. Lamaka, M.G.S. Ferreira, H. M?hwald, “Layer-by-Layer assembled nanocontainers for self-healing corrosion protection,” Advance. Mater. 18 1672–1678, 2006. 45. D.G. Shchukin, H. M?hwald, “Surface- Engineered Nanocontainers for Entrapment of Corrosion Inhibitors,” Advanc. Function. Mater. 17 1451–1458, 2007. 46. D.O. Grigoriev, K. K?hler, E. Skorb, D.G. Shchukin, H. M?hwald, “Polyelectrolyte complexes as a ‘smart’ depot for self-healing anticorrosion coatings,” Soft Matter. 5 1426–1432, 2009. 47. Z. Zhang, B. Ge, X. Men, Y. Li, “Mechanically durable, superhydrophobic coatings prepared by dual-layer method for anti-corrosion and self-cleaning,” Colloids and Surfaces A: Physicochemical and Engineering Aspects. 490 182–188, 2016. 48. R.G. Buchheit, S.B. Mamidipally, P. Schmutz, H. Guan, “Active corrosion protection in Ce-modified hydrotalcite conversion coatings,” Corr. 58 3–14, 2002. 49. H.N. McMurray, D. Williams, G. Williams, D. Worsley, “Inhibitor pretreatment synergies demonstrated using a scanning Kelvin probe technique,” Corrosion Engineering, Sci. Technol. 38 112–118, 2003. 50. S. Bohm, H.N. McMurray, D.A. Worsley, S.M. Powell, “Novel environment friendly corrosion inhibitor pigments based on naturally occurring clay minerals,” Mater. Corr. 52 896–903 , 2001. 51. G. Williams, H.N. McMurray, M.J. Loveridge, “Inhibition of corrosion-driven organic coating disbondment on galvanised steel by smart release group II and Zn (II)-exchanged bentonite pigments,” Electrochimica Acta. 55 1740–1748, 2010. 52. S.A.S. Dias, A. Marques, S. V Lamaka, A. Sim?es, T.C. Diamantino, M.G.S. Ferreira, “The role of Ce (III)-enriched zeolites on the corrosion protection of AA2024-T3,” Electrochimica Acta. 112 549–556, 2013. 53. T.H. C. Forano F. Leroux, C. Taviot-Gue, Layered Double Hydroxides, in: Handb. Clay Sci., Elsevier, 2006. 54. R.G. Buchheit, H. Guan, S. Mahajanam, F. Wong, “Active corrosion protection and corrosion sensing in chromate-free organic coatings,” Prog. Org. Coat. 47 174–182, 2003. 55. M.L. Zheludkevich, S.K. Poznyak, L.M. Rodrigues, D. Raps, T. Hack, L.F. Dick, T. Nunes, M.G.S. Ferreira, “Active protection coatings with layered double hydroxide nanocontainers of corrosion inhibitor,” Corr. Sci. 52 602–611, 2010. 56. X. Guo, S. Xu, L. Zhao, W. Lu, F. Zhang, D.G. Evans, X. Duan, “One-step hydrothermal crystallization of a layered double hydroxide/alumina bilayer film on aluminum and its corrosion resistance properties,” Langmuir. 25 9894–9897, 2009. 57. J.K. Lin, C.L. Hsia, J.Y. Uan, “Characterization of Mg, Al-hydrotalcite conversion film on Mg alloy and Cl? and anion-exchangeability of the film in a corrosive environment,” Scripta Mater. 56 927–930, 2007. 58. J.K. Lin, J.Y. Uan, “Formation of Mg, Al-hydrotalcite conversion coating on Mg alloy in aqueous HCO 3?/CO 3 2? and corresponding protection against corrosion by the coating,” Corr. Sci. 51 1181–1188, 2009. 59. J. Wang, D. Li, X. Yu, X. Jing, M. Zhang, Z. Jiang, “Hydrotalcite conversion coating on Mg alloy and its corrosion resistance,” J. Alloy. Comp. 494 271–274, 2010. 60. J. Tedim, M.L. Zheludkevich, A.N. Salak, A. Lisenkov, M.G.S. Ferreira, “Nanostructured LDH-container layer with active protection functionality,” J. Mater. Chem. 21 15464–15470, 2011. 61.M. Zhou, L. Yan, H. Ling, Y. Diao, X. Pang, Y. Wang, K. Gao, “Design and fabrication of enhanced corrosion resistance Zn-Al layered double hydroxides films based anion-exchange mechanism on magnesium alloys,” Applied Surface Sci. 404 246–253. 2017. 62. O. Sanada, H. Mutsuyoshi, L. Yao, A. Sumida, Experimental Study on Chloride Diffusion, Strength and Fresh Properties of Ion-Exchange Resin Mixed Grout, in: Key Eng. Mater., Trans Tech Publ, pp. 436–443, 2016. 63. Z.A. Al-Othman, Synthesis, modification, and application of mesoporous materials based on MCM-41, Citeseer, 2006. 64. V. Von, Release studies on mesoporous microcapsules for new corrosion protection systems, Bochum University, n.d. their application in controlled drug delivery,” J. Phys. Chem. C. 115 9926–9932, 2011. 65. M. Yeganeh, A. Keyvani, “The effect of mesoporous silica nanocontainers incorporation on the corrosion behavior of scratched polymer coatings,” Prog. Org. Coat. 90 296–303, 2016. 66. E. Shchukina, D. Shchukin, D. Grigoriev, “Effect of inhibitor-loaded halloysites and mesoporous silica nanocontainers on corrosion protection of powder coatings,” Prog. Org. Coat. 102 60–65, 2017. 67. D.P. Wang, H.C. Zeng, “Creation of interior space, architecture of shell structure, and encapsulation of functional materials for mesoporous SiO2 spheres,” Chem. Mater. 23 4886–4899, 2011. 68. D. Borisova, D. Akçakay?ran, M. Schenderlein, H. M?hwald, D.G. Shchukin, “Nanocontainer Based Anticorrosive Coatings: Effect of the Container Size on the Self-Healing Performance,” Advance. Function. Mater. 23 3799–3812, 2013. 69. J.M. Falc?n, L.M. Otubo, I. V Aoki, “Highly ordered mesoporous silica loaded with dodecylamine for smart anticorrosion coatings,” Surface. Coat. Technol. 303 319–329, 2016. 70. L. Yuan, Q. Tang, D. Yang, J.Z. Zhang, F. Zhang, J. Hu, “Preparation of pH-responsive mesoporous silica nanoparticles and their application in controlled drug delivery,” Journal. Phys.l Chem. C. 115 9926–9932, 2011. 71. G. Chen, Y. Xie, R. Peltier, H. Lei, P. Wang, J. Chen, Y. Hu, F. Wang, X. Yao, H. Sun, “Peptide-Decorated Gold Nanoparticles as Functional Nano-Capping Agent of Mesoporous Silica Container for Targeting Drug Delivery,” ACS Appl. Mater. & Interface. 8 11204–11209, 2016. 72. Z. Zhang, D. Balogh, F. Wang, I. Willner, “Smart mesoporous SiO2 nanoparticles for the DNAzyme-induced multiplexed release of substrates,” J. Am. Chem. Soci. 135 1934–1940, 2013. 73. X. Zhang, P. Yang, Y. Dai, P. Ma, X. Li, Z. Cheng, Z. Hou, X. Kang, C. Li, J. Lin, “Multifunctional Up-Converting Nanocomposites with Smart Polymer Brushes Gated Mesopores for Cell Imaging and Thermo/pH Dual-Responsive Drug Controlled Release,” Advance. Function. Mater. 23 4067–4078, 2013. 74. E. Climent, A. Bernardos, R. Martinez-Manez, A. Maquieira, M.D. Marcos, N. Pastor-Navarro, R. Puchades, F. Sancen?n, J. Soto, P. Amor?s, “Controlled delivery systems using antibody-capped mesoporous nanocontainers,” J. Am. Chem. Soc. 131 14075–14080, 2009. 75. Q. Yang, S. Wang, P. Fan, L. Wang, Y. Di, K. Lin, F.-S. Xiao, “pH-responsive carrier system based on carboxylic acid modified mesoporous silica and polyelectrolyte for drug delivery,” Chem. Mater. 17 5999–6003, 2005. 76. J. Lu, M. Liong, Z. Li, J.I. Zink, F. Tamanoi, “Biocompatibility, biodistribution, and drug?delivery efficiency of mesoporous silica nanoparticles for cancer therapy in animals,” Small. 6 1794–1805, 2010. 77. B. Shen, Y. Ma, S. Yu, C. Ji, “Smart multifunctional magnetic nanoparticle-based drug delivery system for cancer thermo-chemotherapy and intracellular imaging,” ACS Appl. Mater & Interface. 8 24502–24508, 2016. 78. Q. Gao, Y. Xu, D. Wu, W. Shen, F. Deng, “Synthesis, characterization, and in vitro pH-controllable drug release from mesoporous silica spheres with switchable gates,” Langmuir. 26 17133–17138, 2010. 79. A.A. Rafi, M. Mahkam, S. Davaran, H. Hamishehkar, “A Smart pH-responsive Nano-Carrier as a Drug Delivery System: A hybrid system comprised of mesoporous nanosilica MCM-41 (as a nano-container) & a pH-sensitive polymer (as smart reversible gatekeepers): Preparation, characterization and in vitro release st,” Eur. J. Pharm. Sci. 93 64–73, 2016. 80. J. Fan, C. Yu, F. Gao, J. Lei, B. Tian, L. Wang, Q. Luo, B. Tu, W. Zhou, D. Zhao, “Cubic mesoporous silica with large controllable entrance sizes and advanced adsorption properties,” Angew. Chem. 115 3254–3258, 2003. 81. D. Lee, J. Lee, H. Lee, S. Jin, T. Hyeon, B.M. Kim, “Filtration-Free Recyclable Catalytic Asymmetric Dihydroxylation Using a Ligand Immobilized on Magnetic Mesocellular Mesoporous Silica,” Advanc. Synth & Catal 348 41–46, 2006. 82. S.A. El-Safty, M. Mekawy, A. Yamaguchi, A. Shahat, K. Ogawa, N. Teramae, “Organic–inorganic mesoporous silica nanostrands for ultrafine filtration of spherical nanoparticles,” Chem. Commun. 46 3917–3919, 2010. 83. D. Borisova, H. Mo?hwald, D.G. Shchukin, “Mesoporous silica nanoparticles for active corrosion protection,” ACS Nano. 5 1939–1946, 2011. 84. D. Borisova, H. Mo?hwald, D.G. Shchukin, “Influence of embedded nanocontainers on the efficiency of active anticorrosive coatings for aluminum alloys part I: influence of nanocontainer concentration,” ACS Appl. Mater & Interface. 4 2931–2939, 2012. 85. D. Borisova, H. Mo?hwald, D.G. Shchukin, “Influence of embedded nanocontainers on the efficiency of active anticorrosive coatings for aluminum alloys part II: influence of nanocontainer position,” ACS Appl. Mater. & Interface. 5 80–87, 2012. 86. T. Chen, J. Fu, “pH-responsive nanovalves based on hollow mesoporous silica spheres for controlled release of corrosion inhibitor,” Nanotechnology. 23 235605, 2012. 87. E. Aznar, M.D. Marcos, R. Marti?nez-Ma?n?ez, F. Sancen?n, J. Soto, P. Amor?s, C. Guillem, “pH-and photo-switched release of guest molecules from mesoporous silica supports,” J. Am. Chem. Soc. 131 6833–6843, 2009. 88. D. He, X. He, K. Wang, J. Cao, Y. Zhao, “A Photon- Fueled Gate-Like Delivery System Using i-Motif DNA Functionalized Mesoporous Silica Nanoparticles,” Adv. Function. Mater. 22 4704–4710, 2012. 89. A. Bernardos, L. Mondragon, E. Aznar, M.D. Marcos, R. Marti?nez-Ma?n?ez, F. Sanceno?n, J. Soto, J.M. Barat, E. Pe?rez-Paya?, C. Guillem, “Enzyme-responsive intracellular controlled release using nanometric silica mesoporous supports capped with ‘saccharides,’” Acs Nano. 4 6353–6368, 2010. 90. T. Maschmeyer, F. Rey, G. Sankar, J.M. Thomas, “Heterogeneous catalysts obtained by grafting metallocene complexes onto mesoporous silica,” Nature. 378 159, 1995. 91. F. Jiao, H. Frei, “Nanostructured Cobalt Oxide Clusters in Mesoporous Silica as Efficient Oxygen-Evolving Catalysts,” Angew. Chem. 121 1873–1876, 2009. 92. H.-J. Kim, H.-C. Yang, D.-Y. Chung, I.-H. Yang, Y.J. Choi, J. Moon, “Functionalized Mesoporous Silica Membranes for CO2 Separation Applications,” J. Chem. 2015. 93. J.H. Park, S. Kim, Y.C. Kim, O.O. Park, “Polymer/nanoporous silica nanocomposite blue-light-emitting diodes,” Nanotechnology. 16 1793, 2005. 94. F. Gao, S.P. Naik, T. Okubo, “Fabrication of Au/ZnO Schottky Nanodiode Using Mesoporous Silica Film as Template,” J. Nanosci. Nanotechnol. 7 2894–2898, 2007. 95. J. Fu, T. Chen, M. Wang, N. Yang, S. Li, Y. Wang, X. Liu, “Acid and alkaline dual stimuli-responsive mechanized hollow mesoporous silica nanoparticles as smart nanocontainers for intelligent anticorrosion coatings,” ACS Nano. 7 11397–11408, 2013. 96. X. Ma, L. Xu, W. Wang, Z. Lin, X. Li, “Synthesis and characterisation of composite nanoparticles of mesoporous silica loaded with inhibitor for corrosion protection of Cu-Zn alloy,” Corr. Sci. 2017. 97. C.-Y. Hong, X. Li, C.-Y. Pan, “Fabrication of smart nanocontainers with a mesoporous core and a pH-responsive shell for controlled uptake and release,” J. Mater. Chem. 19 5155–5160, 2009. 98. Y.-L. Zhao, Z. Li, S. Kabehie, Y.Y. Botros, J.F. Stoddart, J.I. Zink, “pH-operated nanopistons on the surfaces of mesoporous silica nanoparticles,” J. Am. Chem. Soc. 132, 13016–13025, 2010. 99. M. Saremi, M. Yeganeh, “Application of mesoporous silica nanocontainers as smart host of corrosion inhibitor in polypyrrole coatings,” Corr. Sci. 86, 159–170, 2014. 100. M. Yeganeh, M. Saremi, “Corrosion Behavior of Polypyrrole/Mesoporous Silica Nanocontainers Coatings on the Mild Steel,” International J. Nanosci. Nanotechnol. 10, 111–116, 2014. 101. M. Yeganeh, M. Saremi, “Corrosion inhibition of magnesium using biocompatible Alkyd coatings incorporated by mesoporous silica nanocontainers,” Prog. Org. Coat. 79, 25–30, 2015. 102. A. Keyvani, M. Yeganeh, H. Rezaeyan, “Application of mesoporous silica nanocontainers as an intelligent host of molybdate corrosion inhibitor embedded in the epoxy coated steel,” Prog. Natu. Sci: Mater. International. 27, 261–267, 2017. 103. E. V Skorb, D. Fix, D. V Andreeva, H. M?hwald, D.G. Shchukin, “Surface-Modified Mesoporous SiO2 Containers for Corrosion Protection,” Adv. Function. Mater. 19, 2373–2379, 2009. 104. R. Cai, Y. Yan, “Corrosion-resistant zeolite coatings,” Corr. 64, 271–278, 2008. 105. W. Song, R. Kanthasamy, V.H. Grassian, S.C. Larsen, “Hexagonal, hollow, aluminium-containing ZSM-5 tubes prepared from mesoporous silica templates,” Chem. Commun. 1920–1921, 2004. 106. S.C. Larsen, “Nanocrystalline zeolites and zeolite structures: synthesis, characterization, and applications,” J. Phys. Chem. C. 111, 18464–18474, 2007. 107. N.M. Ahmed, H.S. Emira, M.M. Selim, “Anticorrosive performance of ion-exchange zeolites in alkyd-based paints,” Pigment & Resin Technology. 40 91–99, 2011. 108. E.L. Ferrer, A.P. Rollon, H.D. Mendoza, U. Lafont, S.J. Garcia, “Double-doped zeolites for corrosion protection of aluminium alloys,” Microporous. Mesoporous Mater. 188 8–15, 2014. 109. S.A.S. Dias, S. V Lamaka, C.A. Nogueira, T.C. Diamantino, M.G.S. Ferreira, “Sol–gel coatings modified with zeolite fillers for active corrosion protection of AA2024,” Corr. Sci. 62, 153–162, 2012. 110. L. Calabrese, L. Bonaccorsi, A. Capr?, E. Proverbio, “Enhancement of the hydrophobic and anti-corrosion properties of a composite zeolite coating on Al6061 substrate by modification of silane matrix,” Corr. Eng. Sci. Technol. 52, 61–72, 2017. 111. D.W. DeBerry, “Modification of the electrochemical and corrosion behavior of stainless steels with an electroactive coating,” J. Electrochem. Soc. 132, 1022–1026, 1985. 112. A.A. Yakovleva, “Electrochemistry of polypyrrole films in aqueous solutions: the character of the bond between the anion and the polymer matrix,” Russian J. Electrochem. 36, 1275–1282, 2000. 113. D. Kowalski, M. Ueda, T. Ohtsuka, “Corrosion protection of steel by bi-layered polypyrrole doped with molybdophosphate and naphthalenedisulfonate anions,” Corr. Sci. 49, 1635–1644, 2007. 114. M. Kendig, M. Hon, L. Warren, “‘Smart’corrosion inhibiting coatings,” Prog. Org. Coat. 47, 183–189, 2003. 115. G. Paliwoda-Porebska, M. Stratmann, M. Rohwerder, K. Potje-Kamloth, Y. Lu, A.Z. Pich, H.-J. Adler, “On the development of polypyrrole coatings with self-healing properties for iron corrosion protection,” Corr. Sci. 47, 3216–3233, 2005. 116. M. Yeganeh, M. Saremi, H. Rezaeyan, “Corrosion inhibition of steel using mesoporous silica nanocontainers incorporated in the polypyrrole,” Prog. Org. Coat. 77, 1428–1435, 2014. 117. D. Kowalski, M. Ueda, T. Ohtsuka, “The effect of counter anions on corrosion resistance of steel covered by bi-layered polypyrrole film,” Corr. Sci. 49, 3442–3452, 2007. 118. J. Reut, A. ?pik, K. Idla, “Corrosion behavior of polypyrrole coated mild steel,” Synth. Metal. 102, 1392–1393, 1999. 119. P. Herrasti, P. Ocon, “Polypyrrole layers for steel protection,” Appl. Surf. Sci. 172, 276–284, 2001. 120. H.N.T. Le, B. Garcia, C. Deslouis, Q. Le Xuan, “Corrosion protection and conducting polymers: polypyrrole films on iron,” Electrochimica Acta. 46 4259–4272, 2001. 121. H. Hammache, L. Makhloufi, B. Saidani, “Corrosion protection of iron by polypyrrole modified by copper using the cementation process,” Corr. Sci. 45, 2031–2042, 2003. 122. N.T.L. Hien, B. Garcia, A. Pailleret, C. Deslouis, “Role of doping ions in the corrosion protection of iron by polypyrrole films,” Electrochimica Acta. 50 1747–1755, 2005. 123. C.K. Tan, D.J. Blackwood, “Corrosion protection by multilayered conducting polymer coatings,” Corr. Sci. 45, 545–557, 2003. 124. I.L. Lehr, S.B. Saidman, “Characterisation and corrosion protection properties of polypyrrole electropolymerised onto aluminium in the presence of molybdate and nitrate,” Electrochimica Acta. 51 3249–3255, 2006. 125. M.B. Gonzalez, S.B. Saidman, “Electrodeposition of polypyrrole on 316L stainless steel for corrosion prevention,” Corr. Sci. 53, 276–282, 2011. 126. P. Herrasti, A.N. Kulak, D. V Bavykin, C.P. de Léon, J. Zekonyte, F.C. Walsh, “Electrodeposition of polypyrrole–titanate nanotube composites coatings and their corrosion resistance,” Electrochimica Acta. 56 1323–1328, 2011. 127. E. Szalkowska, J. Gluszek, J. Masalski, W. Tylus, “Structure and protective properties of TiO2 coatings obtained using the sol-gel technique,” J. Mate. Sci. Lett. 20, 495–497, 2001. 128. L.M. Duc, L, 2005. 129. G. Gupta, N. Birbilis, A.B. Cook, A.S. Khanna, “Polyaniline-lignosulfonate/epoxy coating for corrosion protection of AA2024-T3,” Corr. Sci. 67, 256–267, 2013. 130. D.E. Tallman, K.L. Levine, C. Siripirom, V.G. Gelling, G.P. Bierwagen, S.G. Croll, “Nanocomposite of polypyrrole and alumina nanoparticles as a coating filler for the corrosion protection of aluminium alloy 2024-T3,” Appl. Sur. Sci. 254, 5452–5459, 2008. 131. M. Yeganeh, M. Saremi, “International Journal of Bio-Inorganic Hybrid Nanomaterials,” Int. J. Bio-Inorg. Hybr. Nanomater. 3 135–142, 2014. 132. C.A. Ferreira, S.C. Domenech, P.C. Lacaze, “Synthesis and characterization of polypyrrole/TiO2 composites on mild steel,” J. Appl. Electrochem. 31, 49–56, 2001. 133. B. Garcia, A. Lamzoudi, F. Pillier, H. Nguyen, T. Le, C. Deslouis, “Oxide/polypyrrole composite films for corrosion protection of iron,” J. Electrochem. Soc. 149, B560–B566, 2002. 134. J. Yeh, C. Chin, S. Chang, “Enhanced corrosion protection coatings prepared from soluble electronically conductive polypyrrole-clay nanocomposite materials,” J. Appl Poly. Sci. 88, 3264–3272, 2003. 135. A. M. Kumar, N. Rajendran, “Influence of zirconia nanoparticles on the surface and electrochemical behaviour of polypyrrole nanocomposite coated 316L SS in simulated body fluid,” Surf. Coat. Technol. 213, 155–166, 2012.



فایل مقاله
تعداد بازدید: 435
تعداد دریافت فایل مقاله : 8