16 October 2018 - سه شنبه 24 مهر 1397
جستجوی مقالات
کلید واژگان
جستجوی پیشرفته
شناسنامه ی نشریه
صاحب امتیاز:
موسسه پژوهشی علوم و فناوری رنگ و پوشش
مدیر مسئول:
پروفسور زهرا رنجبر
سردبیر:
دکتر شهره روحانی
مدیر اجرایی:
دکتر مریم عطائی فرد
شاپا چاپی:
2251-7278
شاپا الکترونیکی:
2383-2223
دسترسی سریع
آخرین شماره ها
نظر سنجی
نظر شما در مورد سایت نشریه دنیای رنگ چیست؟
مطلوب
نسبتا مطلوب
نیاز به بهسازی دارد
ضعیف

مروري بر ترکيبات آلي-معدني حاوي بازدارنده‌هاي خوردگي: بررسي روش‌هاي ساخت و سازوکار حفاظت

نشریه: سال هشتم - شماره اول - بهار 1397 - مقاله 5   صفحات :  25 تا 38



کد مقاله:
JSCW-2018-01-07-10342

مولفین:
مهسا داوودی: موسسه پژوهشی علوم و فناوری رنگ و پوشش - پوشش های سطح و خوردگی
ابراهیم قاسمی: موسسه پژوهشی علوم و فناوری رنگ و پوشش - گروه پژوهشی رنگدانه های معدنی
بهرام رمضانزاده: موسسه پژوهشي علوم و فناوري رنگ و پوشش - گروه پژهشي پوششهای سطح و خوردگی
محمد مهدویان احدي: موسسه پژوهشی علوم و فناوری رنگ و پوشش - گروه پوشش‌های سطح و خوردگی


چکیده مقاله:

يكي از رايج‌ترين راهكارها براي حفاظت فلزات در برابر خوردگي استفاده از پوشش‌هاي پليمري مي‌باشد. پوشش‌هاي پليمري با ايجاد سد فيزيکي در برابر نفوذ آب و عوامل خورنده به سطح فلز از آن در برابر خوردگي محافظت مي‌کنند. عوامل خارجي نظير تابش پرتو فرابنفش، تنش هاي دمايي و اثرات مكانيكي (خراش و ترک) منجر به تخريب ساختار پوشش، ايجاد خلل و فرج و منافذ نفوذ آب و عوامل خورنده به درون ساختار پوشش و در نهايت فصل مشترک پوشش/فلز مي شود. بنابراين حفاظت فعال در کنار حفاظت از طريق سد‌کنندگي جهت افزايش طول عمر فلز نياز است. يک روش براي رسيدن به اثر فعال بازدارندگي استفاده از رنگدانه‌هاي ضدخوردگي فعالي است که قادرند فعاليت خوردگي را کاهش دهند. رنگدانه کرم يکي از پرکاربردترين اين رنگدانه ها محسوب مي‌گردد که برخلاف عملكرد ضد‌خوردگي مناسبش، سميت بالا و اثرات سرطان‌زايي‌اش منجر به محدوديت استفاده از آن در پوشش در سال‌هاي اخير شده است. رنگدانه‌هاي آلي و معدني، برحسب سازوکار حفاظت از خوردگي به سه دسته کلي سدکننده، فداشونده و بازدارنده تقسيم‌بندي مي‌شوند. افزودن بازدارنده‌ها به صورت مستقيم به پوشش مي‌تواند اثرات نامطلوبي بر پخت پوشش داشته و عيوب ساختاری ايجاد كند. راهکار موثر ديگر جاي‌گذاري يا کپسوله‌کردن بازدارنده‌هاي خوردگي در سامانه‌هاي ميكرو و نانو مي‌باشد که انواع مختلفي دارند. در اين مطالعه به مرور ساختارهاي انواع مختلف رنگدانه‌هاي ضدخوردگي، کپسول‌هاي بازدارنده و رنگدانه‌هاي با قابليت تبادل يون و سازوکار بازدارندگي پرداخته خواهد شد


Article's English abstract:

One of the most common approache for protection of metals against corrosion is application of organic coatings. These coatings provide physical barrier against diffusion of water and ions to the metal surface. However, environmental issues such as UV irradiation, thermal and mechanical stresses (scratch and crack) are responsible for the coating damage, resulting in the creation of pores and defects in the coating matrix. Therefore, active corrosion inhibition and barrier protection action are required for metal protection against corrosion. One method for achieving an active corrosion inhibition effect is the use of inhibitive anti-corrosive pigments. Chromate is one of the most popular inhibitive pigments. Howevre, its use in organic coatings has been strongly restricted due to its toxic and carcinogenic nature. The organic/inorganic pigments can be categorized into barrier, sacrificial and active inhibitive pigments. Direct loading of corrosion inhibitors into the coating results in undesirable and negative effects on its curing and structural properties. One effective strategy for overcoming this issue is encapsulation of corrosion inhibitors into the micro-nano containers. In this study different methods for encapsulation of corrosion inhibitors and their inhibitive mechanisms are reviewed and discussed.


کلید واژگان:
خوردگي، بازدارنده‌، ميکرو و نانوکپسول، ترکيبات معدني با قابليت تبادل يون

English Keywords:
Corrosion, Inhibitor, mico- and nanocapsule, Inorganic compounds with ion exchange capability

منابع:
6. ه. يگانه ، س. م. مرعشي، ن. محمدي، "پوشش‌هاي هوشمند ضدخوردگي: انواع و سازوکارهاي حفاظت از خوردگي"، نشريه علمي ترويجي مطالعات در دنياي رنگ، 7، 46-29، 1396. 7. ع. ا. جاويد پروز، ب. رمضانزاده، ا. قاسمي، "مروري بر پوشش هاي بر پايه سل-ژل مورد استفاده جهت حفاظت زيرآيندهاي فلزي در برابر خوردگي"، نشريه علمي ترويجي مطالعات در دنياي رنگ، 5، 44-31، 1394. 8. محمد مهدويان احدي، رضا عبدالله زاده، "مروري بر بازدارنده¬هاي خوردگي سبز پايه گياهي"، نشريه علمي ترويجي مطالعات در دنياي رنگ، 5، 70-61، 1394. 9. ع. ا. جاويد پرور، ب. رمضانزاده، ا. قاسمي ، "مروري بر خواص ضد خوردگي نانو رنگدانه هاي بر پايه اکسيد آهن"، نشريه علمي ترويجي مطالعات در دنياي رنگ، 4، 60-47، 1393.

English References:
1. Ghazi, E. Ghasemi, M. Mahdavian, B. Ramezanzadeh, M. Rostami, "The application of benzimidazole and zinc cations intercalated sodium montmorillonite as smart ion exchange inhibiting pigments in the epoxy ester coating", Corros. Sci. 94, 207-217, 2015 2. S.K. Dhoke, A.S. Khanna, T. Jai Mangal Sinha, "Effect of nano-ZnO particles on the corrosion behavior of alkyd-based waterborne coatings", Prog. Org. Coat. 64, 371–382, 2009 3. M.J. Palimi, M. Peymannia, B. Ramezanzadeh, "An evaluation of the anticorrosion properties of the spinel nanopigment-filled epoxy composite coatings applied on the steel surface". Prog. Org. Coat. 80, 164-175, 2015 4. E. Salehi Reza Naderi, B. Ramezanzadeh, "Synthesis and characterization of an effective organic/inorganic hybrid green corrosion inhibitive complex based on zinc acetate/Urtica Dioica", Appl. Surf. Sci. 396, 1499-1514, 2017. 5. A. Latnikova, "Polymeric capsules for self-healing anticorrosion coatings, phdthesis, University of Potsdam", Deutschland, 2012. 10. Z.Ahmed, "Chapter 1-Introduction to corrosion, In principles of corrosion engineering and corrosion control", Elsevier, Britain, 1-8, 2006. 11. D.T.A. Amirudin, A. Amirudin, D. Thierry, "Application of electrochemical impedance spectroscopy to study the degradation of polymer-coated metals", Prog. Org. Coatings, 26, 1–28, 1995. 12. R.M. Souto Y. Gonza, Electrochemical and structural properties of a polyurethane coating on steel substrates for corrosion protection, Corros. Sci., 49, 3514–3526, 2007. 13. S. Muralidharan, D.K. Kim, T.H. Ha, J.H. Bae, Y.C. Ha, H.G. Lee, J.D. Scantlebury, "Influence of alternating, direct and superimposed alternating and direct current on the corrosion of mild steel in marine environments", Electrochimi, 216, 103–115, 2007. 14. P. A. Schweitzer, "Fundamentals of Corrosion. Fundamentals of corrosion", 2010. 15. K.L.N.P.S. Muralidharam S. Pitchumani, S. Ravichandran, S.V.K Iyer, "Polyamino?benzoquinone polymers: a new class of corrosion inhibitors for mild Steel", J. Electrochem. Soc., 142, 1478-1483, 1995. 16. G. Grundmeier, W. Schmidt, M. Stratmann, Corrosion protection by organic coatings: electrochemical mechanism and novel methods of investigation, Electrochim. Acta. 45, 2515–2533, 2000. 17. G.I. Medvedev, N.A. Makrushin, O.V. Ivanova, "Electrodeposition of copper-tin alloy from sulfate electrolyte", Russ. J. Appl. Chem. 77, 1104–1107, 2004. 18. M. Mahdavian, R. Naderi, "Corrosion inhibition of mild steel in sodium chloride solution by some zinc complexes", Corros. Sci. 53, 1194–1200, 2011. 19. Rammelt, U. G. Reinhard, "Characterization of active pigment in damage of organic coatings on steel by means of electrochemical impedance spectroscopy" Prog. Org. Coat. 24, 309-322, 1994. 20. B. Biega?ska, M. Zubielewicz, E. S?mieszek, "Influence of barrier pigments on the performance of protective organic coatings", Prog. Org. Coat, 16, 219–229, 1988. 21. B. Nikravesh, B. Ramezanzadeh, A. A. Sarabi, S. M. Kasiriha, Evaluation of the corrosion resistance of an epoxy-polyamide coating containing different ratios of micaceous iron oxide/Al pigments, Corros. Sci., 53, 1592–1603, 2011. 22. S. Shreepathi, P. Bajaj, B.P. Mallik, "Electrochemical impedance spectroscopy investigations of epoxy zinc rich coatings: Role of Zn content on corrosion protection mechanism", Electrochim. Acta, 55, 5129–5134, 2010. 23. F. Askari, E. Ghasemi, B. Ramezanzadeh, M. Mahdavian, "Mechanistic approach for evaluation of the corrosion inhibition of potassium zinc phosphate pigment on the steel surface: Application of surface analysis and electrochemical techniques", Dye. Pigment. 109, 189–199, 2014. 24. R. L. Twite, G. P. Bierwagen, "Review of alternatives to chromate for corrosion protection of aluminum aerospace alloys", Prog. Org. Coatings. 33, 91–100, 1998. 25. N. S. Sangaj and V. C. Malshe, "Permeability of polymers in protective organic coatings", Prog. Org. Coatings, 50, 28–39, 2004. 26. K. Aramaki, "The inhibition effects of chromate-free, anion inhibitor on corrosion of zinc in aerated 0.5 M NaCl", Corros. Sci. 43, 591–604, 2001. 27. A.C. Bastos, M.G. Ferreira, A.M. Sim?es, "Corrosion inhibition by chromate and phosphate extracts for iron substrates studied by EIS and SVET", Corros. Sci. 48, 1500–1512, 2006. 28. F. Askari, E. Ghasemi, B. Ramezanzadeh, M. Mahdavian, "Synthesis and characterization of the fourth generation of zinc phosphate pigment in the presence of benzotriazole", Dye. Pigment. 124, 18–26, 2016. 29. N. P. Tavandashti, M. Ghorbani, A. Shojaei, J. M. C. Mol, H. Terryn, K. Baert, Inhibitor-Loaded Conducting Polymer Capsules for Active Corrosion Protection of Coating Defects, Corros. Sci. 112, 138–149, 2016. 30. S. van der Z. M. Abdolah Zadeh, S.J. Garcia, "Routes to extrinsic and intrinsic self-healing corrosion protective sol-gel coatings?: a review, Self-Healing Materials", 1, 1–18, 2013. 31. M. L. Zheludkevich, S. K. Poznyak, L. M. Rodrigues, D. Raps, T. Hack, L. F. Dick, T. Nunes, M. G. S. Ferreira, "Active protection coatings with layered double hydroxide nanocontainers of corrosion inhibitor", Corros. Sci. 52, 602–611, 2010. 32. E. Abdullayev, R. Price, D. Shchukin, Y. Lvov, "Halloysite tubes as nanocontainers for anticorrosion coating with benzotriazole", ACS Appl. Mater. Interfaces. 1, 1437–1443, 2009. 33. A. Latnikova, "Polymeric capsules for self-healing anticorrosion coatings Dissertation, University Potsdam, 2012. 34. E.N. Brown, M.R. Kessler, N.R. Sottos, S.R. White, In situ poly(urea-formaldehyde) microencapsulation of dicyclopentadiene", J. Microencapsul. 20?, 719–730, 2003. 35. M. Kobaslija, D.T. McQuade, "Polyurea Microcapsules from Oil-in-Oil Emulsions via Interfacial Polymerization, ACS. Macromolecules. 39, 6371–6375, 2006. 36. D. Raps, T. Hack, M. Kolb, M.L. Zheludkevich, O. Nuyken, "Development of Corrosion Protection Coatings for AA2024-T3 Using Micro-Encapsulated Inhibitors", ACS Symp. Ser. 1050, 165–189, 2010. 37. H. Sonawane, B.A. Bhanvase, A.A. Jamali, S.K. Dubey, S.S. Kale, D. V Pinjari, "Improved active anticorrosion coatings using layer-by-layer assembled ZnO nanocontainers with benzotriazole", Chem. Eng. J. 189, 464–472, 2012. 38. B.A. Bhanvase, M.A. Patel, S.H. Sonawane, "Kinetic properties of layer-by-layer assembled cerium zinc molybdate nanocontainers during corrosion inhibition", Corros. Sci. 88, 170–177, 2014. 39. J. Ma, B. Cui, J. Dai, D. Li, "Mechanism of adsorption of anionic dye from aqueous solutions onto organobentonite", J. Hazard. Mater. 186, 1758–1765, 2011. 40. G. Williams, H.N. McMurray, M.J. Loveridge, "Inhibition of corrosion-driven organic coating disbondment on galvanised steel by smart release group II and Zn(II)-exchanged bentonite pigments", Electrochim. Acta. 55, 1740–1748, 2010. 41. J. Singh-Beemat, J. O. Iroh, "characterization of corrosion resistant clay/epoxy ester composite coatings and thin films", Prog. Org. Coat. 74, 180-173, 2012. 42. T.T.X. Hang, T.A. Truc, M.G. Olivier, C. Vandermiers, N. Guérit, N. Pébre, "Corrosion protection mechanisms of carbon steel by an epoxy resin containing indole-3 butyric acid modified clay", Prog. Org. Coat. 69, 410–416, 2010. 43. T.Trinh Anh, H. To Thi Xuan, O.Vu Ke, E.Dantras, C.Lacabanne, D.Oquab, "Incorporation of an indole-3butyric acid modified clay in epoxy resin for corrosion protection of carbon steel", Surf. Coat. Technol. 202, 4945-4951, 2008. 44. L. Rassouli, R. Naderi, M. Mahdavain, "The role of micro/nano zeolites doped with zinc cations in the active protection of epoxy ester coating", Appl. Surf. Sci. 423, 571–583, 2017. 45. A. Bahrani, R. Naderi, M. Mahdavian, "Chemical modification of talc with corrosion inhibitors to enhance the corrosion protective properties of epoxy-ester coating", Prog. Org. Coat. 120, 110-122, 2018. 46. G. Williams, S. Geary, H.N. McMurray, "Smart release corrosion inhibitor pigments based on organic ion-exchange resins", Corros. Sci. 57, 139–147, 2012. 47. E.L. Ferrer, A.P. Rollon, H.D. Mendoza, U. Lafont, S.J. Garcia, "Double-doped zeolites for corrosion protection of aluminium alloys", Microporous Mesoporous Mater. 188, 8–15, 2014. 48. D. Li, F. Wang, X. Yu, J. Wang, Q. Liu, P. Yang, "Anticorrosion organic coating with layered double hydroxide loaded with corrosion inhibitor of tungstate", Prog. Org. Coat. 71, 302-309, 2011. 49. T.T.X. Hang, T.A. Truc, N.T. Duong, P.G. Vu, T. Hoang, Preparation and characterization of nanocontainers of corrosion inhibitor based on layered double hydroxides, Appl. Clay Sci. 67-68, 18–25, 2012. 50. J. Tedim, S. K. Poznyak, A.Kuznetsova, D. Raps, T.Hack, M.L.Zheludkevich, et al., Enhancement of active corrosion protection via combination of inhibitor-loaded nanocontainers,ACS Appl. Master. Interfaces, 2, 1528-1535, 2010. 51. E. Alibakhshi, E. Ghasemi, M. Mahdavian, "A comparative study on corrosion inhibitive effect of nitrate and phosphate intercalated Zn-Al- layered double hydroxides (LDHs) nanocontainers incorporated into a hybrid silane layer and their effect on cathodic delamination of epoxy topcoat", J. Corr. Sci. 115, 159–174, 2017 52. E. Abdullayev, V. Abbasov, A. Tursunbayeva, V. Portnov, H. Ibrahimov, G. Mukhtarova, "Self-healing coatings based on halloysite clay polymer composites for protection of copper alloys", Appl. Mater. Interfaces. 5, 4464–4471, 2013. 53. E. Shchukina, D. Grigoriev, T. Sviridova, D. Shchukin, "Comparative study of the effect of halloysite nanocontainers on autonomic corrosion protection of polyepoxy coatings on steel by salt-spray tests", Prog. Org. Coat. 108, 84-89, 2017 54. E. Shchukina, D. Shchukin, D. Grigoriev, "Effect of inhibitor-loaded halloysites and mesoporous silica nanocontainers on corrosion protection of powder coatings Prog. Org. Coat. 102, 60-65, 2017. 55. M.L. Zheludkevich, R. Serra, M.F. Montemor, M.G.S. Ferreira, "Oxide nanoparticle reservoirs for storage and prolonged release of the corrosion inhibitors", Electrochem. Commun. 7, 836–840, 2005. 56. E. V. Skorb, D. Fix, D. V. Andreeva, H. M?hwald, D.G. Shchukin, "Surface-modified mesoporous SiO2 containers for corrosion protection", Adv. Funct. Mater. 19, 2373–2379, 2009. 57. M. Saremi, M. Yeganeh, "Application of mesoporous silica nanocontainers as smarthest of corrosion inhibitor in polypyrrole coatings", Corros. Sci. 86, 159–170, 2014. 58. M.F.F. Montemor, D.V. V. Snihirova, M.G.G. Taryba, S.V. V. Lamaka, I. a. A. Kartsonakis, a. C.C. Balaskas, Evaluation of self-healing ability in protective coatings modified with combinations of layered double hydroxides and cerium molibdate nanocontainers filled with corrosion inhibitors, Electrochim. Acta. 60, 31–40, 2012. 59. G.L. Li, Z. Zheng, H. M?hwald, D.G. Shchukin, Silica/polymer double-walled hybrid nanotubes: Synthesis and application as stimuli-responsive nanocontainers in selfhealing coatings, ACS Nano. 7, 2470–2478, 2013. 60. Y. Hayatgheib, B. Ramezanzadeh, P. Kardar, M. Mahdavian, A comparative study on fabrication of a highly effective corrosion protective system based on graphene oxide-polyaniline nanofibers/epoxy composite, Corros. Sci, 133, 358–373, 2018. 61. B. Ramezanzadeh, P. Kardar, G. Bahlakeh, Y. Hayatgheib, and M. Mahdavian, "Fabrication of a Highly Tunable Graphene Oxide Composite through Layer-by-Layer Assembly of Highly Crystalline Polyaniline Nanofibers and Green Corrosion Inhibitors: Complementary Experimental and First-Principles Quantum-Mechanics Modeling Approaches", J. Phys. Chem. C. 121, 20433?20450, 2017. 62. B. Nikpour, B. Ramezanzadeh, Gh. Bahlakeh, M. Mahdavian, "Synthesis of graphene oxide nanosheets functionalized by green corrosion inhibitive compounds to fabricate a protective system", Corros. Sci. 127, 240–259, 2017.



فایل مقاله
تعداد بازدید: 736
تعداد دریافت فایل مقاله : 19