21 September 2017 - پنج شنبه 30 شهريور 1396
جستجوی مقالات
کلید واژگان
جستجوی پیشرفته
شناسنامه ی نشریه
صاحب امتیاز:
موسسه پژوهشی علوم و فناوری رنگ و پوشش
مدیر مسئول:
پروفسور زهرا رنجبر
سردبیر:
دکتر شهره روحانی
مدیر اجرایی:
دکتر مریم عطائی فرد
شاپا چاپی:
2251-7278
شاپا الکترونیکی:
2383-2223
دسترسی سریع
آخرین شماره ها
نظر سنجی
نظر شما در مورد سایت نشریه دنیای رنگ چیست؟
مطلوب
نسبتا مطلوب
نیاز به بهسازی دارد
ضعیف

مروری بر خواص گرافن و آستانه فراگیری الکتریکی پوشش‌های حاوی گرافن

نشریه: سال ششم- شماره سوم- پاييز 1395 - مقاله 6   صفحات :  39 تا 53



کد مقاله:
JSCW-17-07-2016-10285

مولفین:
رعنا رفیعی: موسسه پژوهشی علوم و فناوری رنگ و پوشش - پوشش های سطح و فناوری های نوین
زهرا رنجبر: موسسه پژوهشي علوم و فناوري رنگ و پوشش - پوششهای سطح و خوردگی
حسین یاری: موسسه پژوهشی علوم و فناوری رنگ و پوشش - گروه پوششهای سطح


چکیده مقاله:



گرافن ماده¬ای تک¬لایه و دوبعدی متشکل از کربن است که در آن اتم¬های کربن با آرایشی شش گوشه به یکدیگر متصل می¬شوند. این ماده به علت خواص منحصربه¬فرد الکتریکی، حرارتی، نوری و مکانیکی خود مورد توجه بسیاری صنایع قرار گرفته ¬است، تمامی این خواص از ویژگی¬های ساختار الکترونی گرافن ناشی می¬شود. مطابق نتایج حاصل از بررسی ترازهای انرژی گرافن، این ماده نیمه رسانا و فاقد شکاف انرژی است. رسانش در گرافن از طریق الکترون یا حفره با غلظتی به اندازه cm-2 1013 صورت می¬گیرد، سرعت حرکت الکترون¬ها در حضور میدان الکتریکی تقریباً برابر با cm2 V-1 s-1 500000 است و حرکت آن¬ها در سراسر شبکه لانه زنبوری گرافن بسیار راحت و روان انجام می¬شود. افزودن این نانوذرات به محمل پلیمری خواص آن را به¬طور چشمگیری تغییر می¬دهد، به¬نحوی که امروزه مطالعات بسیاری به بررسی انواع روش¬های ساخت پوشش¬های حاوی گرافن و ایجاد خواص بهینه در آن¬ها اختصاص یافته¬است. در این مقاله ابتدا به معرفی ساختار، خواص و روش¬های متنوع تهیه¬ گرافن به¬طور اجمالی پرداخته ¬شده است و در ادامه انواع روش¬های ساخت پوشش¬های حاوی گرافن مورد بررسی قرار می¬گیرد. بخش اصلی مقاله نیز بر رسانایی الکتریکی پوشش¬هایی با بسترهای متنوع همچون اپوکسی، پلی¬یورتان، پلی¬پروپیلن، پلی¬استایرن، پلی¬استر و غيره متمرکز شده که در آنها دستیابی به پایین¬ترین آستانه¬ فراگیری الکتریکی (حداقل گرافن لازم جهت گذر از حالت عایق به حالت رسانا)، یافتن و کنترل عوامل اثرگذار بر این متغیر مورد بحث واقع شده است.


Article's English abstract:

Graphene is a monolayer two-dimensional material in which the carbon atoms form a honeycomb lattice. The outstanding electrical, thermal, optical and mechanical properties of graphene due to its electronic structure have made graphene a promising nanostructure for vast range of applications. In this zero-gap semiconductor material, electron/ hole carriers concentration is around 〖10〗^13 cm^(-2) and it possesses high electron mobility (500000 s^(-1) V^(-1) cm^2) at room temperature. Adding graphene to a polymeric matrix enhances the polymer properties noticeably, various researches have been devoted to studying the fabrication methods of polymer/graphene coatings and achieving the optimum properties in them. In this paper, the general structure, properties and various procedures of graphene production are briefly investigated. Then the fabrication methods of polymer/graphene coatings are studied. The main part of this paper has focused on electrical conductivity of various coatings based on epoxy, polyurethane, polypropylene, polystyrene, polyester and etc. In which achieving the lowest possible electrical percolation threshold (minimum amount of graphene required to convert an insulator coating to a conductor), finding and controlling the factors that affect the percolation threshold are discussed.


کلید واژگان:
گرافن، پوشش، رسانایی الکتریکی، آستانه فراگیری الکتریکی.

English Keywords:
Graphene, Coating, Electrical Conductivity, Electrical Percolation Threshold.

منابع:
31.معصومه رجبی، داود زارعی، غلامرضا راشد، "مروری بر ساختار و ویژگی¬های نانوکلمپوزیت¬های پلیمر/ گرافن"، نشریه علمی ترویجی مطالعات در دنیای رنگ، 2، 17-28، 1391

English References:
1. J. Jordan, K. I. Jacob, R. Tannenbaum, M. A. Sharaf, I. Jasiuk, "Experimental trends in polymer nanocomposites—a review", Mater. Sci. Eng. A. 393, 1–11, 2005. 2. A. K. Geim, K. S. Novoselov, "The rise of graphene", Nat. Mater. 6, 183–91, 2007. 3. V. Singh, D. Joung, L. Zhai, S. Das, S. I. Khondaker, S. Seal, "Graphene based materials: Past, present and future", Prog. Mater. Sci. 56, 1178–1271, 2011. 4. A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C. N. Lau, "Superior thermal conductivity of single-layer graphene", Nano Lett. 8, 902–7, 2008. 5. C. Lee, X. Wei, J. W. Kysar, J. Hone, "Measurement of the elastic properties and intrinsic strength of monolayer graphene", Sci. 321, 385–8, 2008. 6. C. Lee, X. Wei, Q. Li, R. Carpick, J. W. Kysar, J. Hone, "Elastic and frictional properties of graphene", Phys. Status Solidi. 246, 2562–2567, 2009 7. S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, R. S. Ruoff, "Graphene-based composite materials", Nature. 442, 282–286, 2006. 8. M. Sharon, M. Sharon, "Graphene?: an introduction to the fundamentals and industrial applications", Beverly, Wiley, 2015. 9. L. E. F. Foa Torres, S. Roche, J.-C. Charlier, "Introduction to Graphene-Based Nanomaterials", Cambridge University Press, Cambridge, 2013. 10. graphene, www.quantummadesimple.com. 11. A. A. Balandin, "Thermal properties of graphene and nanostructured carbon materials", Nat. Mater. 10, 569–81, 2011. 12. P. G. KLEMENS, "Theory of the a-Plane Thermal Conductivity of Graphite", J. Wide Bandgap Mater. 7, 332–339, 2000. 13. A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C. N. Lau, "Superior thermal conductivity of single-layer graphene", Nano Lett. 8, 902–7, 2008. 14. S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. Ri Kim, Y. Il Song, Y.-J. Kim, K. S. Kim, B. ?zyilmaz, J.-H. Ahn, B. H. Hong, S. Iijima, "Roll-to-roll production of 30-inch graphene films for transparent electrodes", Nat. Nanotechnol. 5, 574–578, 2010. 15. G. Kalita, M. Masahiro, H. Uchida, K. Wakita, M. Umeno, "Few layers of graphene as transparent electrode from botanical derivative camphor", Mater. lett. 64, 2180-2183, 2010. 16. K. S. Novoselov, A. K. Geim, S. V Morozov, D. Jiang, Y. Zhang, S. V Dubonos, I. V Grigorieva, A. A. Firsov, "Electric field effect in atomically thin carbon films", Sci. 306, 666–9, 2004. 17. P. Blake, P. D. Brimicombe, R. R. Nair, T. J. Booth, D. Jiang, F. Schedin, L. A. Ponomarenko, S. V. Morozov, H. F. Gleeson, E. W. Hill, A. K. Geim, K. S. Novoselov, "Graphene-based liquid crystal device", Nano Lett. 8, 1704–1708, 2008. 18. Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun’Ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, J. N. Coleman, "High-yield production of graphene by liquid-phase exfoliation of graphite", Nat. Nanotechnol. 3, 563–568, 2008. 19. A. A. Green, M. C. Hersam, "Solution phase production of graphene with controlled thickness via density differentiation", Nano Lett. 9, 4031–4036, 2009. 20. M. Lotya, Y. Hernandez, P. J. King, R. J. Smith, V. Nicolosi, L. S. Karlsson, F. M. Blighe, S. De, Z. Wang, I. T. McGovern, G. S. Duesberg, J. N. Coleman, "Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions", J. Am. Chem. Soc. 131, 3611–3620, 2009. 21. J. R. Potts, D. R. Dreyer, C. W. Bielawski, R. S. Ruoff, "Graphene-based polymer nanocomposites", Polymer (Guildf). 52, 5–25. 2011. 22. M. S. Dresselhaus, G. Dresselhaus, "Intercalation compounds of graphite", Adv. Phys. 51, 1–186, 2002. 23. G. M. Morales, P. Schifani, G. Ellis, C. Ballesteros, G. Mart?nez, C. Barbero, H. J. Salavagione, "High-quality few layer graphene produced by electrochemical intercalation and microwave-assisted expansion of graphite", Carbon N. Y. 49, 2809–2816. 2011. 24. H. C. Schniepp, J.-L. Li, M. J. McAllister, H. Sai, M. Herrera-Alonso, D. H. Adamson, R. K. Prud’homme, R. Car, D. A. Saville, I. A. Aksay, "Functionalized single graphene sheets derived from splitting graphite oxide", J. Phys. Chem. B. 110, 8535–8539. 2006. 25. C. G?mez-Navarro, R. T. Weitz, A. M. Bittner, M. Scolari, A. Mews, M. Burghard, K. Kern, "Electronic transport properties of individual chemically reduced graphene oxide sheets", Nano Lett. 7, 3499–3503, 2007. 26. W. S. Hummers, R. E. Offeman, "Preparation of graphitic oxide", J. Am. Chem. Soc. 80, 1339–1339, 1958. 27. S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, R. S. Ruoff, "Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide", Carbon N. Y. 45, 1558–1565, 2007. 28. G. Eda, G. Fanchini, M. Chhowalla, "Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material", Nat. Nanotechnol. 3, 270–274, 2008. 29. A. B. Bourlinos, D. Gournis, D. Petridis, T. Szab?, A. Szeri, I. Dék?ny, "Graphite oxide: chemical reduction to graphite and surface modification with primary aliphatic amines and amino acids", Langmuir. 19, 6050–6055, 2003. 30. M. J. McAllister, J.-L. Li, D. H. Adamson, H. C. Schniepp, A. A. Abdala, J. Liu, M. Herrera-Alonso, D. L. Milius, R. Car, R. K. Prud’homme, I. A. Aksay, "Single sheet functionalized graphene by oxidation and thermal expansion of graphite", Chem. Mater. 19, 4396–4404, 2007. 32. Y. Zhang, L. Zhang, C. Zhou, "Review of chemical vapor deposition of graphene and related applications", Acc. Chem. Res. 46, 2329–2339, 2013. 33. Q. Yu, J. Lian, S. Siriponglert, H. Li, Y. P. Chen, S.-S. Pei, "Graphene segregated on Ni surfaces and transferred to insulators", Appl. Phys. Lett. 93, 2008. 34. L. Jiang, X.-P. Shen, J.-L. Wu, K.-C. Shen, "Preparation and characterization of graphene/ poly (vinyl alcohol) nanocomposites", J. Appl. Polym. Sci. 118, 275–279, 2010. 35. S. Vadukumpully, J. Paul, N. Mahanta, S. Valiyaveettil, "Flexible conductive graphene/ poly (vinyl chloride) composite thin films with high mechanical strength and thermal stability", Carbon 49, 198–205, 2011. 36. S. Ansari, E. P. Giannelis, "Functionalized graphene sheet-Poly (vinylidene fluoride) conductive nanocomposites", J. Polym. Sci. Part B Polym. Phys. 47, 888–897, 2009. 37. K. Kalaitzidou, H. Fukushima, L. T. Drzal, "A new compounding method for exfoliated graphite–polypropylene nanocomposites with enhanced flexural properties and lower percolation threshold", Compos. Sci. Technol. 67, 2045–2051, 2007. 38. H. Kim, C. W. Macosko, "Processing-property relationships of polycarbonate/graphene composites", Polymer (Guildf). 50 3797–3809. 2009. 39. J. Y. Jang, M. S. Kim, H. M. Jeong, C. M. Shin, "Graphite oxide/ poly (methyl methacrylate) nanocomposites prepared by a novel method utilizing macroazoinitiator", Compos. Sci. Technol. 69, 186–191, 2009. 40. F. de C. Fim, J. M. Guterres, N. R. S. Basso, G. B. Galland, "Polyethylene/ graphite nanocomposites obtained by in situ polymerization", J. Polym. Sci. Part A Polym. Chem. 48, 692–698, 2010. 41. Y. Huang, Y. Qin, Y. Zhou, H. Niu, Z.-Z. Yu, J.-Y. Dong, "Polypropylene/graphene oxide nanocomposites prepared by in situ ziegler?natta polymerization", Chem. Mater. 22, 4096–4102, 2010. 42. M. A. Rafiee, J. Rafiee, I. Srivastava, Z. Wang, H. Song, Z.-Z. Yu, N. Koratkar, "Fracture and fatigue in graphene nanocomposites", Small. 6, 179–183, 2010. 43. J. Yan, T. Wei, Z. Fan, W. Qian, M. Zhang, X. Shen, F. Wei, "Preparation of graphene nanosheet/ carbon nanotube/ polyaniline composite as electrode material for supercapacitors", 2010. 44. S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, R. S. Ruoff, "Graphene-based composite materials", Nature. 442, 282–286, 2006. 45. M. Fang, K. Wang, H. Lu, Y. Yang, S. Nutt, "Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites", J. Mater. Chem. 19, 2009. 46. M. A. Rafiee, J. Rafiee, Z. Wang, H. Song, Z.-Z. Yu, N. Koratkar, "Enhanced mechanical properties of nanocomposites at low graphene content", ACS Nano. 3, 3884–3890, 2009. 47. A. Yu, P. Ramesh, M. E. Itkis, E. Bekyarova, R. C. Haddon, "Graphite nanoplatelet?epoxy composite thermal interface materials", J. Phys. Chem. C. 111, 7565–7569, 2007 48. S.-Y. Yang, W.-N. Lin, Y.-L. Huang, H.-W. Tien, J.-Y. Wang, C.-C.M. Ma, S.-M. Li, Y.-S. Wang, "Synergetic effects of graphene platelets and carbon nanotubes on the mechanical and thermal properties of epoxy composites", Carbon N. Y. 49, 793–803, 2011. 49. S. Ganguli, A. K. Roy, D. P. Anderson, "Improved thermal conductivity for chemically functionalized exfoliated graphite/ epoxy composites", Carbon N. Y. 46, 806–817, 2008. 50. Y. Hu, J. Shen, N. Li, H. Ma, M. Shi, B. Yan, W. Huang, W. Wang, M. Ye, "Comparison of the thermal properties between composites reinforced by raw and amino-functionalized carbon materials", Compos. Sci. Technol. 70, 2176–2182, 2010. 51. X. Sun, P. Ramesh, M. E. Itkis, E. Bekyarova, R. C. Haddon, "Dependence of the thermal conductivity of two-dimensional graphite nanoplatelet-based composites on the nanoparticle size distribution", J. Phys. Condens. Matter. 22, 2010. 52. K. Kalaitzidou, H. Fukushima, L. T. Drzal, "Multifunctional polypropylene composites produced by incorporation of exfoliated graphite nanoplatelets", Carbon N. Y. 45, 1446–1452, 2007. 53. L. M. Veca, M. J. Meziani, W. Wang, X. Wang, F. Lu, P. Zhang, Y. Lin, R. Fee, J. W. Connell, Y.-P. Sun, "Carbon nanosheets for polymeric nanocomposites with high thermal conductivity", Adv. Mater. 21, 2088–2092, 2009. 54. J. Liang, Y. Wang, Y. Huang, Y. Ma, Z. Liu, J. Cai, C. Zhang, H. Gao, Y. Chen, "Electromagnetic interference shielding of graphene/epoxy composites", Carbon N. Y. 47, 922–925, 2009. 55. H.-B. Zhang, W.-G. Zheng, Q. Yan, Y. Yang, J.-W. Wang, Z.-H. Lu, G.-Y. Ji, Z.-Z. Yu, "Electrically conductive polyethylene terephthalate/graphene nanocomposites prepared by melt compounding", Polymer (Guildf). 51, 1191–1196, 2010 56. G. Eda, M. Chhowalla, "Graphene-based composite thin films for electronics", 814-818, 2009. 57. D. K. Schroder, "Semiconductor material and device characterization", IEEE Press, 2006. 58. F. M. Smits, "Measurement of sheet resistivities with the four-point probe", Bell Syst. Tech. J. 37, 711–718, 1958. 59. D. Stauffer, "Introduction to percolation theory", CRC Press, 1994. 60. R. Zallen, "The physics of amorphous solids", New York, Wiley, 1983. 61. N. Cewen, "Physics of inhomogeneous inorganic materials", 37, England, Oxford, 1993. 62. J. Li, J.-K. Kim, "Percolation threshold of conducting polymer composites containing 3D randomly distributed graphite nanoplatelets", Compos. Sci. Technol. 67, 2114–2120, 2007. 63. R. Hashemi, G. J. Weng, "A theoretical treatment of graphene nanocomposites with percolation threshold, tunneling-assisted conductivity and microcapacitor effect in AC and DC electrical settings", Carbon N. Y. 96, 474–490, 2016. 64. C.-W. Nan, Y. Shen, J. Ma, "Physical properties of composites near percolation", annual reviews of materials research 40 ,131-151, 2010. 65. M. L. Clingerman, E. H. Weber, J. A. King, K. H. Schulz, "Development of an additive equation for predicting the electrical conductivity of carbon-filled composites", J. Appl. Polym. Sci. 88, 2003. 66. H. S. G?ktürk, T. J. Fiske, D. M. Kalyon, "Effects of particle shape and size distributions on the electrical and magnetic properties of nickel/ polyethylene composites", J. Appl. Polym. Sci. 50, 1891–1901, 1993. 67. X. Jing, W. Zhao, L. Lan, "Effect of particle size on electric conducting percolation threshold in polymer/ conducting particle composites", J. Mater. Sci. Lett. 19, 377–379, 2000. 68. I. Chodak, I. Krupa, "Percolation effect" and mechanical behavior of carbon black filled polyethylene", J. Mater. Sci. Lett. 18, 1457–1459, 1999. 69. Y. Wang, J. W. Shan, G. J. Weng, "Percolation threshold and electrical conductivity of graphene-based nanocomposites with filler agglomeration and interfacial tunneling", J. Appl. Phys 118, 2015. 70. T. Kuilla, S. Bhadra, D. Yao, N. H. Kim, S. Bose, J. H. Lee, "Recent advances in graphene based polymer composites", Prog. Polym. Sci. 35, 1350–1375, 2010. 71. S. Chandrasekaran, C. Seidel, K. Schulte, "Preparation and characterization of graphite nano-platelet (GNP)/ epoxy nano-composite: Mechanical, electrical and thermal properties", Eur. Polym. J. 49, 3878–3888, 2013. 72. M. Monti, M. Rallini, D. Puglia, L. Peponi, L. Torre, J. M. Kenny, "Morphology and electrical properties of graphene–epoxy nanocomposites obtained by different solvent assisted processing methods", Compos. Part A Appl. Sci. Manuf. 46, 166–172, 2013. 73. N. Yousefi, X. Lin, Q. Zheng, X. Shen, J. R. Pothnis, J. Jia, E. Zussman, J.-K. Kim, "Simultaneous in situ reduction, self-alignment and covalent bonding in graphene oxide/ epoxy composites", Carbon N. Y. 59, 406–417, 2013. 74. T. Kuila, S. Bose, A. K. Mishra, P. Khanra, N. H. Kim, J. H. Lee, "Chemical functionalization of graphene and its applications", Prog. Mater. Sci. 57, 1061–1105, 2012. 75. J. Li, L. Vaisman, G. Marom, J.-K. Kim, "Br treated graphite nanoplatelets for improved electrical conductivity of polymer composites", Carbon N. Y. 45, 744–750, 2007. 76. N. Liu, F. Luo, H. Wu, Y. Liu, C. Zhang, J. Chen, "One-step ionic-liquid-assisted electrochemical synthesis of ionic-liquid-functionalized graphene sheets directly from graphite", Adv. Funct. Mater. 18, 1518–1525, 2008. 77. A. V. Raghu, Y. R. Lee, H. M. Jeong, C. M. Shin, "Preparation and physical properties of waterborne polyurethane/ functionalized graphene sheet nanocomposites", Macromol. Chem. Phys. 209, 2487–2493, 2008. 78. H. Kim, Y. Miura, C. W. Macosko, "Graphene/polyurethane nanocomposites for improved gas barrier and electrical conductivity", Chem. Mater. 22, 3441-3450 , 2010. 79. H. Kim, C. W. Macosko, "Morphology and properties of polyester/ exfoliated graphite nanocomposites", Macromolecules 41, 3317-3327, 2008. 80. Z. Chen, W. Ren, L. Gao, B. Liu, S. Pei, H.-M. Cheng, "Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition", Nat. Mater. 10, 424–428, 2011. 81. K.-H. Liao, Y. Qian, C. W. Macosko, "Ultralow percolation graphene/ polyurethane acrylate nanocomposites", Poly. (Guildf). 53, 3756–3761, 2012. 82. T. N. Zhou, "The preparation of the poly (vinyl alcohol)/ graphene nanocomposites with low percolation threshold and high electrical conductivity by using the large-area reduced graphene oxide sheets", Express Polym. Lett. 7, 747–755, 2013. 83. H. Pang, T. Chen, G. Zhang, B. Zeng, Z.-M. Li, "An electrically conducting polymer/graphene composite with a very low percolation threshold", Mater. Lett. 64, 2226-2229, 2010. 84. K. Kalaitzidou, H. Fukushima, L. T. Drzal, "A route for polymer nanocomposites with engineered electrical conductivity and percolation threshold", Materials (Basel). 3, 1089-1103, 2010. 85. X.-M. Chen, J.-W. Shen, W.-Y. Huang, "Novel electrically conductive polypropylene/ graphite nanocomposites", J. Mater. Sci. Lett. 21, 213–214, 2002.



فایل مقاله
تعداد بازدید: 1518
تعداد دریافت فایل مقاله : 26