20 August 2018 - دوشنبه 29 مرداد 1397
جستجوی مقالات
کلید واژگان
جستجوی پیشرفته
شناسنامه ی نشریه
صاحب امتیاز:
موسسه پژوهشی علوم و فناوری رنگ و پوشش
مدیر مسئول:
پروفسور زهرا رنجبر
سردبیر:
دکتر شهره روحانی
مدیر اجرایی:
دکتر مریم عطائی فرد
شاپا چاپی:
2251-7278
شاپا الکترونیکی:
2383-2223
دسترسی سریع
آخرین شماره ها
نظر سنجی
نظر شما در مورد سایت نشریه دنیای رنگ چیست؟
مطلوب
نسبتا مطلوب
نیاز به بهسازی دارد
ضعیف

مروری بر ريخت‌شناسي، ساختار شیمیایی و فیزیکی پوشش‌های فوم پلی‌یورتان

نشریه: سال هفتم - شماره سوم - پاييز 1396 - مقاله 7   صفحات :  61 تا 76



کد مقاله:
JSCW-2017-08-03-10319

مولفین:
سحر عبداللهی باغبان: دانشگاه صنعتی امیرکبیر - دانشكده مهندسی پلیمر و رنگ
منوچهر خراسانی: دانشگاه صنعتی امیرکبیر - دانشکده مهندسی پلیمر و رنگ


چکیده مقاله:

امروزه بیش از 75% کل مصرف پلی‌یورتان‌ در جهان به شکل فوم است که بخش قابل توجهی از این فوم‌ها، به‌عنوان پوشش در صنایع مختلف مورد استفاده قرار می‌گیرد. تولید و مصرف این نوع از پوشش‌ها با توجه به قیمت مناسب، سبک‌سازی سازه، سهولت اعمال، چسبندگی عالی به زیرآیند، پخت سریع و آسان در دمای محیط، طول عمر نسبتا بالا، قابلیت برش و شکل‌گیری به انواع و اشکال مختلف و در نهایت خواص مکانیکی مطلوب آن‌ها‌ مانند ارتجاع‌پذیری خوب، مقاومت فشاری بالا و غيره روندی رو به رشد دارد. پوشش‌های فومی بر پایه پلی‌یورتان، در دو صنعت ساختمان و حمل و نقل به‌عنوان پوشش‌های عایق حرارتی و صوتی، کف‌پوش، ضربه‌گیر دیوار در سالن‌های اجتماعات و غیره بسیار پرکاربرد و حائز اهمیت هستند. در مخلوط فوم، دو واکنش ژل شدن و انبساط به صورت هم‌زمان و موازی تا زمان تشکیل فوم منسجم، انجام می‌شوند. خواص نهایی فوم کاملا به ساختار، پایداری و هندسه سلول‌ها که خود وابسته به سرعت نسبی این دو واکنش هستند، وابسته می‌باشد؛ بطوریکه کنترل سرعت هرکدام از این واکنش‌ها در جهت تولید محصول مطلوب ضروری است. دما، حضور کاتالیزور آمینی یا آلی-فلزی و شاخص ایزوسیانات از جمله عوامل کنترل‌کننده سرعت این دو واکنش هستند. در این مطالعه مروری، اطلاعات جامعی در ارتباط با مواد مورد استفاده در تهیه پوشش‌های حرارتی و صوتی بر پایه فوم پلی‌یورتان، نقش هرکدام در واکنش‌های شیمیایی در حین تشکیل سلول‌های فوم و ساختار فیزیکی و شیمیایی آن‌ها‌ گردآوری و در نهایت عوامل موثر بر خواص پوشش‌های فومی بررسی شده‌اند.


Article's English abstract:

Today, more than 75 percent of total polyurethane consumption in the world is in the form of foam, and a significant proportion of these foams are used in coatings in various industries. The production and consumption of these types of coatings have a growing trend due to reasonable price, making lightweight structures, excellent adhesion to substrates, quick and easy curing at ambient temperatures, high durability, ability to cut and form into various types and shapes, their ease of application, optimal mechanical properties such as high resilience, compressive strength and etc. Polyurethane foam coatings are used in building and transportation industries as thermal and acoustic insulation coatings, flooring, wall buffers in community halls, and so on. Two reactions of gelation and blowing carried out simultaneously in foam admixture. The final properties of foams depend entirely on the structure, stability and geometry of the foam cells which are function of the relative rate of these two reactions. So controlling of reaction rates in the direction of the optimal final product are essential. The controlling factors of these two reactions include of temperature, the presence of an amine or organic-metal catalyst and isocyanate index. The most important factor determining the properties of polyurethane foam is its cellular structure. In this review study, comprehensive information was collected about the role of materials, chemical reactions during foam formation, physical and chemical structure of cells and the factors affecting the final properties of cellular coatings


کلید واژگان:
پوشش¬های فومی، عایق حرارتی و صوتی، فوم پلی¬یورتان منعطف و سخت، کوپلیمر سگمنته شده¬ اوره-یورتان، جدایش میکروفازی.

English Keywords:
Foam coatings, Thermal & insulation, Flexible and rigid polyurethane foams, Urea-urethane segmented copolymer, Micro-phase separation

منابع:

English References:
1. K. Ashida, "Polyurethane and related foams: Chemistry and technology", 1st ed, New York, CRC Press, Taylor & Francis, 2006. 2. http://www.grandviewresearch.com/industryanalysis/polymer-foam-market. 3. H. Engels, H. Pirkl, R. Albers, R. Albach, J. Krause, A. Hoffmann, H. Casselmann, J. Donnish, "Polyurethanes: Versatile Materials and Sustainable Problem Solvers for Today’s Challenges", Angewandte Chem. Int. Ed. 36, 9422-9441, 2013. 4. https://polyurethane.americanchemistry.com/Applications/ 5. A. Hasani Baferani, A.A. Katbab, A.R. Ohadi, "The Role of Sonication Time upon Acoustic wave Absorption efficiency, Microstructure, and Viscoelastic Behavior of Flexible Polyurethane/CNT Nanocomposite Foam", Eur. Polym. J. 90, 383-391, 2017. 6. L. Ugarte, A. Saralegi, R. Fern andez, L. Mart?n, M. Corcuera, A. Eceiza, "Flexible polyurethane foams based on 100% renewably sourced polyols", Ind. Crops Prod. 62, 545–551, 2014. 7. O. Bayer, "Das Di-Isocyanat-Polyadditionsverfahren (Polyurethane) ", Angewandte Chem. 59, 257-272, 1947. 8. U. Edlund, "Polyesters based on diacid monomers". Drug Delivery Rev. 55, 585-609, 2003. 9. R. Seymour, G. Kauffman, "Polyurethanes: A Class of Modern Versatile Materials", J. Chem. 69, 234-239, 1992. 10. R. Herrington, K. Hock "Flexible Polyurethane Foams", 2nd ed, Midland: Dow Chemical Co., 1997. 11. D.R. Spicher, R.L. Ricci, D.F. Mcneil, "Optimized Catalyst Systems for Flexible Polyurethane Slabstock Installations", Cell. Plast. 24, 231-244, 1988. 12. Y. Imai, T. Asano, "Studies of acoustical absorption of flexible polyurethane foam", Appl. Polym. Sci. 27, 183-195, 1982. 13. L. Ugarte, A. Saralegi, R. Fern_andez, L. Mart?n, M. Corcuera, A. Eceiza, "Flexible polyurethane foams based on 100% renewably sourced polyols", Ind. Crops. Prod., 62, 545-551, 2014. 14. M. Szycher "Handbook of Polyurethane", 1st ed, New York, CRC Press LLC, 1999. 15. G. Oertel, "Polyurethane Handbook", 1st ed, Munich, Hanser Publisher, 1985. 16. Ho. Lim, S.H. Kim, B. K. Kim, "Effects of the hydroxyl value of polyol in rigid polyurethane foams", Polym. ADV. Tech. 19, 1729–1734, 2008. 17. X.D. Zhang, C. W. Macosko, Davis H, T.; Nikolov A., D.; Wasan D., T.; "Role of Silicone Surfactant in Flexible Polyurethane Foam", Colloid Interface Sci. 215, 270-279, 1999. 18. B.D. Kaushiva, G.L. Wilkes "Alteration of polyurea hard domain morphology by diethanol amine (DEOA) in molded ?exible polyurethane 7s", Polym. 41, 6981–6986, 2000. 19. A. Kultys, M. Rogulska, H. Gluchowska, "The effect of soft-segment structure on the properties of novel thermoplastic polyurethane elastomers based on an unconventional chain extender", Polym. Int. 60,652-659, 2011. 20. H.H. Schloens, "The Importance of Catalysts for the Formation of Flexible Polyurethane Foams", Cell.Plast. 20, 239-246, 1984. 21. L. CH. CHANG, Y. XUE, F. H. HSIEH, "Comparative Study of Physical Properties of Water-Blown Rigid Polyurethane Foams Extended with Commercial Soy Flours", Appl. Polym. Sci. 80, 10–19, 2001. 22. G. Sung, J. H. Kim, "Influence of filler surface characteristics on morphological, physical, acoustic properties of polyurethane composite foams filled with inorganic fillers", Compos. Sci. Tech. 146, 147–154, 2017. 23. R. Verdejo, R. St?mpfli, M. Alvarez-Lainez, S. Mourad, M. A. Rodriguez-Perez, P. A. Brühwiler, M. Shaffer, "Enhanced acoustic damping in flexible polyurethane foams filled with carbon nanotubes", Compos. Sci. Tech. 69, 1564-1569, 2009. 24. D.K. Chattopadhyay, K.V.S.N. Raju, "Structural engineering of polyurethane coatings for high performance applications", Prog. Polym. Sci. 32, 352-418, 2007. 25. I. Yilgor, Y. Emel, G. L. Wilkes, "Critical parameters in designing segmented polyurethanes and their effect on morphology and properties: A comprehensive review", Polym. 58, A1-A36, 2015. 26. [26] K. Dusek, M. Spirkova, "Cross-linking and network formation in polyurethane systems with excess isocyanate", Cell. Polym. 9(2), 69-83, 1990. 27. K. Dusek, M. Spirkova, I. Havlicek, "Network formation of polyurethanes due to side reactions", Macromol. 23(6), 1774-81, 1990. 28. M. A. Ibrahim, R. W. Melik, "Optimized Sound Absorption Of A Rigid Polyurethane foam, archives of Acoustics", 28(4), 305-312, 2013. 29. J. G. Gwon, Kim, S. K.; Kim, Jung Hyeun; "Sound absorption behavior of flexible polyurethane foams with distinct cellular structures", Mater. Des. 89, 448–454, 2016. 30. G. Sung Seok, K. Kim, J. W. Kim, J. H. Kim, "Effect of isocyanate molecular structures in fabricating flexible polyurethane foams on sound absorption behavior", Polym. Test. 53, 156-164, 2016. 31. G. Sung, J. H. Kim, "Effect of high molecular weight isocyanate contents on manufacturing polyurethane foams for improved sound absorption coefficient", Korean J. Chem. Eng. 34, 1222–1228, 2017. 32. P.r Mondal, D.V. Khakhar, "Regulation of cell structure in water Blown Rigid Polyurethane Foam", Macromol. Symp. 216, 241-254, 2004. 33. P. Krol, "Synthesis methods, chemical structures and phase structures of linear polyurethanes: Properties and applications of linear polyurethanes in polyurethane elastomers, copolymers and ionomers", Prog. Mater. Sci. 52(6), 915-1015, 2007. 34. L. Leibler, "Theory of microphase separation in block co-polymers", Macromol. 13(6), 1602-17, 1980. 35. I.K.V. Albertsson, "Aliphatic polyesters: Synthesis, properties and applicattions”, Adv. Polym. Sci. 23, 1-40, 2002. 36. PJ. Flory, “Thermodynamics of high polymer solutions", Chem. Phys. 10, 51-61, 1942. 37. ML. Huggins, "Thermodynamic properties of solutions of long-chain compounds", Ann. N. Y. Acad. Sci. 43, 1-32, 1942. 38. LTJ. Korley, BD. Pate, EL. Thomas, PT. Hammond, "Effect of the degree of soft and hard segment ordering on the morphology and mechanical behavior of semicrystalline segmented polyurethanes", Polym. 47(9), 73-82, 2006. 39. B.J. Rashmi, D. Rusu, K. Prashantha, M.F. Lacrampe, P. Krawczak, "Development of water-blown bio-based thermoplastic polyurethane foams using bioderived chain extender", Appl. Polym. Sci. 128, 292-303, 2013. 40. J. Elwell, Michael, J. Anthony Ryan, "An FT i.r. study of reaction kinetics and structure development in model flexible polyurethane foam systems", Polym. 37, 1353 -1361, 1996. 41. GR. Rossmy, HJ. Kollmeier, W. Lidy, H. Schator, M. Wiemann, "Cell-Opening in One-Shot Flexible Polyether Based Polyurethane Foams. The Role of Silicone Surfactant and its Foundation in the Chemistry of Foam Formation", Cell Plast. 13, 26-35, 1977. 42. RM. Versteegen, RP. Sijbesma, EW. Meijer, "Synthesis and characterization of segmented copoly(ether urea)s with uniform hard segments", Macromol. 38(8), 3176-3184, 2005. 43. O. Doutres, N. Atalla, K. Dong, "Effect of the microstructure closed pore content on the acoustic behavior of polyurethane foams", Appl. Phys. 110, 1666-1675, 2011. 44. KL. Auten, ZS. Petrovic, "Synthesis, structural characterization, and properties of polyurethane elastomers containing various degrees of unsaturation in the chain extenders", Polym. Sci. (Part B, Polym. Phys.) 40, 1316–33, 2002. 45. YJ. Xu, Z. Petrovic, S. Das, GL. Wilkes, "Morphology and properties of thermoplastic polyurethanes with dangling chains in ricinoleate-based soft segments", Polym. 49(19), 4248-58, 2008. 46. E. Yilgor and I. Yilgor, "Hydrogen bonding: a critical parameter in designing silicone copolymers", Polym. 42(19), 7953-9, 2001. 47. C. Z. Zhang, Hu. Gao, GS. Zhao and Y. Huang, "Damping behavior and acoustic performance of polyurethane/lead zirconate titanate ceramic composites", Mater. Des. 46, 503-510, 2013. 48. A. Aneja, GL. Wilkes, "A systematic series of ‘model’ PTMO based segmented polyurethanes reinvestigated using atomic force microscopy", Polym. 44(23), 7221-7228, 2003. 49. SL. Samuels, GL. Wilkes, "Anisotropic superstructure in segmented polyurethanes as measured by photographic light scattering", Polym. Sci. (Part B Polym Lett). 9(10), 761-6, 1971. 50. [50] CH. Sung, KS. Lee, KS. Lee, SM. Oh, JH. Kim, MS. Kim, "Sound damping of a polyurethane foam nanocomposite", Macromol. 15, 443-8, 2007. 51. [51] A.M. Heintz, D.J. Duffy, C.M. Nelson, Y. Hua, S.L. Hsu, W. Suen, C.W. Paul, "A spectroscopic analysis of the phase evolution in polyurethane foams", Macromol. 38, 9192-9199, 2005. 52. G.L. Wilkes, A. Aneja, I. Yilgor, E. Yilgor, E. Yurtsever, "Exploring urea phase connectivity in molded flexible polyurethane foam formulations using LiBr as a probe", Macromol. Sci. Phys. 42, 1125-1139, 2003. 53. [53] L. Ning, W. De-Ning, Y. Sheng-Kang, "Hydrogen-bonding properties of segmented polyether poly (urethane urea) copolymer", Macromol. 30, 4405-4409, 1997. 54. E. Rightor, S. Urquhart, A. Hitchcock, H. Ade, A. Smith, G. Mitchell, R. Priester, A. Aneja, G. Appel and G. Wilkes, "Identification and quantitation of urea precipitates in flexible polyurethane foam formulations by X-ray spectromicroscopy", Macromol. 35, 5873-5882, 2002. 55. H. Xia, M. Song, Z. Zhang, M. Richardson, "Microphase separation, stress relaxation, and creep behavior of polyurethane nanocomposites", Appl. Polym. Sci. 103, 2992-3002, 2007. 56. SL. Samuels, GL.Wilkes, "The rheo-optical and mechanical behavior of a systematic series of hard-soft segmented urethanes", Polym. Sci. Polym. Symp. 43(1), 149-78, 1973. 57. Sh. Chen, Y. Jiang, J. Chen, D. Wang, "The Effects of Various Additive Components on the Sound Absorption Performances of Polyurethane Foams", Hindawi Pub. Corp.12, 1-9, 2015. 58. J. G. Gwon, S. K. Kim, J. H. Kim, "Sound absorption behavior of flexible polyurethane foams with distinct cellular structures", Mater. Des. 89, 448–454, 2016. 59. R. Verdejo, R. St?mpfli, M. Alvarez-Lainez, S. Mourad, M. A. Rodriguez-Perez, P. A. Brühwiler, M. Shaffer, "Enhanced acoustic damping in flexible polyurethane foams filled with carbon nanotubes", Comp. Sci. .Tech. 69, 1564-1569, 2009. 60. G. S. Sung, K. Kim, J. W. Kim, J. H. Kim, "Effect of isocyanate molecular structures in fabricating flexible polyurethane foams on sound absorption behavior", Polym. Test. 53, 156-164, 2016.



فایل مقاله
تعداد بازدید: 1402
تعداد دریافت فایل مقاله : 23