مروری بر انواع هدهای چاپگر جوهرافشان بیزوالکتريك

آتشه سليماني گرجاتی

دکتر، گروه پژوهشی علم و فناوری چاپ، پژوهشگاه یادگار ژان داود، ایران، مطرح 1365

نوع مقاله: مورخ

چکیده
جاب جوهرافشان از انواع چاپ‌های غیرتندی است. در فناوری جوهرافشان، جریان از فلزات جوهر به صورت دیجیتالی و کنترل شده از نازل‌های کوچک موجود در هد چاپگر روان می‌زند. این تکنیک به میل می‌شود این فلزات جوهر توسط ضربه طراحی که در هد چاپگر ایجاد می‌شود از نازل‌ها خارج می‌شوند. روش‌های مختلفی برای ایجاد ضربه طراحی وجود دارد که بر این اساس می‌توان هد چاپگرهای جوهرافشان را به گروه‌های مختلف دسته‌بندی کرد. هدهای چاپگرهای جوهرافشان از نظر صدای ناپذیری مانند تعداد، جنس، اندازه و شکل نازل‌ها، توانایی چاپ نوع جوهر، اندازه و شکل قطعه جوهر، عرض چاپ، ضبط تصویر و دوام با هم منفعت دریافت. به همین علت انتخاب چاپگر در بخش‌های مختلف با صنعت گرها با مشکل روبرو می‌کنند. اگر چاپگرهای غیرتندی به‌عنوان اشیاء کروماتیک اسم‌هایی آنها در جهت هدایت مصرف کننده جهت می‌گردد. همچنین شرکت‌های تجاری تولید کننده انواع مختلف هدهای چاپگر در جهت عرضه در صنایع مختلف مانند کافه، نساجی، سرامیک و الکترونیک معرفی می‌گردد.

واژه‌های کلیدی
جابگرهای جوهرافشان، هد چاپگر، بیزوالکتریک، مکر.

چکیده تصویری

asoleimani@icrc.ac.ir

نویسنده مسئول:
A Review of Piezoelectric Ink-Jet Printing Heads

Atasheh Soleimani-Gorgani*
Department of Printing Science and Technology, Institute for Color Science and Technology, P. O. Box: 16765-654, Tehran, Iran.

Abstract
Ink-jet printing is a non-contact printing method. In this technology, the drops of ink are jetted digitally through a small nozzle onto the specific substrate to produce an image. The ink drop formation is initiated via a pressure pulse applied from the head of the printer to the nozzle. Depending on the way of creating the pressure pulse, the ink-jet printing heads are divided into different classes. These various classes of ink-jet printing head differ in term of the structure of the nozzle such as numbers, material, size and shape, printability of ink, droplet size and shape, print wide, resolution and durability. Therefore, in some cases, the choice of the exact printer is difficult for a researcher or customer. This paper reports different types of ink-jet printing heads within their characterization to giddiness user. Also, it introduces various manufacturers who produce a diverse class of head to use in different application such as paper, textile, ceramic and electronic.

Keywords
Ink-jet printer, Printer head, Piezoelectric, Ink.

Graphical abstract
1- هدهم، نوحیاً صورت گرفته در چابو جوزفانتشان، نقطه توصیفی توسعی سایه‌ای شناسایی شده و وجود این مختصات با سیستم‌های الکترونی یارای چابکی مشخص می‌شود. این مختصات با سیستم‌های الکترونی، باعث ایجاد یک ضریب فشاری در نازلی جوئر در هدهم چابکی سه و این نازلی باعث خروج فشار از نازلی می‌شود. عدم فشار نازلی و قطع آنها، پس از تصور را مشخص کرد (1).

روی زیراً در سیستم چابو جوزفانتشان بیشتر، سطح سطح به صورت نازل، تغییر تغییر از میدان داده (2).

در سیستم چابو جوزفانتشان، نقطه فشار جوهر به صورت مداوم با فرکانس بالا (محدوده ۱۲۵۰ kHz تا ۷۰۰۰ kHz) از نازلی حرکت می‌کند و قطعاتی که با دو نقاط توصیف قرار به‌دست‌آمده چندی به سیستم‌های الکترونی، سیستم‌های الکترونی از چابو جوزفانتشان هم عبور می‌کند. در سیستم جوزفانتشان، نقطه فشار به سطح نازلی حرکت می‌کند و قطعاتی که با دو نقاط توصیف قرار به‌دست‌آمده چندی به سیستم و باعث ایجاد یک ضریب فشاری در نازلی جوئر در هدهم چابکی سه و این نازلی باعث خروج فشار از نازلی می‌شود. عدم فشار نازلی و قطع آنها، پس از تصور را مشخص کرد (1).

2- انواع نوح در چابک جوزفانتشان

هد چابک جوزفانتشان مانند یک قطعه حریق چابک است که در ان سویاه‌های شیب زیاد تعبیه شده است. این سویاه‌ها با شیب زیادی به پایه‌نورد می‌گویند. ساختمان‌های آنها نازل یا (قطار و اجسام) به‌طور مستقیم به حجم حریق، سرعت حریق و اثرات سیمی، پوشش حریق بیشتر یا کاهش حریق کاهش حریق بیشتر و اثرات سیمی به‌طور مستقیم به حجم حریق و اثرات سیمی، پوشش حریق کاهش حریق بیشتر و اثرات سیمی به‌طور مستقیم به حجم حریق و اثرات سیمی، پوشش حریق کاهش حریق بیشتر و اثرات سیمی به‌طور مستقیم به حجم حریق و اثرات سیمی...
موردی بر اساس هدهای چاپگر جوهرافشان پیزوالکتریک

2- هدهای پیزوالکتریک

در حالت هدهای جوهرافشان پیزوالکتریک، فناوری مناسب برای عرضه در بیشتر کاربردهای صنعتی در حال رشد است. در این فناوری یک بلوبل به طور مکانیکاً با ایجاد تغییر فنری باعث خروج یک قطعه جوهر از نازل می‌گردد. برخی از موارد با استفاده سرمایکی و یا بی‌روی خاصیت پیزوالکتریکی دارند. این موارد در اثر اعمال فشار و یا بار الکتریکی در خود دیواره کند پیزوالکتریکی یک فرآیند برشتابدی است. به این معنی که اگر سیالی با خاصیت پیزوالکتریکی می‌دانند الکتریکی اعمال شوند. این موارد از خود تغییر شکل یافته‌ها نشان می‌دهند. خود فنری تغییر پیزوالکتریکی معدله سرمایه‌ای است. حالی که مختصات وکر یافته‌ها می‌داند پیزوالکتریکی معدله در این فناوری اشتهای دامنه‌ای بی‌روی یک یک در تاریک‌های مناسب در نازل می‌باشد. میزان می‌باشد که استفاده به طور ترمیم شکل‌دهنده جنس این کلاس‌ها معمولاً از گرفتالی الیز برج، فولادی ارت و سیلیکون است. این نازل می‌باشد پیزوالکتریکی جوهر معمولاً ضخامتی بین 0.5 میکرومتر و جنس آن پلی امر و فولاد ضهنیکاً فز و سیلیکون است. پایین این حکمت جوهر در این شکل‌دهنده‌ها پیوست جوهر‌سازی با ارتفاع 0.5 میکرومتر در این نوع، ضخامت صفحه نازل بین 30 تا 125 میکرومتر و قطر نازل بین 30 تا 180 میکرومتر متنوع است. این نازل می‌باشد از پنک نانهای، فولادی ارت و پلی امر و سیلیکون قبیر 0.1 فاصله‌های پیزوالکتریکی در درجهای جوهرافشان، بر اساس هدهای تغییر شکل پیزوالکتریکی به‌هم دسته کلی ت تشییع شوند که با تردد از محرک تنشی، محرک خشمش و محرک تنشی یافت.[1-9]

2-1- محرک تنشی

در این حالت‌ها از ایک استوانه پیزوالکتریک با طول تقریبی 1 میلی‌متر تشکیل‌دهنده است. در طول داخلی و خارجی این استوانه الکترودهای جوهر دارند که باعث می‌شود این طبقه پیزوالکتریکی به‌صورت شعاعی پرازه‌های در هنگام خروج قطره از نازل، به پیزوالکتریک جریان الکتریکی اعمال.

1. Lead zirconate titanate
2. Squeeze mode actuator
3. Bend mode actuator
4. Push mode actuator
تولید هدهای پیژوالکتریک مختلف مورد بررسی قرار می‌گیرد.

3- تولید کننده‌ها هدهای پیژوالکتریک

1- شرکت‌زار

زیر بکی از شرکت‌های بزرگی است که در زمینه تولید هدهای جوهرافشان فعالیت می‌کند. این شرکت مطلوب ۲۵ سال تجربه خود، همراه در استفاده از جدیدترین فناوری‌ها، برای تولید هدهای کیفیتی و دوام پیش‌تر، پیشگام بوده است.

این شرکت از فناوری پیژوالکتریک در هندسه‌های مختلف استفاده کرده و هدهایی با ویژگی‌های منحصر به فرد ارائه می‌دهد. در زمینه نیروگاه‌های خاکیده، مدل پیژوالکتریک خودی به‌طور مثال شد. جوهر اندازه‌دار و با ایجاد میدان الکتریکی خمیده شده و موجب فشاری فشار در محیط دیده می‌شود. خوراکی‌ها در اینجا به دلیل ایجاد فشار ناشی از خشک‌شدن ماده پیژوالکتریک رخ می‌دهند. این هدایت در شکل ۷ نشان داده می‌شود.

در حالت خشک‌شدن، با خشک شدن مواد پیژوالکتریکی که در دیواره مجاری جوهر تعیین شده است، ایجاد فشار ایجاد شده و قطره در نازل خارج می‌شود.

3- محرک فشاری

در طراحی فشاری (شکل ۳)، یک مدل پیژوالکتریک موجود دارد. در این مدل، هدهای پیژوالکتریک در داخل محیط به‌طور مثال یک شدیده‌ی همین امر معنی‌داری خوراکی از منفی به نازل می‌خورد. این روش جهت پرداخت شدن این مرحله، در ساخت‌سازهای خوشه‌ای مطرح است.

از نظر تئوری، محکم‌های پیژوالکتریکی می‌توانند با تداوم ضمیم با جوهر در نواحی متغیر و باعث فشار کاری از نازل به دلیل ایجاد فشار ناشی از خشک‌شدن ماده پیژوالکتریکی رخ می‌دهند. این هدایت در شکل ۸ نشان داده می‌شود.

در این روش، ایجاد فشار که اشاره کرده‌اند در نازل خارج می‌شود. این روش در روی دادن این روش به دو هدایت اصلی تبدیل و این نور برای استفاده قرار گرفته است.

شکل ۷- تصویر شماتیکی از طراحی هدهای جوهرافشان بی‌پیژوالکتریک

شکل ۶- تصویر شماتیکی از طراحی هدهای جوهرافشان بی‌پیژوالکتریک

1 Xaar
مروری بر انواع هدهای چاپرگان پیزوالکتریک

هندسه دیگری که در هدهای زار برای مایع پریزو الکتریک که در دیوآرتجی‌های جوهر قرار دارند، برای نشان دادن خاصیت مایع این حجم و تولید قطعه خواهد داشت. در برخی از انواع چاپرگان پیزوالکتریک به کدیگر خاصی می‌شود. توصیف شماتیکی از این هندسه در شکل 8 نشان داده شده است. این خصوصیت باعث ایجاد تغییر فشار در مایع چوپ و تولید قطعه خواهد شد. در برخی از انواع چاپرگان پیزوالکتریک به کدیگر خاصی می‌شود.

شکل 9: توصیف شماتیکی از تغییر شکل پیزوالکتریک در حالت خمشی به صورت 7 شکل [15].

جدول 1

<table>
<thead>
<tr>
<th>هدهای پیزوالکتریک</th>
<th>توضیحات</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Xaar 128/40W</td>
<td>تغییر شکل در اثر اعمال جریان الکتریکی</td>
</tr>
<tr>
<td>2. Xaar 501</td>
<td>کاهش حجم مایع در اثر تغییر شکل مایع پیزوالکتریک</td>
</tr>
<tr>
<td>3. Hybrid Side Shooter architecture</td>
<td>اعمال جریان الکتریکی</td>
</tr>
<tr>
<td>4. Xaar 1003 ceramics</td>
<td>تغییر شکل پیزوالکتریک در اثر اعمال جریان الکتریکی</td>
</tr>
<tr>
<td>5. Xaar 1003 UV</td>
<td>کاهش حجم مایع در اثر تغییر شکل مایع پیزوالکتریک</td>
</tr>
<tr>
<td>6. Xaar 128/80L</td>
<td>اعمال جریان الکتریکی</td>
</tr>
<tr>
<td>7. Xaar 128/40L</td>
<td>تغییر شکل پیزوالکتریک در اثر اعمال جریان الکتریکی</td>
</tr>
<tr>
<td>8. Xaar 128/80W</td>
<td>کاهش حجم مایع در اثر تغییر شکل مایع پیزوالکتریک</td>
</tr>
</tbody>
</table>

1. Chevon
2. Xaar 128
3. Coding & Marking (CM)
4. Wide-Format Graphics (WFG)
5. Xaar 128/80L
6. Xaar 128/40L
7. Xaar 128/80W
8. Xaar 128/40W
9. Xaar 501
10. Hybrid Side Shooter architecture
11. Xaar 1003
12. Xaar 1003 ceramics
13. Xaar 1003 UV

شکل 10. تغییر شکل در حالت خمشی به صورت 7 شکل [15].
این نوع از پایده زار، مکان قرار گیری نازل نسبت به مجازی عبور جوهر در هدت منفی می‌باشد. همان‌طور که در شکل سه، نشان داده شده است، بر خلاف پایده دیگر که نازل در اندازه‌گیری جوهر قرار می‌گیرد، از هم‌فازی فناوری قرارگیری نازل در سه‌تایی جوهر درست تا ۳۱۴۲۲.

۳-۲- دیمتدیکس و فوژی فیلم

دیمتدیکس از شرکت های وابسته به فوژی فیلم بوده و یکی از شرکت‌های پیروی تولیدگر هست که پیوستگی برای چاپگر جوهرافشان است. کلیه‌هاهای هدهای این شرکت در سه نسل سامبا، استار فایر و کیو کلاس قرار می‌گیرد [۹]. در هدهایی سایبان، از فناوری سیلیکون-ام ای اس استفاده می‌شود که در این فناوری برای نازل‌ها از ویفر سیلیکون استفاده شده و برای ایجاد نازل در این ویره‌سایسان از فناوری سیمیکرو‌کامپیکاتی استفاده شده است. به همین دلیل شکل نازل در این هدها منحصر به فرد بوده ولی دقت بسیار بالایی برخوردار است. همچنین به دلیل جنس سیلیکونی این هده در مقابل مواد خورنده از هیدرولیک قوی نشان می‌دهد.

۴ Dimatix
۵ Fujifilm
۶ Samba
۷ StarFire
۸ Q-Class
۹ Si MEMs
۱۰ Microelectromechanical systems (MEMs)

درجه ۱- مقایسه ویژگی‌های انواع مختلف هد ساختمان شرکت‌ریز [۲۳/۲۴].

<table>
<thead>
<tr>
<th>عده</th>
<th>واحد</th>
<th>تعداد نازل</th>
<th>فرکانس خروج قطره از نازل</th>
<th>سرعت قطره</th>
<th>عرض</th>
<th>عمق</th>
<th>ارتفاع</th>
<th>نوی جوهر</th>
<th>حجم قطره</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۶۵</td>
<td>۳۸۰</td>
<td>-</td>
<td>۲۳-۱۰</td>
<td>۸.۵</td>
<td>۳۸</td>
<td>۲۳</td>
<td>۱۲۱۳</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>۱۲۵</td>
<td>۱۸۰</td>
<td>-</td>
<td>۸.۴۴</td>
<td>۶.۵</td>
<td>۳۸</td>
<td>۲۳</td>
<td>۱۲۱۳</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>۱۰۵</td>
<td>۱۲۰</td>
<td>-</td>
<td>۸.۴۴</td>
<td>۶.۵</td>
<td>۳۸</td>
<td>۲۳</td>
<td>۱۲۱۳</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>۸۰</td>
<td>۱۰۴</td>
<td>-</td>
<td>۸.۴۴</td>
<td>۶.۵</td>
<td>۳۸</td>
<td>۲۳</td>
<td>۱۲۱۳</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>۸۰</td>
<td>۸۰</td>
<td>-</td>
<td>۸.۴۴</td>
<td>۶.۵</td>
<td>۳۸</td>
<td>۲۳</td>
<td>۱۲۱۳</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>۶۰</td>
<td>۱۲۰</td>
<td>-</td>
<td>۸.۴۴</td>
<td>۶.۵</td>
<td>۳۸</td>
<td>۲۳</td>
<td>۱۲۱۳</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>۲۶</td>
<td>۱۰۴</td>
<td>-</td>
<td>۸.۴۴</td>
<td>۶.۵</td>
<td>۳۸</td>
<td>۲۳</td>
<td>۱۲۱۳</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>۲۰</td>
<td>۱۰۵</td>
<td>-</td>
<td>۸.۴۴</td>
<td>۶.۵</td>
<td>۳۸</td>
<td>۲۳</td>
<td>۱۲۱۳</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>۲۰</td>
<td>۱۰۵</td>
<td>-</td>
<td>۸.۴۴</td>
<td>۶.۵</td>
<td>۳۸</td>
<td>۲۳</td>
<td>۱۲۱۳</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

۱۱ Nozzles per inch or "npi"
در این هدها برای جلوگیری از تمسیم مستقیم پیپولارکتیک با ماده خوردگی از یک به‌کلیه دیگر پیپولارکتیک و محفوظ جهور استفاده می‌شود. این لایه منعطف بوده و می‌تواند افزایش فشار ناشی از خشک پیپولارکتیک را به محفظه جهور منتقل کند. بنابراین، در این فنری، هدف‌های سامانه مقاومت بالایی نسبت به انواع جهرها و ماده‌های خوردگی از خود نشان می‌دهد.

دستیابی به سیستم‌های کلی-کلاس هستند که جدیدترین فنری دیمکتیک به نام ورسا دراف نگرکدهای این ترکیب از این فنری، هدف چنگیز می‌تواند در یک تصویر، قطعه‌ای بند از فنری که هر چه به‌طور تغییر در فرکست عواملی بیشتر پیپولارکتیک که قابل اندازه است، قطرات کوچک‌تر می‌تواند محیط تغییراتی با پروپتیک خواهد شد. باید به همین دلیل استفاده از فنری ورسا دراف در قدیم چاپگر، به طور همبسته وضع بالاتر تصاویر و عکس‌برداری مشابه را به ناپای تخلیه داده.

ین ورسا دراف با ویژگی‌ها و انواع خود به‌طور کلی بهتری از این فنری، هدف چنگیز می‌تواند در یک تصویر، قطرات‌های تغییراتی با پروپتیک خواهد شد. باید به همین دلیل استفاده از فنری ورسا دراف در قدیم چاپگر، به طور همبسته وضع بالاتر تصاویر و عکس‌برداری مشابه را به ناپای تخلیه داده.

1 Versa drop
2 Epson
جدول 2 - مقایسه ویژگی‌های انواع مختلف هد ساخت شرکت دیمینگکس/31.

<table>
<thead>
<tr>
<th>کیو-کلاس</th>
<th>استفاربر</th>
<th>سامبا</th>
<th>واحد</th>
<th>ویژگی فیزیکی</th>
</tr>
</thead>
<tbody>
<tr>
<td>QE-256/30 AAA</td>
<td>SG-1024/M-C</td>
<td>GL3 Print-head</td>
<td>-</td>
<td>نوع</td>
</tr>
<tr>
<td>QE-256/80 AAA</td>
<td>SG-1024/M-C/2-C</td>
<td>-</td>
<td>تعداد نازل</td>
<td>تعداد نازل</td>
</tr>
<tr>
<td>356</td>
<td>4/39</td>
<td>1200</td>
<td>عرض جانبی</td>
<td>عرض جانبی</td>
</tr>
<tr>
<td>47/27</td>
<td>8</td>
<td>37</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>100</td>
<td>1500</td>
<td>12000</td>
<td>تعداد رنگ نازل</td>
<td>تعداد رنگ نازل</td>
</tr>
<tr>
<td>وابسته به جوهر</td>
<td>وابسته به جوهر</td>
<td>نام بسته به جوهر</td>
<td>اندازه قطره</td>
<td>اندازه قطره</td>
</tr>
<tr>
<td>پایه آی، خالی</td>
<td>پایه آی، خالی</td>
<td>پایه آی، خالی</td>
<td>-</td>
<td>نام جنس صفحه نازل</td>
</tr>
<tr>
<td>فلز-سیلیسون</td>
<td>فلز</td>
<td>سیلیسون</td>
<td>-</td>
<td>جنس صفحه نازل</td>
</tr>
</tbody>
</table>

شکل 11 - مقایسه تراکم چینش نازل‌ها بر روی هدهای نسل جدید و نسل قبلی شرکت ایپسون/32.

جدول 3 - مقایسه ویژگی‌های در نمونه‌های هدهای تویید شرکت ایپسون/31.

<table>
<thead>
<tr>
<th>DX5</th>
<th>MicroTFP print chip</th>
<th>TFP print chip</th>
<th>واحد</th>
</tr>
</thead>
<tbody>
<tr>
<td>1440</td>
<td>400</td>
<td>400</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>400</td>
<td>400</td>
<td>-</td>
</tr>
<tr>
<td>1440</td>
<td>800</td>
<td>800</td>
<td>-</td>
</tr>
<tr>
<td>15-35</td>
<td>15</td>
<td>15-35</td>
<td>-</td>
</tr>
</tbody>
</table>

جدول 3 - مقایسه ویژگی‌های در نمونه‌های هدهای تویید شرکت ایپسون/31.

شکل 12 - افزایش وضوح تصویر با کاهش اندازه قطره و فاصله طبیعی بین نازل‌ها/33.
4-2. شرکت کونیکا

تمکاری این شرکت بیشتر بر روی هدهمی مناسب برای چاپ بر روی پارچه است. هنگامی که محلی از هدهمی گین دارند که در خود از ویژگی‌های اکسترنالیسیتی که در مورد استفاده در این شرکت توصیف شده است. این ویژگی‌های اکسترنالیسیتی شامل خودساختار، تطبیق مناسب، و اثرات فیزیکی بر روی ماده است. این ویژگی‌های اکسترنالیسیتی به منظور بهبود کیفیت چاپ در این شرکت استفاده می‌شود.

4-3. شرکت تریدنت

این شرکت یکی دیگر از تولیدکننده‌های هدهمی چاپ جوهرافشانی بوده است. در این شرکت، هدایت محصولات مختلف به شمار می‌رود. به‌عنوان مثال، می‌توان به درجه‌بندی، تریک، ثابت و پلاستیک اشاره کرد که به‌صورت جداگانه یا مجموعه‌ای در هر یک از مدل‌های مختلف از هدهمی چاپ جوهرافشانی وجود دارد.

جدول ۱- مقایسه ویژگی‌های انواع مختلف هدهمی ساخت شرکت کونیکا (/32)

<table>
<thead>
<tr>
<th>ویژگی فیزیکی</th>
<th>واحد</th>
<th>KM128SNG MB</th>
<th>KM1008i</th>
<th>KM512</th>
<th>KM1024</th>
<th>KM1024i</th>
</tr>
</thead>
<tbody>
<tr>
<td>تعداد نازل</td>
<td>-</td>
<td>128</td>
<td>1172</td>
<td>512</td>
<td>1024</td>
<td>1024</td>
</tr>
<tr>
<td>تعداد رفیع نازل</td>
<td>-</td>
<td>128</td>
<td>1172</td>
<td>512</td>
<td>1024</td>
<td>1024</td>
</tr>
<tr>
<td>dpi</td>
<td>-</td>
<td>3/5</td>
<td>42</td>
<td>42</td>
<td>42</td>
<td>42</td>
</tr>
<tr>
<td>اندازه قطعه</td>
<td>-</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>وابسته به جوهر</td>
<td>cP</td>
<td>75</td>
<td>75</td>
<td>75</td>
<td>75</td>
<td>75</td>
</tr>
<tr>
<td>نوک جوهر</td>
<td>g</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>وزن هد</td>
<td>mm</td>
<td>94</td>
<td>94</td>
<td>94</td>
<td>94</td>
<td>94</td>
</tr>
<tr>
<td>ابعاد</td>
<td>mm</td>
<td>131</td>
<td>131</td>
<td>131</td>
<td>131</td>
<td>131</td>
</tr>
<tr>
<td>عرض چاب</td>
<td>-</td>
<td>23</td>
<td>23</td>
<td>23</td>
<td>23</td>
<td>23</td>
</tr>
</tbody>
</table>

جدول ۵- مقایسه ویژگی‌های انواع مختلف هدهمی ساخت شرکت تریدنت (/36)

<table>
<thead>
<tr>
<th>ویژگی فیزیکی</th>
<th>واحد</th>
<th>256Jet-D</th>
<th>384Jet</th>
<th>768Jet</th>
<th>PixelJet 64</th>
</tr>
</thead>
<tbody>
<tr>
<td>تعداد نازل</td>
<td>-</td>
<td>236</td>
<td>236</td>
<td>236</td>
<td>236</td>
</tr>
<tr>
<td>تعداد رفیع نازل</td>
<td>-</td>
<td>236</td>
<td>236</td>
<td>236</td>
<td>236</td>
</tr>
<tr>
<td>اندازه قطعه</td>
<td>mL</td>
<td>382</td>
<td>382</td>
<td>382</td>
<td>382</td>
</tr>
<tr>
<td>وابسته به جوهر</td>
<td>cP</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>نوک جوهر</td>
<td>g</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>وزن هد</td>
<td>mm</td>
<td>184</td>
<td>184</td>
<td>184</td>
<td>184</td>
</tr>
<tr>
<td>ابعاد</td>
<td>mm</td>
<td>138</td>
<td>138</td>
<td>138</td>
<td>138</td>
</tr>
<tr>
<td>عرض چاب</td>
<td>-</td>
<td>42</td>
<td>42</td>
<td>42</td>
<td>42</td>
</tr>
</tbody>
</table>
جدول ۶ - مقایسه ویژگی‌های هدهای تولید شده‌ای در سایر شرکت‌های مختلف [33].

<table>
<thead>
<tr>
<th>نوع جوهر</th>
<th>اندازه قطره (pm)</th>
<th>تعداد نازل D (DPI)</th>
<th>تعداد نازل در سطح</th>
<th>نوع هد</th>
<th>شرکت سازنده</th>
</tr>
</thead>
<tbody>
<tr>
<td>نابی‌پز</td>
<td>۴-۱۴</td>
<td>۶۰۰</td>
<td>۱۲۰۰-۱۷۰۰</td>
<td>KJ4 Series</td>
<td>Kyocera</td>
</tr>
<tr>
<td>پایه آبی</td>
<td>۳-۱۴</td>
<td>۶۰۰</td>
<td>۱۲۰۰-۱۷۰۰</td>
<td>Impika</td>
<td>Panasonic</td>
</tr>
<tr>
<td>پایه حلالی و نابی‌پز</td>
<td>۴۴-۵۰</td>
<td>۱۰۰</td>
<td>۱۲۰۰-۱۷۰۰</td>
<td>X2 PJ</td>
<td>HP</td>
</tr>
<tr>
<td>پایه آبی و حلالی و نابی‌پز</td>
<td>۷-۲۱</td>
<td>۳۰۰</td>
<td>۱۲۰۰-۱۷۰۰</td>
<td>Gen 4 PJ</td>
<td>Ricoh</td>
</tr>
<tr>
<td>پایه آبی و حلالی و نابی‌پز</td>
<td>۷-۳۵</td>
<td>۶۰۰</td>
<td>۱۲۰۰-۱۷۰۰</td>
<td>Gen 5</td>
<td>Ricoh</td>
</tr>
<tr>
<td>پایه آبی و حلالی</td>
<td>۳-۲۱</td>
<td>۱۲۰۰</td>
<td>۱۲۰۰-۱۷۰۰</td>
<td>GH220</td>
<td>Ricoh</td>
</tr>
<tr>
<td>پایه حلالی و نابی‌پز</td>
<td>۶۴-۲۴</td>
<td>۱۵۰</td>
<td>۱۵۰-۲۵۰</td>
<td>CB1</td>
<td>Toshiba</td>
</tr>
<tr>
<td>پایه حلالی و نابی‌پز</td>
<td>۴۴-۲۴</td>
<td>۱۵۰</td>
<td>۱۵۰-۲۵۰</td>
<td>CA3</td>
<td>Toshiba</td>
</tr>
<tr>
<td>پایه حلالی و نابی‌پز</td>
<td>۶-۹۰</td>
<td>۱۵۰</td>
<td>۱۵۰-۲۵۰</td>
<td>CA4</td>
<td>Toshiba</td>
</tr>
<tr>
<td>پایه حلالی و نابی‌پز</td>
<td>۳</td>
<td>۱۵۰</td>
<td>۱۵۰-۲۵۰</td>
<td>CA5</td>
<td>Toshiba</td>
</tr>
<tr>
<td>پایه حلالی و نابی‌پز</td>
<td>۶-۹۰</td>
<td>۳۰۰</td>
<td>۱۵۰-۲۵۰</td>
<td>CE2</td>
<td>Toshiba</td>
</tr>
<tr>
<td>پایه حلالی و نابی‌پز</td>
<td>۶-۹۰</td>
<td>۳۰۰</td>
<td>۱۵۰-۲۵۰</td>
<td>CF1</td>
<td>Toshiba</td>
</tr>
<tr>
<td>پایه حلالی و نابی‌پز</td>
<td>۵-۳۵</td>
<td>۶۴۶</td>
<td>۱۵۰-۲۵۰</td>
<td>CE3</td>
<td>Toshiba</td>
</tr>
<tr>
<td>پایه حلالی و نابی‌پز</td>
<td>۵-۳۵</td>
<td>۶۴۶</td>
<td>۱۵۰-۲۵۰</td>
<td>CF4</td>
<td>Toshiba</td>
</tr>
<tr>
<td>پایه حلالی و نابی‌پز</td>
<td>۲-۴</td>
<td>۶۰۰</td>
<td>۱۵۰-۲۵۰</td>
<td>JetT 508GS</td>
<td>Seiko</td>
</tr>
<tr>
<td>پایه حلالی و نابی‌پز</td>
<td>۱۲-۸۴</td>
<td>۱۸۰</td>
<td>۱۸۰-۲۵۰</td>
<td>JetT 510</td>
<td>Seiko</td>
</tr>
<tr>
<td>پایه حلالی و نابی‌پز</td>
<td>۱۲-۸۴</td>
<td>۱۸۰</td>
<td>۱۸۰-۲۵۰</td>
<td>CF4</td>
<td>Toshiba</td>
</tr>
<tr>
<td>پایه حلالی و نابی‌پز</td>
<td>۳۵</td>
<td>۵۱۰</td>
<td>۱۸۰-۲۵۰</td>
<td>JetT 510</td>
<td>Seiko</td>
</tr>
</tbody>
</table>

کوچک‌تر باش که چاب با کیفیت بالاتری انجام می‌شود، به همین دلیل و
در جهت افزایش کیفیت سیستم چاب با جاگردهای جوهرافشان قطر
ناله‌های چاب جاگر به سرعت رو به کوچک‌تر شدن می‌باشد. هرچه
 قطرات جوهر حسی کوچکتر برای ناحیه شاندن، نسبت سطح به جرم آنها تغییر
می‌کند، این باعث کاهش سرعت شده و فاصله قابل قبول
یک آنتگونی چاب را کاهش می‌دهد.

۴- نتیجه‌گیری
در این مقاله به بررسی فناری چاب جوهرافشان و کاربردهای
پیزوکریستالی در چنین فناری‌های چاب چاپ اشاره شده در هدهای پیزوکریستالی،
همان‌طور که ذکر شد. در هدهای پیزوکریستالی،
کاربردهای ویژه مورد استفاده قرار می‌گیرند. همچنین این
فناری‌ها مربوط به شرکت‌های توسعه کننده هدهای پیزوکریستالی
مدور بررسی گرفته. تحقیقات نشان می‌دهد که هر چه حجم قطره

۵- مراجع

2. د. م. ع. تعداد فرد، م. خطاب شده، س. کریک کریک، کنترل نسل
 قطره در جاب جوهرافشان با استفاده از نظیم خصخصی مرکب چاب
 و بررسی نیروی اعمال شده در قابلیت چاب، نشریه علمی مطالعات در
دبیرستان ری، ۵، ۱۳۸۷-۱۳۹۷.
31. Epson, "Next-Generation Inkjet Technology", 2013. https://media.serve.goepson.com/imConvServlet/imconv/ ab 2b652d8f1792490243c06f0ca91f6560c34bef/original?use=ban ner