مروری بر انواع نانوساختارهای چارچوب آلی-فلزی (MOF)خوراکی به عنوان جاذب زیست‌سازگار و موثر مواد رنگزا

نوع مقاله : مقاله مروری

نویسندگان

1 دانشجوی کارشناسی ارشد، گروه پژوهشی نانوفناوری رنگ، پژوهشگاه رنگ

2 دانشیار، گروه پژوهشی نانوفناوری رنگ، پژوهشگاه رنگ

چکیده

چارچوب‌های‌‌ آلی-فلزی ترکیبات پلیمری کئوردیناسیونی هستند که از فلز به عنوان گره و لیگاندهای آلی به‌عنوان ارتباط‌دهنده تشکیل شده‌اند‌. این ترکیبات بلوری و متخلخل بوده و اندازه و شکل حفرات آنها را می‌‌‌توان مهندسی کرد. این ویژگی‌ها به همراه نسبت سطح به حجم بسیار بالا (در مواردی تا  m2/g 14600که این رقم نظری بوده و در حالت تجربی تفاوت دارد) آنها را برای کاربردهای مختلفی از جمله به‌عنوان کاتالیزور ناهمگن، جاذب، عامل جداسازی و ذخیره سازی گازها، حسگر، پیل سوختی، سل‌های خورشیدی و حذف آلاینده‌های‌‌ زیست محیطی مفید ساخته است. چارچوب‌های‌‌ آلی-فلزی خوراکی دسته‌ای از چارچوب‌های‌‌ آلی-فلزی هستند که لیگاند و فلز مرکزی زیست‌سازگار با بدن را دارا هستند. چارچوب‌های‌‌ آلی-فلزی خوراکی به روش‌های‌‌ گوناگون سنتز شده و مورد بررسی قرار می‌‌‌گیرند. چارچوب‌های‌‌ آلی-فلزی خوراکی به عنوان جاذب زیست‌سازگار و موثر برای انواع مواد رنگزا و حتی داروها، دارای انواع مختلفی هستند که بر اساس نوع لیگاند و فلز مرکزی دسته‌بندی می‌‌‌شوند. علاوه بر این، چارچوب‌های‌‌ آلی-فلزی خوراکی به دلیل داشتن تخلخل‌های‌‌ بسیار زیاد قادرند مواد رنگزا را در خود جذب و نگهداری کرده و باعث پاک‌سازی محیط‌زیست از آلاینده‌ها شوند. در این مقاله انواع لیگاندها و مراکز فلزی مورد استفاده در ساخت چارچوب‌های‌‌ آلی-فلزی خوراکی مورد بررسی قرار گرفته و دسته‌بندی شده‌اند‌.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

An Overview of the Types of Edible Metal Organic Framework (MOF) Nanostructures as Biocompatible and Efficient Dye Adsorbent

نویسندگان [English]

  • Maryam Heydari 1
  • Mehrnaz Gharagozlou 2
  • Mehdi Ghahari 2
1 Department of Nanomaterials and Nanocoatings, Institute for Colour Science and Technology
2 Department of Nanomaterials and Nanocoatings, Institute for Colour Science and Technology
چکیده [English]

Metal-organic frameworks are coordination polymer compounds which composed of metal as a node and organic ligands as a linker. These compounds are crystalline and porous and the size and shape of their cavities can be engineered. These features, along with a very high surface-to-volume ratio (in cases up to m2/g of 14600) make them suitable for various applications such as heterogeneous catalysts, adsorbents, gas separation and storage agents, sensors, fuel cells, solar cells and environmental pollutant removal. Edible metal-organic frameworks are a group of metal-organic frameworks that have a bio-compatible ligand and central metal. Edible metal-organic frameworks have been synthesized in various ways. Edible metal-organic frameworks as biocompatible and effective adsorbent of dyes and drugs are available in different types depending on the type of ligands and central metals are categorized. Edible metal-organic frameworks absorb and retain dyes in the pores due to their high porosity, thus purifying the toxic environment from contaminants. Here, types of metal centers and ligands used in the manufacture of edible metal-organic frameworks have been studied and categorized.

کلیدواژه‌ها [English]

  • Edible metal organic framework
  • Nanostructures
  • Biocompatible
  • Dye adsorbent
 ا. جلیل‌نژاد، م. علیزاده، س. فخری آذر،"کاربرد روش‌های زیستی در رنگبری پساب‌های حاوی مواد رنگزا‌ آزو"، نشریه علمی‌‌‌ترویجی مطالعات در دنیای رنگ، 8، 40-27، 1397.
2- ه. پرند، ع. ا. صباغ الوانی، ح. سامعی، ر. سلیمی، ح. سعیدی، " چارچوب‌های‌‌ آلی- فلزی بر پایه ی کاتیون‌های‌‌ چند ظرفیتی به منظور حذف مواد رنگزا از پساب‌های رنگی "، نشریه علمی‌‌‌و مطالعات در دنیای رنگ، 3، 53-45، 1398.
3. P. Horcajada, C. Serre, M. Vallet-Regí, M. Sebban, F. Taulelle, G. Férey, "Metal–organic frameworks as efficient materials for drug delivery", Angew. Chem. Int. Ed. Engl. 45, 5974-5978, 2006.
4. P. Horcajada, R. Gref, T. Baati, P. K. Allan, G. Maurin, P. Couvreur, G. Férey, R. E. Morris, C. Serre, "Metal–organic frameworks in biomedicine", Chem. Rev. 112, 1232-1268, 2012.
5- سهولی، ف. شه دوست فرد، ف. نظریان، " ارزیابی کارایی مهم ترین روش‌های حذف مواد رنگزا "، نشریه علمی‌‌‌مطالعات در دنیای رنگ، 4، 93-77، 1397.
6. H. C. Zhou, J. R. Long, O. M. Yaghi, "Introduction to metal–organic frameworks", Chem. Rev. 112, 673–674. 2012.
7. J. An, S. J. Geib, N. L. Rosi, "Cation-triggered drug release from a porous zinc−adeninate metal−organic framework", Chem. Soc. 131, 8376-8377, 2009.
8. T. B. L. Njim, F. Neffati, A. KerkeniM. Bouttemi, R. GrefM. F. Najjar, A. Zakhama, P. Couvreur, C. Serre, P. Horcajada, "In depth analysis of the in vivo toxicity of nanoparticles of porous iron(III) metal–organic frameworks", Chem. Sci. 4, 1597-1607, 2013.
9. S. N. Biswas, "Synthesis of metal-organic frameworks (mofs): routes to various mof topologies, morphologies and composites", Chem. Rev. 112, 933-969, 2011.
10. P. Y. Wang, R. J. Wu, M. Liu, Sh. Yao, A. F. Geng, Zh. M. Zhang, "Nitrogen coordination to dramatically enhance the stability of In-MOF for selectively capturing CO2 from a CO2/N2 mixture", Cry. Gro. & Des. 19, 1322-1328, 2019.
 11. D. Yong, L. Cao, J. Li, Y. Yang, J. Wang, "Facile preparation of UiO-66/PAM monoliths via CO 2-in-water HIPEs and their applications", Rsc. adv. 56, 32358-32367, 2018.
12. T. Chalati, P. Horcajada, R. Gref, P. Couvreur, C. Serre, "Optimisation of the synthesis of MOF nanoparticles made of flexible porous iron fumarate MIL-88A", Mate. Chem. 21, 2220-2227, 2011.
13. I. Inhar, M. R. Martínez, J. An, I. Sole-Font, L. N. Rosi, D. Maspoch, "Metal–biomolecule frameworks (MBioFs) ", Chem. Commun. 47, 7287-7302, 2011.
14. W. Jiumei, J. Wan, Y. Ma, Y. Wang, M. Pu, Z. Guan, "Metal–organic frameworks MIL-88A with suitable synthesis conditions and optimal dosage for effective catalytic degradation of Orange G through persulfate activation", Rsc. Adv. 113, 112502-112511, 2016.
15. T. Chalati, P. Horcajada, R. Gref, P. Couvreur, C. Serre, "Optimisation of the synthesis of MOF nanoparticles made of flexible porous iron fumarate MIL-88A", Mate. Chem. 21, 2220-2227, 2011.
16. H. Li, M. Eddaoudi, M. O'Keeffe, O. M. Yaghi, "Design and synthesis of an exceptionally stable and highly porous metal-organic framework", Natu. 402, 276-279, 1999.
17. F. Millange, N. Guillou, R. Walton, J. M. Grenèche, I. Margiolaki, G. Férey, "Effect of the nature of the metal on the breathing steps in MOFs with dynamic frameworks", Chem. Commun. 39, 4732-4734, 2008.
18. Vu, H. Le Giang, C. D. Dao, L. Q. Dang, K. T. Nguyen, Q. K. Nguyen, Ph. T. Dang, "Arsenic removal from aqueous solutions by adsorption using novel MIL-53 (Fe) as a highly efficient adsorbent", Rsc. Adv. 5, 5261-5268, 2015.
19. L. Sacconi, P. Paoletti, M. Ciampolini, "Thermochemical studies. I. thermodynamic functions of solutions of pyridine bases in water", Chem. Soc. 82, 15, 3828-3831, 1960.
20. W. Xiong, G. Zeng, Zh. Yang, Y. Zhou, Ch. Zhang, M. Cheng, Y. Liu, "Adsorption of tetracycline antibiotics from aqueous solutions on nanocomposite multi-walled carbon nanotube functionalized MIL-53 (Fe) as new adsorbent", Sci. Env. 627, 235-244, 2018.
21. S. Y. Chui, S.Y. Stephen, M. L. Samuel, J. Charmant, A. G. Orpen, I. D. Williams, "A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n", Sci. 283, 1148-1150, 1999.
22. S. Christian, F. Millange, S. Surblé, G. Férey, "A route to the synthesis of trivalent transition‐metal porous carboxylates with trimeric secondary building units", Chem. Intel. 43, 6285-6289, 2004.
23. V. Michel, Y. Doi, K. H. Hellwich, M. Hess, Ph. Hodge, P. Kubisa, M. Rinaudo, F. Schué, "Terminology for biorelated polymers and applications (IUPAC Recommendations 2012)", Appl. Chem. 84, 377-410, 2012.
 24. B. L. Raymond, "Nomenclature and symbols for folic acid and related compounds: recommendations 1986", Bio. Chem. 168, 251-253, 1987.
25. P. Stanisław, G. Moad, "Glossary of terms related to kinetics, thermodynamics, and mechanisms of polymerization (IUPAC Recommendations 2008) ", Appl. Chem. 80, 2163-2193, 2008.
26. R. Liang, F. Jing, L. Shen, N. Qin, L. Wu, "MIL-53 (Fe) as a highly efficient bifunctional photocatalyst for the simultaneous reduction of Cr(VI) and oxidation of dyes", Hazard. Mate. 287, 364-372, 2015.
27. M. D. Caroline, Ch. Serre, S. Surblé, N. Audebrand, G. Férey, "Very large swelling in hybrid frameworks: a combined computational and powder diffraction study", Chem. Soc. 127, 16273-16278, 2005.
28. D. Ralf, "Discovering DNA: Friedrich Miescher and the early years of nucleic acid research", Hum. Gen. 122, 565-581, 2008.
29. E. H. Clyde, "Osmosis and osmotic pressure", Bot. Rev. 9, 311-324, 1943.
31. J. Gould, J. T. Jones, J. Bacsa, Y. Z. Khimyak, M. J. Rosseinsky, "A homochiral three-dimensional zinc aspartate framework that displays multiple coordination modes and geometries", Chem. Commun. 46, 2793-2795, 2010.
32. E. Ueda, Y. Yoshikawa, N. Kishimoto, M. Tadokoro, H. Sakurai, N. Kajiwara, Y. Kojima, "New Bioactive Zinc (II) Complexes with peptides and their derivatives: Synthesis, structure, and in vitro insulinomimetic activity", Chem. Soc. 77, 981-986, 2004.
33. J. Ch. Tan, J. S. Paul, G. B. Erica, A. K. Cheetham, "Hybrid nanosheets of an inorganic–organic framework material: facile synthesis, structure, and elastic properties", Acs. Nano. 6, 615-621, 2011.
34. J. Rabone, Y.F. Yue, S. Y. Chong, K. C. Stylianou, J. Bacsa, D. Bradshaw, G. R. Darling, "An adaptable peptide-based porous material", Sci. 329, 1053-1057, 2010.
35. G. Terán, P. Juan, O. Castillo, A. Luque, G. C. Urko, P. Román, L. Lezama, "An unusual 3D coordination polymer based on bridging interactions of the nucleobase adenine", Inorg. Chem. 43, 4549-4551, 2004.
36. R. Ye, L. Lin, Ch. Chen, J. X. Yang, F. Li, X. Zhang, D. J. Li, Y. Y. Qin, Zh. Zhou, Y. G. Yao, "Synthesis of Robust MOF-Derived Cu/SiO2 Catalyst with Low Copper Loading via Sol–Gel Method for the Dimethyl Oxalate Hydrogenation Reaction", ACS Catalyst. 8, 3382-3394, 2018.
37. L. Yanting, J. Ding, B. Jicheng, S. Yanping, J. Zhang, K. Liu, F. Kong, H. Xiao, J. Chen, "Effect of Cu-doping on the structure and performance of molybdenum carbide catalyst for low-temperature hydrogenation of dimethyl oxalate to ethanol", Appl. Catal. A. 529, 143-155, 2017.
38. K. S. Park, N. Zheng, P. C. Adrien, J. Yong Choi, R. Huang, F. J. Uribe-Romo, Ch. M. O’Keeffe, O. M. Yaghi, "Exceptional chemical and thermal stability of zeolitic imidazolate frameworks", Sci. 103, 10186-10191, 2006.
 39. P.Y. Sonia, G. Beobide, O. Castillo, J. Cepeda, A. Luque, A. T. Aguayo, P. Román, "Open-framework copper adeninate compounds with three-dimensional microchannels tailored by aliphatic monocarboxylic acids", Inorg. Chem. 50, 5330-5332, 2011.
40. A. Jihyun, L. R. Nathaniel, "Tuning MOF CO2 adsorption properties via cation exchange", Chem. Soc. 132, 5578-5579, 2010.
41. A. Jihyun, Ch. M. Shade, S. Petoud, L. R. Nathaniel, "Zinc-adeninate metal−organic framework for aqueous encapsulation and sensitization of near-infrared and visible emitting lanthanide cations", Chem. Soc. 133, 1220-1223, 2011.
42. A. Jihyun, O. K. Farha, J. T. Hupp, E. Pohl, J. I. Yeh, L. R. Nathaniel, "Metal-adeninate vertices for the construction of an exceptionally porous metal-organic framework", Natu. Commun. 3, 604, 1-6, 2012.
43. R. A. Smaldone, R. S. Forgan, H. Furukawa, J. Gassensmith, A. Slawin, O. M. Yaghi, J. F. Stoddart, "Metal–organic frameworks rom edible natural products", Chem. Inter. 49, 8630-8634, 2010.
44. R. S. Forgan, R. A. Smaldone, J. Gassensmith, H. Furukawa, D. B. Cordes, Q. Li, Ch. E. Wilmer, "Nanoporous carbohydrate metal–organic frameworks", Chem. Soc. 134, 406-417, 2011.
45. J. Gassensmith, R. A. Smaldone, R. S. Forgan, Ch. E. Wilmer, D. B. Cordes, Y. Botros, A. Slawin, R. Q. Snurr, J. F. Stoddart, "Polyporous metal-coordination frameworks", Org. Let. 14, 1460-1463, 2012.
46. R. Bautista, I. Taima-Mancera, J. Pasán, V. Pino, "Metal-organic frameworks in green analytical chemistry", Separations 6, 33, 1-22, 2019.
47. S. Nadar, L. Vaidya, S. Maurya, V. K. Rathod, "Polysaccharide based metal organic frameworks (polysaccharide–MOF)", Chem. Rev. 396, 1-21, 2019.
48. H. Wu, M. Meng-Dan, Zh. Gai, H. Yang, J. G. Zhou, Zh. Cheng, P. Xu, Y. Deng,"Arsenic removal from water by metal-organic framework MIL-88A microrods", Envy. Sci. 25, 27196-27202, 2018.