Aziz T, Haq F, Farid A, Cheng L, Chuah LF, et al. The epoxy resin system: function and role of curing agents. Carbon Lett. 2024;34(1):477. https://doi.org/10.1007/ s42823 -023-00547-7.
2. Edraki M, Sheydaei M, Zaarei D. A brief review of the performance of azole-type organic corrosion inhibitors. Chem Rev Lett. 2022;6(1):79. https://doi.org/10.22034/ CRL.2023.392268.1221.
3. González-Parra JR, Di Turo F. The use of plant extracts as sustainable corrosion inhibitors for cultural heritage alloys: a mini-review. Sustainability, 2024;16(5):1868. https://doi.org/10.3390/su16051868.
4. Googan C. The cathodic protection potential criteria: evaluation of the evidence. Mater Corros. 2021;72(3):446. https://doi.org/10.1002/maco.202011978.
5. Pedeferri P, Pedeferri P. Cathodic and anodic protection. Corros Sci Eng. 2018; 383. https://doi.org/10. 1007/978-3-319-97625-9_19.
6. Edraki M. Zaarei D. Hasan IS. The impact of green corrosion inhibitors on the protection performance of hybrid silane sol-gel coatings: A Review. Chem Rev Lett. 2023;6(4):428. 10.22034/CRL .2023. 425019.1259.
7. Zhang Z, Niu P, Zhao Z, Sun A, Wei L, et al. Co-enhancement of toughness and strength of room-temperature curing epoxy adhesive derived from hydroxyl-terminated polybutadiene based polyurethane resin. Eur Polym J. 2024;113373. https://doi.org/10.1016/j. eurpolymj.2024.113373.
8. Edraki M. Zaarei D. Azole derivatives embedded in montmorillonite clay nanocarriers as corrosion inhibitors of mild steel. Int J Miner Metall Mater. 2019;26:86. https://doi.org/10.1007/s12613-019-1712-1.
9. Silva RS, Aleman C, Ferreira CA, Armelin E, Ferreira JZ, Meneguzzi A. Smart Paint for anodic protection of steel. Prog Org Coat. 2015;78,116. https://doi.org/10.1016/ j.porgcoat.2014.10.002.
10. Edraki M, Sheydaei M. Investigation of date seed powder as green corrosion inhibitor for mild steel: a study of solution and coating phases. Hybrid Advances. 2024;6:100238. https://doi.org / 10.1016/ j.hybadv. 2024.100238.
11. Hossain N, Asaduzzaman Chowdhury M, Kchaou M. An overview of green corrosion inhibitors for sustainable and environment friendly industrial development. J Adhes Sci Technol. 2021;35(7):673. https://doi.org/10. 1080/0169424 .2020.1816793.
12. Sabet-Bokati Z, Sabet-Bokati K, Russell Z, Morshed-Behbahani K, Ouanani S. Anticorrosion shape memory-assisted self-healing coatings: A review. Prog Org Coat. 2024;188:108193. https://doi.org/10.1016/j.porgcoat. 2023. 108193.
13. Wu Y, Wu Y, Sun Y, Zhao W, Wang L. 2D nanomaterials reinforced organic coatings for marine corrosion protection: State of the art, challenges, and future prospectives. Adv Mater. 2024;2312460. https://doi.org/10. 1002/adma.2023 12460.
14. Edraki M, Banimahd Keivani M. Eco-friendly inhibitors for corrosion protection of metallic surfaces–a mini review. Asian J Green Chem. 2020;4:283. https://doi.org/ 10.22034/AJGC/2020.3.5.
15. Anwar S. Li X. A review of high-quality epoxy resins for corrosion-resistant applications. J Coat Technol Res. 2024;21(2):461. https://doi.org/10.1007/s11998-023-00865 -5.
16. Edraki M, Sheydaei M, Vessally E, Salmasifar A. Enhanced mechanical, anticorrosion and antimicrobial properties of epoxy coating via pine pollen modified clay incorporation. Iran J Chem Chem Eng. 2023;42(9):2775-2786. https://doi.org/10.30492/ijcce.2023.562504.5604.
17. Makhmetova A, Negim ES, Ainakulova D, Yeligbayeva G, Khatib J. An overview of epoxy resins as coating to protect metals from corrosion. Compl Use of Min Resour. 2024;328(1):20. https://doi.org/10.31643/2024/6445.03.
18. Edraki M. Mousazadeh Moghadam I. Banimahd Keivani M. Fekri MH. Turmeric extract as a biocompatible inhibitor of mild steel corrosion in 3.5% NaCl solution. Iran Chem Commun. 2019;7(2):146. https://doi.org/10.30473/icc. 2018.42617.1486.
19. Arvinda Pandian CK, Dharmaraj MM, Thirumurugan M, Siddhi Jailani H. Basalt fabric/(3-aminopropyl) triethoxysilane modified epoxy laminates reinforced with nano-silica, OMMT and GNP: mechanical and dynamic mechanical studies. Polym. Bull. 2024; 1. https://doi.org/10.1007/s00289-024-05261-6.
20. Atighi M, Hasanzadeh M. Application of MXene and Its Composites in the Removal of Dyes, Heavy metals and Radionuclides Pollutant from Industrial and Nuclear Wastewater. J. Stud Color World. 2022;11(4):13. 20.1001.1.22517278.1400.11.4.2.6.
21. An W, Xue R, Yuan P, Gao L, Xu Q, et al. Design strategies of MXene-based coatings towards multifunctional application. Surf Interfaces. 2024;104083. https://doi.org/ 10.1016/j.surfin.2024.104083.
22. Naguib M, Barsoum MW, Gogotsi Y. Ten years of progress in the synthesis and development of MXenes. Adv Mater. 2021;33(39):2103393. https://doi.org/10.1002/adma.2021 03393.
23. Yuan S, Linas S, Journet C, Steyer P, Garnier V, et al. Pure & crystallized 2D Boron Nitride sheets synthesized via a novel process coupling both PDCs and SPS methods. Sci Rep. 2016;6(1):20388. https://doi.org/10.1038/srep20388.
24. Krishnan U, Kaur M, Singh K, Kumar M, Kumar A. A synoptic review of MoS2: Synthesis to applications. Superlattices Microstruct. 2019;128:274. https://doi.org/ 10.1016/j.spmi.2019.02.005.
25. Verger L, Xu C, Natu V, Cheng HM, Ren W, et al. Overview of the synthesis of MXenes and other ultrathin 2D transition metal carbides and nitrides. Curr. Opin. Solid State Mater Sci. 2019;23(3):149. https://doi.org/10.1016/j.cossms. 2019.02.001.
26. Shekhirev M, Shuck CE, Sarycheva A, Gogotsi Y. Characterization of MXenes at every step, from their precursors to single flakes and assembled films. Prog Mater Sci. 2021;120:100757. https://doi.org/10. 1016/j.pmatsci. 2020.100757.
27. Yang S, Zhang P, Wang F, Ricciardulli AG, Lohe MR, et al. Fluoride synthesis of two – bimensional titanium carbide (MXene) using a binary aqueous system. Angew Chem. 2018;130(47):15717. https://doi.org/10.1002/ange.201809 662.
28. Wang L, Chen L, Song P, Liang C, Lu Y, et al. Fabrication on the annealed Ti3C2Tx MXene/Epoxy nanocomposites for electromagnetic interference shielding application. Compos B Eng. 2019;171:111. https://doi.org/10.1016/ j.compositesb. 2019.04.050.
29. Sun W, Shah SA, Chen Y, Tan Z, Gao H, et al. Electrochemical etching of Ti2 AlC to Ti2 CTx (MXene) in low-concentration hydrochloric acid solution. J Mater Chem A. 2017;5(41):21663. https://doi.org/101039/C7TA05574A.
30. Lv G, Wang J, Shi Z, Fan L. Intercalation and delamination of two-dimensional MXene (Ti3C2Tx) and application in sodium-ion batteries. Mater Lett. 2018;219:45. https:// doi.org/10.1016/j.matlet.2018.02.016.
31. Pant B, Park M, Kim AA. MXene-Embedded Electrospun Polymeric Nanofibers for Biomedical Applications: Recent Advances. Micromachines. 2023;14(7):1477. https://doi. org/10.3390/mi14071477.
32. Ji Z, Zhang L, Xie G, Xu W, Guo D, et al. Mechanical and tribological properties of nanocomposites incorporated with two-dimensional materials. Friction. 2020;8:813. https:// doi.org/10.1007/s40544-020-0401-4.
33. Giménez R, Serrano B, San-Miguel V, Cabanelas JC. Recent advances in MXene/epoxy composites: trends and prospects. Polymers. 2022;14(6):1170. https://doi.org/ 10.3390/polym14061170.
34. Yan H, Li W, Li H, Fan X, Zhu M. Ti3C2 MXene nanosheets toward high-performance corrosion inhibitor for epoxy coating. Prog Org Coat. 2019;135:156. https://doi.org/ 10.1016/j.porgcoat.2019.06.013.
35. Yan H, Cai M, Li W, Fan X, Zhu M. Amino-functionalized Ti3C2Tx with anti-corrosive/wear function for waterborne epoxy coating. J Mater Sci Technol. 2020;54:144. https://doi.org/10.1016/j.jmst.2020.05.002
36. Li X, Zhou S. Epoxy-functionalized Ti3C2 nanosheet for epoxy coatings with prominent anticorrosion performance. Prog Org Coat. 2022;162:106559. https://doi.org/10.1016 /j.porgcoat.2021.106559.
37. Zhao H, Ding J, Zhou M, Yu H. Air-stable titanium carbide MXene nanosheets for corrosion protection. ACS Appl. Nano Mater. 2021;4(3):3075. https://doi.org/10.1021 /acsanm.1c00219.
38. Chen J, Zhao W. Silk fibroin-Ti3C2TX hybrid nanofiller enhance corrosion protection for waterborne epoxy coatings under deep sea environment. Chem Eng J. 2021;423:130195. https://doi.org/10. 1016/j.cej.2021.130195.
39. Haddadi SA, Hu S, Ghaderi S, Ghanbari A, Ahmadipour M, et al. Amino-functionalized MXene nanosheets doped with Ce (III) as potent nanocontainers toward self-healing epoxy nanocomposite coating for corrosion protection of mild steel. ACS Appl Mater Interfaces. 2021;13(35):42074. https://doi.org/10. 1021/acsami.1c13055.
40. Ding J, Zhao H, Yu H. Structure and performance insights in carbon dots-functionalized MXene-epoxy ultrathin anticorrosion coatings. Chem Eng J. 2022;430:132838. https://doi.org/10.1016/j.cej.2021.132838.
41. Pourhashem S, Hadizadeh MH, Ji X, Zhou Z, Duan J, et al. Recognizing the function of different silane coupling agents on MXene adsorption/barrier behavior in solvent-borne epoxy coatings: Experimental studies, density functional theory, and molecular dynamics simulations. Prog Org Coat. 2024;192:108453. https://doi.org/10.1016/j.porgcoat.2024. 108453.
42. Ji X, Seif A, Yuqing Z, Pourhashem S, Duan J, et al. Experimental and theoretical insights on long-term corrosion protection performance of MXene Nanosheets decorated with graphene quantum dots in epoxy coatings. React Funct. Polym. 2024;199:105904. https://doi.org/ 10.1016/j.reactfunctpolym.2024.105904.
43. Pourhashem S, Seif A, Zhou Z, Ji X, Sgroi MF, et al. Theoretical and experimental investigations about the role of MXene nanosheets covered with ZnO quantum dots on barrier resistance of epoxy coatings. J Environ Chem Eng. 2024;12(1):111869. https://doi.org/10.1016/j.jece.2023. 11 1869.
44. Cui G, Bi Z, Zhang R, Liu J, Yu X, et al. A comprehensive review on graphene-based anti-corrosive coatings. Chem Eng J. 2019;373:104. https://doi.org/10.1016/j.cej.2019. 05.034.
45. Sheydaei M, Pouraman V, Alinia-Ahandani E, Shahbazi-Ganjgah S. PVCS/GO nanocomposites: investigation of thermophysical, mechanical and antimicrobial properties. J Sulfur Chem. 2022;43(4):376-390. https://doi.org/10.1080/ 17415993.2022.2036151.
46. Sheydaei M, Pouraman V, Edraki M, Alinia-Ahandani E, Asadi-Sadeh SM. Targeted application of GO to improve mechanical and thermal properties of PVCS/RS composites. Phosphorus Sulfur Silicon Relat Elem. 2023;198(4):345-353. https://doi.org/10.1080/10426507.2022.2150853.
47. Tang S, Lei B, Feng Z, Guo H, Zhang P, et al. Progress in the graphene oxide-based composite coatings for anticorrosion of metal materials. Coat. 2023;13(6):1120. https://doi.org/10.3390/coatings13061120.
48. Nikpour B, Ramezanzadeh B, Bahlakeh G, Mahdavian M. Synthesis of graphene oxide nanosheets functionalized by green corrosion inhibitive compounds to fabricate a protective system. Corros Sci. 2017;127:240. https://doi.org/ 10.1016/j.corsci.2017.08.029.
49. Ramezanzadeh B, Bahlakeh G, Ramezanzadeh M. Polyaniline-cerium oxide (PAni-CeO2) coated graphene oxide for enhancement of epoxy coating corrosion protection performance on mild steel. Corros Sci. 2018;137:111. https://doi.org/10.1016/j.corsci.2018.03.038.
50. Wang S, Hu Z, Shi J, Chen G, Zhang Q, et al. Green synthesis of graphene with the assistance of modified lignin and its application in anticorrosive waterborne epoxy coatings. Appl Surf Sci. 2019;484:759. https://doi.org/ 10.1016/j.apsusc.2019.03.229.
51. Motamedi M, Ramezanzadeh M, Ramezanzadeh B, Saadatmandi S, Enhancement of the active/passive anti-corrosion properties of epoxy coating via inclusion of histamine/zinc modified/reduced graphene oxide nanosheets. Appl Surf Sci. 2019;488:77. https://doi.org/ 10.1016/j.apsusc.2019.05.180.
52. Amrollahi S, Ramezanzadeh B. Yari H, Ramezanzadeh M, Mahdavian M. Synthesis of polyaniline-modified graphene oxide for obtaining a high performance epoxy nanocomposite film with excellent UV blocking/anti-oxidant/anti-corrosion capabilities. Compos B Eng. 2019;173:106804. https://doi.org/10.1016/j .compositesb. 2019.05.015.
53. Taheri NN, Ramezanzadeh B, Mahdavian M. Application of layer-by-layer assembled graphene oxide nanosheets/ polyaniline/zinc cations for construction of an effective epoxy coating anti-corrosion system. J Alloys Compd. 2019;800:532. https://doi.org/10.1016/j.jallcom.2019.06. 103.
54. Zhan Y, Zhang J, Wan X, Long Z, He S. Epoxy composites coating with Fe3O4 decorated graphene oxide: Modified bio-inspired surface chemistry, synergistic effect and improved anti-corrosion performance. Appl Surf Sci. 2018;436:756. https://doi.org/10.1016/j.apsusc.2017.12.095.
55. Nayak SR, Mohana KNS. Corrosion protection performance of functionalized graphene oxide nanocomposite coating on mild steel. Surf Interfaces. 2018;11:63. https://doi.org/ 10.1016/j.surfin.2018.03.002
56. Zhao Z, Zhou M, Zhao W, Hu J, Fu H. Anti-corrosion epoxy/modified graphene oxide/glass fiber composite coating with dual physical barrier network. Prog Org Coat. 2022;167:106823. https://doi.org/10.1016/j. porgcoat.2022. 106823.
57. Kasaeian M, Ghasemi E, Ramezanzadeh B, Mahdavian M, Bahlakeh G. Construction of a highly effective self-repair corrosion-resistant epoxy composite through impregnation of 1H-Benzimidazole corrosion inhibitor modified graphene oxide nanosheets (GO-BIM). Corros Sci. 2018;145:119. https://doi.org/10.1016/j. corsci.2018.09.023.
58. Javidparvar AA, Naderi R, Ramezanzadeh B. Epoxy-polyamide nanocomposite coating with graphene oxide as cerium nanocontainer generating effective dual active/barrier corrosion protection. Compos B Eng. 2019;172:363. https://doi.org/10.1016/j.compositesb.2019.05.055
59. Bouibed A, Doufnoune R. Synthesis and characterization of hybrid materials based on graphene oxide and silica nanoparticles and their effect on the corrosion protection properties of epoxy resin coatings. J Adhes Sci Technol. 2019;33(8):834. https://doi.org/10.1080/01694243.2019. 1571660
60. Chilkoor G, Sarder R, Islam J, ArunKumar KE, Ratnayake I, et al. Maleic anhydride-functionalized graphene nanofillers render epoxy coatings highly resistant to corrosion and microbial attack. Carbon. 2020;159:586. https://doi.org/10.1016/j.carbon.2019.12.059.
61. Nejad SAT, Amanian S, Alibakhshi E, Hajisoltani M, Haddadi SA, et al. Enhancing epoxy-silicone coating's protection performance: Harnessing the power of sulfur-doped graphene oxide. Prog Org Coat. 2024;188:108195. https://doi.org/10.1016/j.porgcoat.2023.108195.
62. Dehghani A, Mostafatabar AH, Bahlakeh G, Ramezanzadeh B. Poppy-leaf extract-derived biomolecules adsorption on the rGO-nanoplatforms and application as smart self-healing material for epoxy coating. J Mol Liq. 2023;370:120931. https://doi.org/10.1016/j.molliq.2022.120931.
63. Li X, Li D, Chen J, Huo D, Gao X, et al. Melamine-Modified Graphene Oxide as a Corrosion Resistance Enhancing Additive for Waterborne Epoxy Resin Coatings. Coat. 2024;14(4):488. https://doi.org/10 . 3390/coatings14040488
64. Hao S, Wan S, Hou S, Yuan B, Luan C, et al. Amino-Modified Graphene Oxide from Kish Graphite for Enhancing Corrosion Resistance of Waterborne Epoxy Coatings. Mater. 2024;17(5):1220. https://doi.org/ 10.3390/ma17051220.
65. Zhang C, Dai X, Wang Y, Sun G, Li P, et al. Preparation and corrosion resistance of ETEO modified graphene oxide/epoxy resin coating. Coat. 2019;9(1):46. https://doi.org/10.3390/coatings9010046.
66. Yuan W, Hu Q, Zhang J, Huang F, Liu J. Hydrophobic modification of graphene oxide and its effect on the corrosion resistance of silicone-modified epoxy resin. Metals. 2021;11(1):89. https://doi.org/10.3390/met110 10089.
67. Xie Y, Liu C, Liu W, Liang L, Wang S, et al. A novel approach to fabricate polyacrylate modified graphene oxide for improving the corrosion resistance of epoxy coatings. Colloids Surf A: Physicochem Eng Asp. 2020;593:124627. https://doi.org/10.1016/j.colsurfa.2020.124627.
68. Yu Z, Lv L, Ma Y, Di H, He Y. Covalent modification of graphene oxide by metronidazole for reinforced anti-corrosion properties of epoxy coatings. RSC Adv. 2016;6(22):18217. https://doi.org/10.1039/C5RA23595B.
69. Pourhashem S, Vaezi MR, Rashidi A, Bagherzadeh MR. Exploring corrosion protection properties of solvent based epoxy-graphene oxide nanocomposite coatings on mild steel. Corros Sci. 2017;115:78. https://doi.org/10.1016/j. corsci.2016.11.008.
70. Pourhashem S, Vaezi MR, Rashidi A, Bagherzadeh MR. Distinctive roles of silane coupling agents on the corrosion inhibition performance of graphene oxide in epoxy coatings. Prog Org Coat. 2017;111:47. https://doi.org/10.1016/ j.porgcoat.2017.05.008.
71. Pourhashem S, Rashidi A, Vaezi MR, Bagherzadeh MR. Excellent corrosion protection performance of epoxy composite coatings filled with amino-silane functionalized graphene oxide. Surf Coat Technol. 2017;317:1. https://doi.org/10.1016/j.surfcoat.2017.03.050.
72. Pourhashem S, Vaezi MR, Rashidi A. Investigating the effect of SiO2-graphene oxide hybrid as inorganic nanofiller on corrosion protection properties of epoxy coatings. Surf Coat Technol. 2017;311:282. https://doi.org/10.1016/ j.surfcoat. 2017.01.013.
73. Cui M, Dong J, Zhou K, Fang Y, Pu J. Corrosion protection of water-borne epoxy coatings incorporated with graphene. Int J Electrochem Sci. 2018;13(12):12010. https://doi. org/10.20964/2018.12.48.
74. Zhou X, Huang H, Zhu R, Chen R, Sheng X, et al. Green modification of graphene oxide with phytic acid and its application in anticorrosive water-borne epoxy coatings. Prog Org Coat. 2020;143:105601. https://doi.org/10.1016/j. porgcoat.2020.105601.
75. Li J, Shan W, Cui J, Qiu H, Yang G, et al. Enhanced corrosion resistance and weathering resistance of waterborne epoxy coatings with polyetheramine-functionalized graphene oxide. J Coat Technol Res. 2020;17:171-180. https:// doi. org/ 10. 1007/ s11998- 019- 00252-z.
76. Huang H, Tian Y, Xie Y, Mo R, Hu J, et al. Modification of graphene oxide with acrylate phosphorus monomer via thiol-Michael addition click reaction to enhance the anti-corrosive performance of waterborne epoxy coatings. Prog Org Coat. 2020;146:105724. https://doi.org/10.1016/ j.porgcoat.2020.105724.
77. Zhou X, Huang H, Zhu R, Sheng X, Xie D, et al. Facile modification of graphene oxide with Lysine for improving anti-corrosion performances of water-borne epoxy coatings. Prog Org Coat. 2019;136:105200. https://doi.org/10.1016/j. porgcoat.2019.06.046.
78. Amani M, Shakeri A. Synthesis and characterization of water-based epoxy-acrylate/graphene oxide decorated with Fe3O4 nanoparticles coatings and its enhanced anticorrosion properties. Polym Plast Technol Mater. 2020;59(17):1910. https://doi.org/10.1080/25740881.2020.1773500.
79. Xu HY, Li B, Han X, Wang Y, Zhang XR, et al. Synergic enhancement of the anticorrosion properties of an epoxy coating by compositing with both graphene and halloysite nanotubes. J Appl Polym Sci. 2019;136(21):47562. https://doi.org/10.1002/app.47562.