Ceramic Membranes and Their Application in Treatment of Dye Containing Wastewaters

Document Type : Review paper

Authors

1 Research Laboratory of Inorganic Chemical Process Technologies, School of Chemical Engineering, Iran University of Science and Technology

2 Research Laboratory of Inorganic Chemical Process Technologies, School of Chemical Engineering, Iran university of Science

3 Cement Research Center, Iran university of Science

Abstract

Dyes are used in a number of industries such as printing, textile, paper, leather, and plastic manufacturing. Large amounts of dyes are discharged from industries as wastewater. The toxicity of dye effluents threatens human beings and other living organisms. In general, dye containing wastewaters are treated by a number of different physical, chemical, and biological methods. Physical treatments are classified into membrane separation, conventional coagulation/flocculation and adsorption. In various industries, water and chemicals including inorganic salts (NaCl, Na2SO4) are used in dying process that generate large volumes of strongly colored wastewaters with high load of toxic organic and inorganic compounds. Therefore, the recovery of dye and salt from industrial wastewater has a great significance. Membrane processes can separate and recycle both dyes and inorganic salts with considerably high efficiencies, while in other techniques; primary resources are not sufficiently recycled from industrial wastewater. Ceramic membranes are comparable to polymer membranes based on their characteristics such as easy control of the pore size, higher durability, thermal and chemical resistance, mechanical strength, extended lifetime. Nanofilteration (NF) is applied to remove dyes that are usually in the form of composites and composed of one or more several layers with different ceramic materials. Ceramic membranes generally have a macroporous support, one or two mesoporous intermediate layers and a microporous top layer. Ceramic supports are formed by shaping a powder and then consolidating by sintering. There exist a number of methods for fabrication of ceramic supports such as extrusion, tape casting, slip casting and press. The sol-gel process is the most appropriate methods for the preparation of intermediate and top layer. The process of separating salt from dye solution by NF needs a high dye rejection and a low salt rejection. The purpose of this paper is to review the fabrication techniques of ceramic membranes and their applications in treatment of dye-containing wastewaters.

Keywords


1. N. Abidi, E. Errais, J. Duplay, A. Berez, A. Jrad,G. Sch€afer, M. Ghazi, K. Semhi, M. Trabelsi Ayadi, "Treatment of dye-containing effluent by natural clay", J. Cleaner Prod. 1-19, 2014.
2. R.M. Christie, "Colour Chemistry", 2nd ed, The royal society of chemistry, 2015.
3. A. Demirbas, "Agricultural based activated carbons for the removal of dyes from aqueous solutions: A review", J. Hazard. Mater. 167, 1-9, 2009.
4. R. D. Saini, "Textile Organic Dyes: Polluting effects and Elimination Methods from Textile Waste Water", IJChER, 9, 121-136, 2017 .
5. A. K. Verma, R. R. Dash, P. Bhunia, "A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters", J. Environ. Manage. 93, 154-168, 2012.
6. M. A. Kamaruddin, M. S. Yusoff1, H. A. Aziz, C. O. Akinbile, "Recent Developments of Textile Waste Water Treatment by Adsorption Process: A Review", IJSRK. 1, 60-73, 2013.
۷. م. یزدانی, م. آرامی, س. ه. بهرامی،"رنگبری رنگزاهای نساجی در سیستم‌های تک‌جزیی و دوجزیی با استفاده از جاذب معدنی"، نشریه علمی پژوهشی علوم و فناوری رنگ، 6، 164-153، 1391.
8. R. Salehi, F. Dadashian, E. Ekrami, "Acid Dyes Removal from textile wastewater using waste cotton activated carbon: Kinetic, isotherm, and thermodynamic studies", Prog. Color Colorants Coat.11, 9-20, 2018.
۹. ف. کوهستانی، م. نوری،"مروی بر غشا الیاف توخالی و کاربرد آن در حذف مواد رنگزا از پساب رنگرزی"، نشریه علمی ترویجی مطالعات در دنیای رنگ،  ۶، ۴۲-۱۹، ۱۳۹۵.
10. M. R. Gadekar, M. M. Ahammed,"Coagulation / flocculation process for dye removal using water treatment residuals:  modelling through artificial neural networks", Desalin. Water Treat. 3994, 1-9, 2016.
11. ف. اوشنی، ر. مرندی، س. رسولی،‌ روش های تهیه پوشش‌های نانوساختاری TiO2 در فرآیند فوتوکاتالیزوری راکتورهای ثابت، نشریه علمی ترویجی مطالعات در دنیای رنگ، 1، 18-۱1، ۱۳۹0.
12. T. Robinson, G. McMullan, R. Marchant , "Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative", Bioresour. Technol. 77, 247-255, 2001.
13. S. Zhao, Z. Wang, "A loose nano-filtration membrane prepared bycoating HPAN UF membrane with modified PEI for dye reuse and desalination", J. Membr. Sci. 1-39, 2016.
14. D. Barredo-Damas, A. Bes-Pia, M. I.Alcania, J. A. Miranda, "Ceramic membrane behavior in textile wastewater ultrafiltration", Desalin. 250, 623-628, 2010.
15. Y. I. Komolikov, L. A. Blaginina, "Technology of ceramic micro and ultrafilteration membranes (Review) ", Refract. Ind. Ceram, 43, 183-186, 2002.
16. M. Z.Avdičević, K. Košutić, Slaven Dobrović, "Effect of operating conditions on the performances of multichannel ceramic UF membranes for textile mercerization wastewater treatment", Environ. Technol. 3330, 1-13, 2016.
17. D. d. Silva Biron, V. d. Santos, M. Zeni, "Ceramic membranes applied in separation processes", Switzerland, springer, 2017.
18. L. W. Jye, A. F. Ismail, "Nanofiltration Membranes Synthesis, Characterization, and Applications", CRC Press, 2016.
19. A.J. Burggraaf, K. Keizer, "Synthesis of Inorganic membranes", R.R. Bhave, New York, 1991.
20. V. Gitis, G. Rothenberg, "Ceramic membranes, new opportunities and practical applications", Wiley-VCH, 2016.
21. C. Falamaki, M. Beyhaghi, Slip casting process for the manufacture of tubular alumina microfiltration membranes, Mater Sci-Poland. 27, 426-441, 2009.
22. S. K. Amin, H. A. M. Abdallah, M. H. Roushdy, S. A. El-Sherbiny, "An Overview of Production and Development of Ceramic Membranes", IJAER. 11, 7708-7721, 2016.
23. P. Fana, . K. Zhenb , Z. Zanc , Z. Chaob , Z. Jianb , J.Yun, "Preparation and development of porous ceramic membrane supports fabricated by extrusion technique", Chem. Eng. Trans. 55, 277-282, 2016.
24. A. J. Burggraaf, L. Cot, "Fundemental of inorganic membrane science and technology", Elsevier, 1997.
25. V. Tajer-Kajinebaf, H. Sarpoolaky, T. Mohammadi, "Synthesis of Nanostructured Anatase Mesoporous Membranes with Photocatalytic and Separation Capabilities for Water Ultrafiltration Process", Int. J. Photoenergy, 1, 1-11, 2013.
26. R. Ahmad, J. K. Kim, J. H. Kim, J. Kim, "Well-organized, mesoporous nanocrystalline TiO2on aluminamembranes with hierarchical architecture: Antifouling andphotocatalytic activities", Catal. Today, 282, 2-12, 2016.
27. X. Z. Wei; S. X. Wang, Y. Y. Shi, H.Xiang, J. Y. Chen, "Application of positively charged composite hollow-fiber nanofiltration membranes for dye purification", Ind. Eng. Chem. Res. 53, 14036-14045, 2014.
28. S. Barredo-Damas, M.I Alcaina-Miranda, M.I. Iborra-Clar, J.A. Mendoza-Roca., "Application of tubular ceramic ultrafiltration membranes for the treatment of integrated textile wastewaters", Chem. Eng. J. 192, 211-218, 2012.
29. Z. Gozalvez, D. Sanz-Escribano, J. Lora-Garcia, M.C, Leon Hidalgo,"Nanofiltration of secondary effluent for wastewater reuse in the textile industry", Desalin. 222, 272–279, 2008.
30. G. C. Sahoo, R. Halder, I. Jedidi, A. Oun, H. Nasri, P. Roychoudhurry, S. Majumdar, S. Bandyopadhyay, R.Ben Amar, "Preparation and characterization of microfiltration apatite membrane over low cost clay-alumina support for decolorization of dye solution", Desalin.  Water.Treat. 1-10, 2016.
31. S. Barredo-Damas, M. I. Alcaina-Miranda, M. I. Iborra-Clar, J. A. Mendoza-Roca, M. Gemma, "Effect of pH and MWCO on textile effluents ultrafiltration by tubular ceramic membranes", Desalin.  Water.Treat. 27, 81-89, 2011.
32. P.Chen, X. Ma, Z.Zhong, F. Zhang, W. Zing, Y. Fan, "Performance of ceramic nanofiltration membrane for desalination of dye solutions containing NaCl and Na2SO4", Desalin. 404, 102-111, 2017.
33. Y. Cai, Y. Wang, X. Chen, M. Qiu, Y. Fan, "Modified colloidal sol–gel process for fabrication of titania nanofiltration membranes with organic additives", J. Membr. Sci. 476, 432-441, 2015.
34. R. Kreiter, M.D.A. Rietkerk, B.C. Bonekamp, H.M. Veen, V.G. Kessler, J.F. Vente, "Sol–gel routes for microporous zirconia and titania membranes", J. Sol-Gel Sci. Technol, 48, 203-211, 2008.
35. X. Da, J. Wen, Y. Lu, M. Qiu, Y. Fan, "An aqueous sol-gel process for the fabrication of high-flux YSZ nanofiltration membranes as applied to the nanofiltration of dye wastewater", Sep. Purif. Technol. 152, 37-45, 2015.
36. I. Agirre, P.L. Arias, H.L. Castricum, M. Creatore, J.E. ten Elshof, G.G. Paradis, P.H.T. Ngamou, H.M. van Veen, J.F. Vente, "Hybrid organosilica membranes and processes: Status and outlook", Sep. Purif. Technol. 121, 2-12- 2014.
37. S. Zeidler, P. Puhlfuerss, U. Kaetzel, I. Voigt, "Preparation and characterization of new low MWCO ceramic nanofiltration membranes for organic solvents", J. Membr. Sci. 470, 421-430, 2014.
38. T. Tsuru, M. Miyawaki, T. Yoshioka, M. Asaeda, "Reverse osmosis of nonaqueoussolutions through porous silica-zirconia membranes", AlChE. 52, 522-531, 2006.
39. A. Aouni, C. Fersi, B. Cuartas-Uribe, A. Bes-Pía, M.I. Alcaina-Miranda, M. Dhahbi, Reactive dyes rejection and textile effluent treatment study using ultrafiltration and nanofiltration processes, Desalin. 297, 87–96, 2012.
40. D. Barredo-Damas, M. I. Bes-Pia, A. Iborra-Clar, M. I.; Iborra-Clar, A. Mendoza-Roca, "Ceramic membrane behavior in textile wastewater ultrafiltration", Desalin. 250, 623-628, 2010.
41. E. Alventosa-deLara, S. Barredo-Damas, E. Zuriaga-Agustí, M. Alcaina-Miranda, "Ultrafiltration ceramic membrane performance during the treatment of model solutions containing dye and salt", Sep. Purif. Technol. 129, 96-105, 2014.
42. X. Ma, P. Chen, M. Zhou, Z. Zhong, F. Zhang, W. Xing, "Tight ultrafiltration ceramic membrane for separation of dyes and mixed salts (both NaCl/Na2SO4) in textile wastewater treatment", Ind. Eng. Chem. Res. 56, 7070–7079, 2017.