The Study of Methods for the Degradation of Organic Dyes by Photocatalytic Nanoparticles Using Plasmonic Property

Document Type : Review paper

Authors

1 a) Department of Polymer Engineering & Color Technology, b)Color & Polymer Research Center (CPRC), Amirkabir University of Technology

2 Color & Polymer Research Center (CPRC), Amirkabir University of Technology

Abstract

Water pollution, population growth and the increasing demand for clean water have led humans to water treatment and reuse. Therefore, efforts to improve wastewater treatment techniques and the degradation of toxic compounds into non-toxic compounds have always been considered. photocatalysts, due to rapid oxidation and degradation of pollutants than traditional methods, as known as low-cost, environmental friendly and efficient method. Photocatalysts are semiconductors that absorb light then generate electrons and holes, which after reacting with water and oxygen, and producing radical species such as superoxide, etc., cause the degradation of organic compounds.The metallic nano-structures with plasmonic effect has an influence on increasing the light absorption amplitude of semiconductors. Surface plasmon resonance in metallic nano-structures against light generates plasmonic energy, which is transmitted to the semiconductor by three main mechanisms: light scattering, PIRET-induced resonance energy transfer and hot electron injection, which researches indicate that these factors increase photocatalytic efficiency in dye degradation.
 
 

Keywords


1. R. Kant, "Textile dyeing industry an environmental hazard", Nat. Sci. 4, 22–26, 2012
2. Q. Gao, Z. Liu, "FeWO4 nanorods with excellent UV–Visible light photocatalysis", Prog. Nat. Sci-Mater. 27, 556-560, 2017.
3. Y. Zhang, C. Liu, "Piezotronic-effect-enhanced Ag2S/ZnO photocatalyst for organic dye degradation", RSC Adv. 7, 48176-48183, 2017
4. A. Ajmal, I. Majeed, R. N. Malik, H. Idriss, M. A. Nadeem, "Principles and mechanisms of photocatalytic dye degradation on TiO2 based photocatalysts: a comparative overview", RSC Adv. 4, 70, 37003–37026, 2014.
5. H. Wang, X. Liu, S. Han, "The synthesis of a Ag–ZnO nanohybrid with plasmonic photocatalytic activity under visible-light irradiation: the relationship between tunable optical absorption, defect chemistry and photocatalytic activity", Cryst. Eng. Comm, 18, 1933–1943, 2016.
6.  A. B. Djurišić, Y. H. Leung, A. M. Ching Ng," Strategies for improving the efficiency of semiconductor metal oxide photocatalysis", Mater. Horizons, 1, 400-410, 2014.
7. P. Ju, Y. Wang, Y. Sun, D. Zhang,"Controllable one-pot synthesis of a nest-like Bi2WO6 /BiVO4 composite with enhanced photocatalytic antifouling performance under visible light irradiation", Dalt. Trans. 45, 4588–4602, 2016.
8. L. Zhou, H. Zhang, H. Sun, S. Liu, M. O. Tade, S. Wang, W. Jin, "Recent advances in non-metal modification of graphitic carbon nitride for photocatalysis: A historic review", Catal. Sci. Technol. 6, 7002–7023, 2016.
9. J. Low, J. Yu, Q. Li, B. Cheng, "Enhanced visible-light photocatalytic activity of plasmonic Ag and graphene co-modified Bi2WO6 nanosheets", Phys. Chem. Chem. Phys. 16, 1111–1120, 2014.
10. W. Kang, F. Li, Y. Zhao, C. Qiao, J. Ju, B. Cheng, "Fabrication of porous Fe2O3/PTFE nanofiber membranes and their application as a catalyst for dye degradation", RSC Adv. 6, 32646–32652, 2016.
11. م. زرگران، ن. آزادور، "مروری بر پوشش‌های فوتوکاتالیست تصفیه کننده هوا"، نشریه علمی ترویجی مطالعات در دنیای رنگ، 5، 84-75، 1394.
12. S. S. Boxi, S. Paria, "Visible light induced enhanced photocatalytic degradation of organic pollutants in aqueous media using Ag doped hollow TiO2 nanospheres", RSC Adv. 5, 37657–37668, 2015.
13. M. Valenti, M. P. Jonsson, G. Biskos, A. Schmidt-Ott, W. A. Smith, "Plasmonic nanoparticle semiconductor composites for efficient solar water splitting", J. Mater. Chem. A. 4, 17891–17912, 2016.
14. N. Wu," Plasmonic Metal-Semiconductor Photocatalysts and Photoelectrochemical Cells: A Review", Nanoscale,10, 2679-2696 2018.
15. N. Zhou, V. López-Puente, Q. Wang, L. Polavarapu, I. Pastoriza-Santos, Q. H. Xu, "Plasmon-enhanced light harvesting: Applications in enhanced photocatalysis, photodynamic therapy and photovoltaics", RSC Adv. 5, 29076–29097, 2015.
16. K. Saravanakumar, V. Muthuraj, S. Vadivel, "Constructing novel Ag nanoparticles anchored on MnO2 nanowires as an efficient visible light driven photocatalyst", RSC Adv. 6, 61357–61366, 2016.
17. S. Zhang, B. Zhang, S. Li, Z. Huang, C. Yang, H. Wang, "Enhanced photocatalytic activity in Ag-nanoparticle-dispersed BaTiO3 composite thin films: Role of charge transfer", J. Adv. Ceram. 6, 1–10, 2017.
18. SK. Cushing, J. Li, F. Meng,"Photocatalytic activity enhanced by plasmonic resonant energy transfer from metal to semiconductor", J. Am. Chem. Soc. 134, 15033–15041, 2012.
19. A. Lee, J. W. Elam, S. B. Darling, "Membrane materials for water purification: Design, development, and application", Environ. Sci. Water Res. Technol. 1, 17–42, 2016.
20. S. Filice, D. D’Angelo, A. Scarangella, D. Iannazzo, G. Compagnini, S. Scalese, "Highly effective and reusable sulfonated pentablock copolymer nanocomposites for water purification applications", RSC Adv. 7, 45521–45534, 2017.
21. A. Yar, B. Haspulat, T. Üstün, V. EskizeybekA. Avcı, H. Kamış, S. Achour," Electrospun TiO2 /ZnO/PAN hybrid nanofiber membranes with efficient photocatalytic activity", RSC Adv. 7, 47, 29806–29814, 2017.
22. M. Zhang, Z. Liu, Y. Gao, L. Shu, "Ag modified g-C3N4 composite entrappedD PES UF membrane with visible-light-driven photocatalytic antifouling performance", RSC Adv. 7, 68, 42919–42928, 2017.