A Review on Clay Based Hybrid Nano-Pigments Studies

Document Type : Review paper

Authors

1 Department of Polymer Engineering and Color Science and Technology, Amirkabir University of Technology

2 Department of Printing Science and Technology, Institute for Color Science and Technology

Abstract

To overcome the common disadvantages of organic and inorganic pigments, a new generation of pigments known as hybrid pigments has been introduced providing advantages of both previous categories and improving some of their disadvantages. These pigments, also known as dye-clay hybrid nano-pigments, are synthesized through an ion-exchange reaction where clay interlayer metallic cations are replaced with dye cations. To understand dye-clay pigments structure, synthesis process and behavior, a deep understanding of clay structure and its behavior in aqueous media is essential. Using this deep understanding further explanation about its synthesis mechanism, thermodynamic, kinetic, effective parameters during the synthesis process and further explanation of their properties is possible and finally, their application in coatings can be studied. These pigments have proved to show good heat and light-fastness as well as good Tinting strength and hiding power in comparison both with the dyes applied in their structure and with commonly used pigments.

Keywords

Main Subjects


  1. M. Vijay, C. J. Patel," Understanding coatings raw materials". Hanover: Vincentz Network, 2015.
  2. R. Talbert, "Paint technology handbook". Boca Raton: CRC press, 2008.
  3. H. Van Olphenh, "Maya Blue : A Clay-Organic Pigment ?", Sci. 4008, 645–646, 1966.
  4. P. Gómez-Romero, C. Sanchez, "Hybrid materials. functional properties. from maya blue to 21st century materials", New J. Chem., 29, 57–58, 2005.
  5. L. A. Utracki, "Clay-Containing Polymeric Nanocomposites", 1. Shorpshire: Rapar Technology Limited, 2004.
  6. P. Liu, S. Wang, L. Ge, M. Thewes, J. Yang, Y. Xia, "Changes of atterberg limits and electrochemical behaviors of clays with dispersants as conditioning agents for EPB shield tunnelling", Tunn. Undergr. Sp. Technol. 73, 244–251, 2018.
  7. A. Mahmoodi, M. Ebrahimi, A. Khosravi, H. Eivaz Mohammadloo, "A hybrid dye-clay nano-pigment: Synthesis, characterization and application in organic coatings", Dyes Pigm. 147, 234–240, 2017.
  8. S. Raha, N. Quazi, I. Ivanov, and S. Bhattacharya,"Dye/Clay intercalated nanopigments using commercially available non-ionic dye", Dyes Pigm. 93, 1512–1518, 2012.
  9. B. Micó-Vicent ,"Stabilized Dye-Pigment Formulations with Platy and Tubular Nanoclays", Adv. Funct. Mater. 28, 1703553, 2017.
  10. M. B. Kievani, M. Edraki,"Synthesis, characterization and assessment thermal properties of clay based nanopigments" Front. Chem. Sci. Eng. 9, 40–45, 2015.
  11. S. Raha, I. Ivanov, N. H. Quazi, S. N. Bhattacharya, "Photo-stability of rhodamine-B / montmorillonite nanopigments in polypropylene matrix", Appl. Clay Sci. 42, 661–666, 2009.
  12. J. Sivathasan, "Preparation of Clay-dye pigment and its dispersion in polymers", M.Sc. thesis, Melbourne, Australia, RMIT University, 2007.
  13. E. Baez, N. Quazi, I. Ivanov, S. N. Bhattacharya, "Stability study of nanopigment dispersions", Adv. Powder Technol. 20, 267–272, 2009.
  14. M. M. Lezhnina, T. Grewe, H. Stoehr, U. Kynast, "Laponite blue: Dissolving the insoluble", Angew. Chemie - Int. Ed. 51, 10652–10655, 2012.
  15. M. Kaya, Y. Onganer, A. Tabak, "Preparation and characterization of ‘green’ hybrid clay-dye nanopigments", J. Phys. Chem. Solids. 78, 95–100, 2015.
  16. Y. Zhang, J. Zhang, A. Wang, "Facile preparation of stable palygorskite/methyl violet@SiO2 ‘Maya Violet’ pigment", J. Colloid Interface Sci. 457, 254–263, 2015.
  17. H. Aghdasinia, H. Rahbari, "Adsorption of a cationic dye ( methylene blue) by Iranian natural clays from aqueous solutions : equilibrium , kinetic and thermodynamic study", Environ. Earth Sci. 77, Doi: 10.1007/s12665-018-7342-5, 2018.
  18. S. Hasani, F. D. Ardejani, M. E. Olya, "Equilibrium and kinetic studies of azo dye (Basic Red 18) adsorption onto montmorillonite: Numerical simulation and laboratory experiment", Korean J. Chem. Eng. 34, 2265–2274, 2017.
  19. K. Yano, A. Usuki, O. Akane, T. Kurauchi, O. Kamigaito, "Synthesis and Properties of Polyimide-Clay Hybrid", J. Polym. Sci. 31, 2493–2498, 1993.
  20. A. Okada, A. Usuki, "The chemistry of polymer-clay hybrids", Mater. Sci. Eng. C, 3, 109–115, 1995.
  21. K. Yano, A. Usuki, A. Okada, "Synthesis and Properties of Polyimide-Clay Hybrid Films", J. Polym. Sci. 35, 2289–2294, 1997.
  22. M. Kawasumi, N. Hasegawa, M. Kato, A. Usuki, "Preparation and Mechanical Properties of Polypropylene - Clay Hybrids", Macromolecules, 30, 6333–6338, 1997.
  23. T. Lan, "Clay-Reinforced Epoxy Nanocomposites",  Chem. Mater. 6, 2216–2219, 1994.
  24. د. جعفری، م. شیشه ساز، د. زارعی، ا.دانایی،" ارزیابی اثر حضور نانو رس‌ها بر روی خواص فیزیکی و مکانیکی پوششهای نانوکامپوزیت پلیمری"،‌ ۵، ۳۳-۱۹، ۱۳۹۴.
  25. J. Yeh, "Preparation, characterization and electrochemical corrosion studies on environmentally friendly waterborne polyurethane / Na+ -MMT clay nanocomposite coatings",  Eur. Polym. J. 44, 3046–3056, 2008.
  26. M. Pospíšil, "Structure analysis of montmorillonite intercalated with rhodamine B: Modeling and experiment", J. Mol. Model. 9, 39–46, 2003.
  27. M. Shamsipur and G. Azimi, "High-acidity optical sensors based on sol-gel-derived thin films", Anal. Lett. 34, 1603–1616, 2001.
  28. V. S. Smitha , "Rhodamine 6G intercalated montmorillonite nanopigments-polyethylene composites: Facile synthesis and ultravioletstability study", J. Am. Ceram. Soc. 94, 6, 1731–1736, 2011.
  29. V. Marchante, A. Marcilla, V. Benavente, F. M. Martínez-Verdú, M. I. Beltrán, "Linear low-density polyethylene colored with a nanoclay-based pigment: Morphology and mechanical, thermal, and colorimetric properties", J. Appl. Polym. Sci. 129, 2716–2726, 2013.
  30. A. Mahmoodi, M. Ebrahimi, A. Khosravi, "Epoxy/nanopigment coatings: preparation and evaluation of physical-mechanical properties", Prog. Org. Coat. 119, 164–170, 2018.