Review on Organic Dyes based on Indoline for Using Optoelectronic Devices

Document Type : Review paper

Author

a) Department of Organic Colorants; Institute for Color Science and Technology b) Center of Excellence for Color Science and Technology, Institute for Color Science and

Abstract

Phenothiazine is a butterfly shaped molecule based on indoline use as a starting material to synthesis organic dyes. These dyes have significant properties and performance in optoelectronic devices. Many optical and electrical properties such as photoluminescence, electroluminescence and electro-chemical properties can be modified by placing appropriate moiety on the parent phenothiazine group. In the last few decades, these electro- and photo-sensitive dyes have provided wide range of applications. This article presents the latest report on the development of small to medium sized phenothiazine-based dyes for dye sensitized solar cells, organic light emitting diodes, nonlinear optical materials, hole transporting components and sensors. For this end, an attempt structure properties and molecular design to improve these application and to test landscape perspective.

Keywords

Main Subjects


  1. E. A. Onobadje, S.A. Egu, M. A. Ezeokonkwo, U. C. Okoro, "Hoghlights of molecular structure and applications of phenothiazine and phenoxazine polycycles", J. Mol. Struct. 1175, 956-962, 2019.
  2. B. Varga, Á. Csonka, A. Csonka, J. Molnár, L. Amaral, G. Spengler, "Possible biological and clinical applications of phenothiazines", Anticancer Res. 37, 5983–5993, 2017.
  3. Z.S. Huang, H, Meier, D. Cao, "Phenothiazine-based dyes for efficient dye-sensitized solar cells", J. Mater. Chem. 4, 2404-2426, 2016.
  4. E. Ravindran, N. Somanathan, "Efficient and thermally stable non-doped red oleds based on a bird-like donor–acceptor fluorophore with aggregation induced emission enhancement and intramolecular charge transfer", J. Mater. Chem. C. 5, 7436–7440, 2017.
  5. J. Lu, S. Zhu, H. Su, R. Liu, Y. Li, H. Zhu, "Synthesis, luminescence and excited state absorption properties of conjugated d-π-a and d-π-d phenothiazine compounds", J. Lumin. 205, 158–166, 2019.
  6. A. Haque, R.A. Al-Balushi, I.J. Al-Busaidi, M.S. Khan, P.R. Raithby, "Rise of conjugated poly-ynes and poly(metalla-ynes): from design through synthesis to structure–property relationships and applications", Chem. Rev. 118, 8474–8597, 2018.
  7. K. Pluta, M. Jelen, B.M. Mlodawska, M. Zimecki, J. Artym, M. Kocieba, E. Zaczynska, "Azaphenothiazines – Promising phenothiazine derivatives. An insight into nomenclature, synthesis, structure elucidation and biological properties", Euro. J. Medi. Chem. 138, 774-806, 2017.
  8. R.A. Al-Balushi, A. Haque, M. Jayapal, M.K. Al-Suti, J. Husband, M.S. Khan, O.F. Koentjoro, K.C. Molloy, J.M. Skelton, P.R. Raithby, “Experimental and theoretical investigation for the level of conjugation in carbazole-based precursors and their mono-, di-, and polynuclear pt(ii) complexes", Inorg. Chem. 55, 6465-6480, 2016.
  9. C. Maglione, A. Carella, R. Centore, P. Chavez, P. Leveque, S. Fall, N. Leclerc, "Novel low bandgap phenothiazine functionalized dpp derivatives prepared by direct heteroarylation: application in bulk heterojunction organic solar cells", Dyes Pigm. 141, 169–178, 2017.
  10. S. Revoju, S. Biswas, B. Eliasson, G.D. Sharma, "Phenothiazine-based small molecules for bulk heterojunction organic solar cells; variation of side-chain polarity and length of conjugated system", Org. Electron. 65, 232–242, 2019.
  11. Y. Rout, R. Misra, R. Singhal, S. Biswas, G.D. Sharma, "Phenothiazine-based small molecule organic solar cells with power conversion efficiency over 7% and open circuit voltage of about 1.0 v using solvent vapor annealing", Phys. Chem. Chem. Phys. 20, 6321–6329, 2018.
  12. م. حسین‌‌نژاد، م. قهاری، "مروری بر نانوکامپوزیت‌‌های دی‌‌اکسید تیانیم مورد استفاده در سلول خورشیدی حساس شده به مواد رنگزا"، نشریه مطالعات در دنیای رنگ، 9، 64-55، 1398.
  13. ه. پوررادی، ک. قانی، م. مهدوی، "سنتز نانوساختار هیدروکسید لایه‌‌ای دوگانه روی-آلومینیم و بررسی اثر آن بر بازدهی سلول خورشیدی پروسکایتی"، 12نشریه علوم و فناوری رنگ، 269-261، 1397.
  14. M. Jayapal, A. Haque, I.J. Al-Busaidi, N. Al-Rasbi, M.K. Al-Suti, M.S. Khan, R. Al-Balushi, S.M. Islam, C. Xin, W. Wu, W.-Y. Wong, F. Marken, P.R. Raithby, "Dicopper (i) complexes incorporating acetylide-functionalized pyridinyl-based ligands: synthesis, structural, and photovoltaic studies", Inorg. Chem. 57, 12113–12124, 2018.
  15. M. Hosseinnezhad, M. Ghahari, H. Shaki, J. Movahedi, "Investigation of DSSCs performance: the effect of 1,8-naphthalimide dyes and Na-doped TiO2", Prog. Color Colorant Coat. 13, 177-185, 2020.
  16. J. S. Luo, Z. Q. Wan, C. Y. Jia,""Recent advances in phenothiazine-based dyes for dye-sensitized solar cells", Chin. Chem. Lett. 27, 1304–1318, 2016.
  17. A.F. Buene, N. Uggerud, S.P. Economopoulos, O.R. Gautun, B.H. Hoff, "Effect of π-linkers on phenothiazine sensitizers for dye-sensitized solar cells", Dye Pigm. 151, 263–271, 2018.
  18. M. Hosseinnezhad, S. Moradian, K. Gharanjig, "Synthesis and characterisation of eight organic dyes for dye sensitised solar cells", Mater. Technol. 29, 112-117, 2014.
  19. M. Hosseinnezhad, "Improvement performance of dye sensitised solar cells from co-sensitisation of TiO2 electrode with organic dyes based on indigo and thioindigo", Mater. Technol. 31, 348-351, 2016.
  20. M. Hosseinnezhad, K. Gharanjig, S. Moradian, S. Tafaghodi, “Synthesis and application of some novel fluorescent heterocyclic disperse dyestuffs based on phenothiazine on polyester", Arabian J. Chem. 12, 2069-2076, 2019.
  21. U. Eiamprasert, J. Sudchanham, P. Surawatanawong, P. Pakawatpanurut, S. Kiatisevi, "Additional donor bridge as a design approach for multi-anchoring dyes for highly efficient dye-sensitized solar cells", J. Photochem. Photobiol. A: Chem. 352, 86–97, 2018.
  22. S. Xiong, Y. Wang, J. Lin, X. Yu, J. Tao, Y. Wu, G. Yu, C. Pan, Y. Yamauchi, "D-π-A conjugated polymer dyes-covered TiO2 compact layers for enhancing photovoltaic performance of dye-sensitized solar cells", Synth. Met. 244, 73–79, 2018.
  23. R.M. El-Shishtawy, J.-D. Decoppet, F.A.M. Al-Zahrani, Y. Cao, S.B. Khan, M.S. Al- Ghamdi, B.G. Alhogbi, A.M. Asiri, S.M. Zakeeruddin, M. Grätzel, “Influence of redox electrolyte on the device performance of phenothiazine based dye sensitized solar cells", New J. Chem. 42, 9045–9050, 2018.
  24. S. Wang, H. Zhang, B. Zhang, Z. Xie, W.Y. Wong, "Towards high-power-efficiency solution-processed OLEDs: Material and device perspectives" Mater. Sci. Eng. R 140, 100547, 2020.
  25. L.P. Ravaro, K.P.S. Zanoni, A.S. Camargo, "Luminescent Copper(I) complexes as promising materials for the next generation of energy-saving OLED devices", Energy Rep. 6, 37-45, 2020.
  26. G.M. Mudd, "Key trends in the resource sustainability of platinum group elements", Ore. Geol. Rev. 46, 106–117, 2012.
  27. A. Haque, R. Ilmi, I.J. Al-Busaidi, M.S. Khan, "Coordination chemistry and application of mono- and oligopyridine-based macrocycles", Coord. Chem. Rev. 350, 320–339, 2017.
  28. X. Qiu, J. Shi, X. Xu, Y. Lu, Q. Sun, S. Xue, W. Yang, "Tuning the optoelectronic properties of phenothiazine-based d‒a-type emitters through changing acceptor pattern", Dye Pigm. 147, 6–15, 2017.
  29. J. Shi, L. Xu, C. Chen, X. Lv, Q. Ding, W. Li, S. Xue, W. Yang, “Efficient and colorpurity blue electroluminescence by manipulating the coupling forms of d‒a hybrids with phenothiazine as the strong donor", Dye Pigm. 160, 962–970, 2019.
  30. H.S. Kim, H. Park, S.-R. Park, S.H. Lee, Y. Ahn, Y.S. Lee, M.C. Suh, "Photophysical properties of thermally activated delayed fluorescent materials upon distortion of central axis of donor moiety", J. Phys. Chem. C 122, 28576–28587, 2018.
  31. J.H. Kim, M. Eum, T.H. Kim, J.Y. Lee, "A novel pyrrolocarbazole donor for stable and highly efficient thermally activated delayed fluorescent emitters", Dye Pigm. 136, 529–534, 2017.
  32. Z. Ren, R.S. Nobuyasu, F.B. Dias, A.P. Monkman, S. Yan, M.R. Bryce, "Pendant homopolymer and copolymers as solution-processable thermally activated delayed fluorescence materials for organic light-emitting diodes”, Macromol. 49, 5452–5460, 2016.
  33. Y. Im, M. Kim, Y.J. Cho, J.-A. Seo, K.S. Yook, J.Y. Lee, "Molecular design strategy of organic thermally activated delayed fluorescence emitters", Chem. Mater. 29, 1946–1963, 2017.
  34. K. Shanmugasundaram, M.S. Subeesh, C.D. Sunesh, R.K. Chitumalla, J. Jang, Y. Choe, "Green electroluminescence from charged phenothiazine derivative", J. Phys. Chem. C. 120, 20247–20253, 2016.
  35. Z. Shariatinia, “Recent progress in development of diverse kinds of hole transport materials for the perovskite solar cells: a review", Renew. Sustain. Energy Rev. 119, 109608, 2020.
  36. N. Berton, R. Nakar, B. Schmaltz, "DMPA-containing carbazole-based hole transporting materials for perovskite solar cells: Recent advances and perspectives", Synth. Met. 252, 91-106, 2019.
  37. J. Sivanadanam, S. Mandal, I.S. Aidhen, K. Ramanujam, "Design of cone-shaped hole transporting material organic structures for perovskite solar cells applications", Chem. Sel. 3, 8159–8166, 2018.
  38. R. Grisorio, B. Roose, S. Colella, A. Listorti, G.P. Suranna, A. Abate, "Molecular tailoring of phenothiazine-based hole-transporting materials for high-performing perovskite solar cells", ACS Energy Lett. 2, 1029–1034, 2017.
  39. K. Wu, S. Pan, " review on structure-performance relationship toward the optimal design of infrared nonlinear optical materials with balanced performances", Coord. Chem. Rev. 377, 191-208, 2018.
  40. B. Kim, J. Lee, Y. Park, C. Lee, J.W. Park, "Highly efficient new hole injection materials for organic light emitting diodes base on phenothiazine derivatives", J. Nanosci. Nanotechnol. 14, 6404–6408, 2014.
  41. S. Narayanan, A. Abbas, C.P. Anjali, S. Xavier, C.S. Kartha, K.S. Devaky, K. Sreekumar, R. Joseph, "Low band gap donor-acceptor phenothiazine copolymer with triazine segment: design, synthesis and application for optical limiting devices", J. Lumin. 198, 449–456, 2018.
  42. S. Edappadikkunnummal, S.N. Nherakkayyil, V. Kuttippurath, D.M. Chalil, N.R. Desai, C. Keloth, "Surface plasmon assisted enhancement in the nonlinear optical properties of phenothiazine by gold nanoparticle", J. Phys. Chem. C 121, 26976–26986, 2017.
  43. A. Rehman, X. Zeng, "Interfacial composition, structure, and properties of ionic liquids and conductive polymers for the construction of chemical sensors and biosensors: a perspective", Current Opin. Electrochem., 23, 47-56, 2020.
  44. P.K. Kalambate, Z. Rao, J. Wu, Y. Shen, R. Boddula, Y. Huang, "Electrochemical (bio) sensors go green", Biosensor Biochem., 2020, Doi: 10.1016/j.bios.2020.112270.
  45. E. Ramachandran, S.A.A. Vandarkuzhali, G. Sivaraman, R. Dhamodharan, "Phenothiazine based donor–acceptor compounds with solid-state emission in the yellow to nir region and their highly selective and sensitive detection of cyanide ion in ppb level", Chem. Eur. J. 24, 11042–11050, 2018.