A Review on Flourescense Sensores Based on Bronic acides for Sacharides Detection

Document Type : Review paper

Authors

1 Department of Polymer, School of Chemical Engineering, College of Engineering, University of Tehran

2 Department of Organic Colorants, Institute for Color Science and Technology

Abstract

Nowadays, the use of sensitive and selective fluorescent sensors for biological and clinical applications has been important for the early detection and control of various diseases. Since saccharides play an important role in biological processes, their detection is one of the particular importance and there is an urgent need to develop of technology for the continuous control of glucose in patients. Bronic acids, can be reversed and covalently formed by the diols in aqueous solution to form five or six ring esters. Based on this phenomenon, compounds containing bronic acid have been used as receptors in sensors. In this paper, fluorescent sensors based on dyes with bronic acids are introduced.

Keywords

Main Subjects


1. R. Danne, C. Poojari, H. Martinez-Seara, S. Rissanen, F. Lolicato, T. R´og , I. Vattulainen, J. Chem. "doGlycans-Tools for Preparing Carbohydrate Structures for Atomistic Simulations of Glycoproteins, Glycolipids, and Carbohydrate Polymers for GROMACS", Inf. Model. 57, 2401–2406, 2017.
2. K. A. Green, Y. Becker, A. Tanaka, D. Takemoto, H. L. Fitzsimons, S. Seiler, H. Lalucque, P. Silar, B. Scott, "SymB and SymC, two membrane associated proteins, are required for Epichloë festucae hyphal cell-cell fusion and maintenance of a mutualistic interaction with Lolium", Mol. Microbiol. 103, 657–677, 2017.
3. A. Aroca, J. M. Benito, C. Gotor and L. C. Romero,"Persulfidation proteome reveals the regulation of protein function by hydrogen sulfide in diverse biological processes in Arabidopsis", J. Exp. Bot. 68, 4915–4927, 2017.
4. R. Emmerstorfer, K. Radefeld, V. Havlicek, U. Besenfelder, H. Yu, C. Mayrhofer, C. Vogl, G. Brem, S. Papp, "131 effect of oviductal fluid during in vitro culture on bovine embryo development, Quality Fertil", Dev. 30, 205–206, 2017.
5. N. K. Broeker, D. Andres, Y. Kang, U. Gohlke, A. Schmidt, S. Kunstmann, M. Santer, S. Barbirz, "Complex carbohydrate recognition by proteins: Fundamental insights from bacteriophage cell adhesion systems", Perspect. Sci. 11, 45–52, 2017.
6. X. Zhang, L. Chai, S. Nie, C. Lv, Q. Wang, Z. Li,"Facile synthesis of boronic acid-decorated carbon nanodots as optical nanoprobes for glycoprotein sensing", Analyst, 144, 1975–1981, 2019.
7. S. Xu, S. Che, P. Ma, F. Zhang, L. Xu, X. Liu, X. Wang, D. Song, Y. Sun,"One-step fabrication of boronic-acid-functionalized carbon dots for the detection of sialic acid", Talanta, 197, 548–552, 2019.
8. A. Suzuki, N. Miyaura,"Palladium-catalyzed cross-coupling reactions of organoboron compounds", Chem. Rev. 95, 2457–2483, 1995.
9. K. Keerthi Krishnan, S. Saranya, K. R. Rohit, G. Anilkumar,"A novel zinc-catalyzed Suzuki-type cross-coupling reaction of aryl boronic acids with alkynyl bromides", J. Catal. 372, 266–271, 2019.
10. H. W. Man, D. S. Matteson,"Hydrolysis of substituted 1,3,2-dioxaborolanes, an asymmetric Synthesis of a differentially protected syn,syn-3-Methyl-2,4-hexanediol", J. Org. Chem. 61, 6047–6051, 1996.
11. S. Kuwano, Y. Hosaka, T. Arai,"Chiral benzazaboroles as catalysts for enantioselective sulfonylation of cis-1, 2-diols", Org. Biomol. Chem. 1–8, 2019.
12. H. Yamamoto, K. Ishihara,"Arylboron compounds as acid catalysts in organic synthetic transformations", Eur. J. Org. Chem. 527–538, 1999.
13. W. X. Lv, Z. Li, E. Lin, J. L. Li, D. H. Tan, Y. H. Cai, Q. Li, H. Wang," Regio and diastereoselective synthesis of cyclohexadienylborons via an intermolecular diels–alder reaction of alkenyl MIDA boronates with 2‐Pyrones", Chem. 25, 4058–4061, 2019.
14. A. Goodman, N. A. Petasis, I. A. Zavialov,"A new synthesis of α-arylglycines from aryl boronic acids", Tetrahedron. 53, 16463–16470,1997.
15. K. Michigami, H. Murakami, T. Nakamura, N. Hayama, Y. Takemoto,"Catalytic asymmetric aza-Michael addition of fumaric monoacids with multifunctional thiourea/boronic acids", Org. Biomol. Chem. 17, 2331–2335, 2019.
16. H. Yu, B. Wang,"Arylboronic acid-facilitated selective reduction of aldehydes by tributyltin hydride", Synth. Commun. 31, 2719–2725, 2001.
17. H. Zeng, J. Wu, S. Li, C. Hui, A. Ta, S. Y. Cheng, S. Zheng, G. Zhang, "Copper(II)-Catalyzed Selective Hydroboration of Ketones, Aldehydes", Org. Lett. 21, 401–406, 2019.
18. G. Springsteen, R. Latta, B. Wang,"Development, synthesis of an arylboronic acid-based solid-phase amidation catalyst", Synth. 1611–1613, 2001.
19. X. Gao, W. Yang, G. Springsteen, "Catechol pendant polystyrene for solid-phase synthesis", Tetrahedron Lett. 43, 6339–6342, 2002.
20. L. Hu, P. X. Shen, Q. Shao, K. Hong, J. X. Qiao, J. Q. Yu,"PdII‐Catalyzed Enantioselective C(sp3)−H Activation/Cross‐Coupling Reactions of Free Carboxylic Acids", Angew. Chem. 58, 2134–2138, 2019.
21. K. B. Kim, J. Myung, C. M. Crews,"The ubiquitin‐proteasome pathway and proteasome inhibitors", Med. Res. Rev. 21, 245–273, 2001.
22. M. Lei, H. Feng, E. Bai, H. Zhou, J. Wang, Y. Qin, H. Zhang, X. Wang, Z. Liu, O. Hai, J. Liu, Y. Zhu," Discovery of a novel dipeptidyl boronic acid proteasome inhibitor for the treatment of multiple myeloma and triple-negative breast cancer", Org. Biomol. Chem. 17, 683–691, 2019.
23. S. J. Gardiner, P. R. Westmark, B. D. Smith, "Selective monosaccharide transport through lipid bilayers using boronic acid carriers", J. Am. Chem. Soc. 118, 11093–11100, 1996.
24. S. P. Draffin, P. J. Duggan, S. A. Duggan," Highly fructose selective transport promoted by boronic acids based on a pentaerythritol core", Org. Lett. 3, 917–920, 2001.
25. W. Tjarks, A. H. Soloway, B. A. Barnum, "The chemistry of neutron capture therapy", Chem. Rev. 98, 1515–1562, 1998.
26. K. R. A. Samankumara Sandanayake, T. D. James, S. Shinkai,"4-(N, N-Dimethylamine) benzonitrile (DMABN) derivatives with boronic acid and boronate groups: new fluorescent sensors for saccharides and fluoride ion", Angew. Chem. Int. Ed. 35, 1910–1922, 2010.
27. X. Gao, W. Wang, B. Wang,"Boronic acid-based sensors", Curr. Org. Chem. 6, 1285–1317, 2002.
28. Y. J. Kim, K. O. Kim, J. J. Lee,"d-Glucose recognition based on phenylboronic acid-functionalized polyoligomeric silsesquioxane fluorescent probe", Mater. Sci. Eng. C, 95, 286–291, 2019.
29. L. L. Liu, D. W. Stephan,"Radicals derived from Lewis acid/base pairs", Chem. Soc. Rev. 1–10, 2019.
30. S. S. Reddy, V. M. Arivunithi, V. G. Sree, H. Kwon, J. Park, Y. C. Kang, H. Zhu, Y. Y. Noh, S. H. Jin," Lewis acid-base adduct-type organic hole transport material for high performance, air-stable perovskite solar cells", Nano Energy. 58, 284–292, 2019.
31. H. Yuan, W. Ji, S. Chu, S. Qian, F. Wang, J. F.Masson, X. Han, W. Peng," Fiber-optic surface plasmon resonance glucose sensor enhanced with phenylboronic acid modified Au nanoparticles", Biosens. Bioelectron. 117, 637–643, 2018.
32. X. Wu, X. X. Chen, Y. B. Jiang,"Recent advances in boronic acid-based optical chemosensors", Analyst. 142, 1403–1414, 2017.
33. X. T. Zhang, G. J. Liu, Z. W. Ning, G. W. Xing," Recent advancement of piperidine moiety in treatment of cancer-A review”, Carbohydr. Res. 452, 129–148, 2017.
34. J. A. Peters,"Interactions between boric acid derivatives and saccharides in aqueous media: Structures and stabilities of resulting esters", Coord. Chem. Rev. 268, 1–22, 2014.
35. W. Yang, L. Lin, B. Wang,"A new type of boronic acid fluorescent reporter compound for sugar recognition",Tetrahedron Lett. 46, 7981–7984, 2005.
36. S. Shinkai, T. D. James,"Artificial receptors as chemosensors for carbohydrates", Host-Guest Chem., 159–200, 2002.
37.R.Nishiyabu, Y.Kubo, T.D. James, J.S. Fossey, "Boronic acid building blocks: tools for sensing and separation", Chem. commun. 47, 1106-1123, 2011.
38. G. F. Whyte, R. Vilar, R. Woscholski, "Molecular recognition with boronic acids-applications in chemical biology", J. Chem. Biol. 6, 161-174, 2013.
39. Y. Guan, Y. Zhang, "Boronic acid-containing hydrogels", Chem. Soc. Rev. 42, 8106-8121, 2013.
40. K. Yum, T. P. McNicholas, B. Mu, M. S. Strano, "Single-Walled Carbon Nanotube-Based Near-Infrared Optical Glucose Sensors toward In Vivo Continuous Glucose Monitoring", J. Diabetes Sci. Technol. 7, 72-87, 2013.
41. Z. Q. Guo, I. Shin, J. Yoon, “Recognition and sensing of various species using boronic acid derivatives", Chem. Commun. 48 ,5956-5967, 2012.
42. R. Ma, L. Shi, "henyl boronic acid-based glucose-responsive polymeric nanoparticles: synthesis and applications in drug delivery", Polym. Chem. 5, 1503-1518, 2014.
43. T. R. Jackson, J. S. Springall, D. Rogalle, N. Masumoto, H. C. Li, F. D'Hooge, S. P. Perera, A. T. A. Jenkins, T. D. James, J. S. Fossey, J. M. H. van den Elsen,"Dye displacement assay for saccharide detection with boronate hydrogels", Electrophoresis, 29, 4185-4191, 2008.
44. M. P. P. Morais, D. Marshall, S. E. Flower, C. J. Caunt, T. D. James, R. J. Williams, N. R. Waterfield, J. M. H. van den Elsen, "Analysis of protein glycation using fluorescent phenylboronate gel electrophoresis", Sci. Rep. 3 ,1437, 2013.
45. X. L. Sun, S. Y. Xu, S. E. Flower, J. S. Fossey, X. H. Qian, T. D. James, "Integrated, nsulate"boronate-based fluorescent probes for the detection of hydrogen peroxide", Chem. Commun. 49 ,8311-8313, 2013.
46. J. Chan, S. C. Dodani, C. J. Chang, "Reaction-based small-molecule fluorescent probes for chemoselective bioimaging", Nat. Chem. 4 ,973-984, 2012.
47. T. D. James, S. Shinkai, "Artificial receptors as chemosensors for carbohydrates", Topics Curr. Chem. 218 ,159-200, 2002.
48. م. حسین‌نژاد، "مروری بر عملکرد سلول خورشیدی حساس شده به مواد رنگزا دارای مواد رنگزای پلیمری شفاف"، نشریه علمی مطالعات در دنیای رنگ، 10، 10-1، 1399.
49. م. حسین نژاد، ک. قرنجیگ، "مروری بر اثرات گروه‌های مختلف الکترون‌گیرنده مواد رنگزا بر روی ویژگی‌های اپتیک و الکترونیک سلول‌های خورشیدی"، نشریه علمی مطالعات در دنیای رنگ، 6، 18-3، 1395.
50. ش. روحانی، ز. بهرامی نیا،"مروری بر مواد هوشمند ترموکروم و کاربردهای آن"، نشریه علمی مطالعات در دنیای رنگ، 3، 32-23، 1392.
51. ف. سادات میری، س. گرجی کندی، ف. پناهی، "بررسی رفتار مواد رنگزای فلورسانس مزدوج به عنوان حسگرهای آمین"، نشریه علمی مطالعات در دنیای رنگ، 8، 70-55، 2018.
52. G. Springsteen, B. Wang, "A detailed examination of boronic acid–diol complexation”, Tetrahedron. 58, 5291–5300, 2002.
53. X. Wu, X. X. Chen, Y. B. Jiang,"Recent advances in boronic acid-based optical chemosensors", Analyst. 142, 1403–1414, 2017.
54. J. Yoon, A. W. Czarnik, "Fluorescent chemosensors of carbohydrates", J. Am. Chem. Soc. 114, 276–277, 1992.
55. F. P. Schwarz, S. P. Wasik,"Fluorescence measurements of benzene, naphthalene, anthracene, pyrene, fluoranthene, and benzo [e] pyrene in water", Anal. Chem. 48, 524–528, 1976.
56. J. Yoon, A. W. Czarnik,""Fluorescent chemosensors of carbohydrates", Bioorg. Med. Chem. 1, 267–271, 1993.
57. Y. Liu, C. Deng, L. Tang, A. Qin, R. Hu, J. Z. Sun, B. Z. Tang," Specific detection of d-Glucose by a tetraphenylethene-based fluorescent sensor", J. Am. Chem. Soc. 133, 660–663, 2011.           
58. M. Shao, Y. Zhao,"Phenylboronic acid-functionalized TTFAQ: modular synthesis and electrochemical recognition for saccharides",Tetrahedron Lett. 51, 2508–2511, 2010.
59. C. Wang, Y. Li, Y. Wei,"A sandwich boronate affinity sorbent assay for glucose detection facilitated by boronic acid-terminated fluorescent polymers", Sens. Actuators, B, 247, 595–601, 2017.
60. T. Kawanishi, M. A. Romey, P. C. Zhu, M. Z. Holody, S. Shinkai,"A study of boronic acid based fluorescent glucose sensors" J. Fluoresc. 14, 499–512, 2004.
61. H. Shibata, Y. J. Heo, T. Okitsu, Y. Matsunaga, T. Kawanishi, S. Takeuchi,"Injectable hydrogel microbeads for fluorescence-based in vivo continuous glucose monitoring", Proc. Natl. Acad. Sci. 107,17894–17898, 2010.
62. Y. J. Heo, H. Shibata, T. Okitsu, T. Kawanishi, S. Takeuchi,"Long-term in vivo glucose monitoring using fluorescent hydrogel fibers", Proc. Natl. Acad. Sci. U. S. A. 108, 13399–13403, 2011.
63. K. M. K. Swamy, Y. J. Jang, M. S. Park, H. S. Koh, S. K. Lee, Y. J. Yoon, J. Yoon," A sorbitol-selective fluorescence sensor", Tetrahedron Lett. 46, 3453–3456, 2005.
64. X. Gao, V. V. Karnati, S. Gao, "The first fluorescent diboronic acid sensor specific for hepatocellular carcinoma cells expressing sialyl Lewis X", Bioorg. Med. Chem. Lett. 12, 3373–3377, 2002.
65. G. Kaur, H. Fang, X. Gao, H. Li, B. Wang, "Substituent effect on anthracene-based bisboronic acid glucose sensors", Tetrahedron. 62, 2583–2589, 2006.
66. S. Arimori, M. L. Bell, C. S. Oh, T. D. James," A modular fluorescence intramolecular energy transfer saccharide sensor", Org. Lett. 4, 4249–4251, 2002.
67. R. M. Clegg,"Fluorescence resonance energy transfer", Curr. Opin. Biotechnol. 6, 103–110, 1995.
68. Y. J. Huang, Y. B. Jiang, S. D. Bull, J. S. Fossey, T. D. James,"Boronic acids for fluorescence imaging of carbohydrates", Chem. Commun. 52, 3456–3469, 2016.
69. S. Jin, Y. Cheng, S. Reid, M. Li, B. Wang," Carbohydrate recognition by boronolectins, small molecules, and lectin", Med. Res. Rev. 30, 171–257, 2010.
70. Z. Sharrett, S. Gamsey, L. Hirayama, B. Vilozny, J. T. Suri, R. A. Wessling, B. Singaram," Exploring the use of APTS as a fluorescent reporter dye for continuous glucose sensing", Org. Biomol. Chem. 7, 1461–1470, 2009.
71. A. Chaicham, S. Sahasithiwat, T. Tuntulani, B. Tomapatanaget," Highly effective discrimination of catecholamine derivatives via FRET-on/off processes induced by the intermolecular assembly with two fluorescence sensors", Chem. Commun. 49, 9287–9289, 2013.
72. L. I. Bosch, S. Arimori, C. J. Ward, "A D-glucose selective fluorescent internal charge transfer (ICT) sensor", Tetrahedron Lett. 43, 911–913, 2002.
73. M. D. Phillips, T. M. Fyles, N. P. Barwell, T. D. James,"Carbohydrate sensing using a fluorescent molecular tweezer", Chem. Commun. 6557–6559, 2009.
74. S. Arimori, K. A. Frimat, T. D. James, M. L. Bell, C. S. Oh, "Modular fluorescence sensors for saccharides",Chem. Commun. 18, 1836–1837, 2001.
75. A. Stephenson-Brown, H. C. Wang, P. Iqbal, J. A. Preece, Y. Long, J. S. Fossey, T. D. James, P. M. Mendes,"Glucose selective surface plasmon resonance-based bis-boronic acid sensor", Anlst. 138, 7140–7145, 2013.
76. K. V. Kong, Z. Lam, W. K. Lau, W. K. Leong, M. Olivo," A transition metal carbonyl probe for use in a highly specific and sensitive SERS-based assay for glucose", J. Am. Chem. Soc. 135, 18028–18031, 2013.
77. R. Badugu, C. D. Lakowicz JRGeddes, "Boronic acid fluorescent sensors for monosaccharide signaling based on the 6-methoxyquinolinium heterocyclic nucleus: progress toward noninvasive and continuous glucose monitoring", Bioorg. Med. Chem. 13, 113–119, 2005.
78. M. H. Chang, C. N. Chang," Synthesis of three fluorescent boronic acid sensors for tumor marker Sialyl Lewis X in cancer diagnosis", Tetrahedron Lett. 55, 4437–4441, 2014.
79. X. D. Xu, H. Cheng, W. H. Chen, S. X. Cheng, R. X. Zhuo, X. Z. Zhang,"In situ recognition of cell-surface glycans and targeted imaging of cancer cells", Sci. Rep. 3, 2679, 2013.
80. T. M. Kolben, F. Kra, T. Kolben, C. Goess, A. Semmlinger, C. Dannecker, E. Schmoeckel, D. Mayr, N. N. Sommer, S. Mahner, U. Jeschke, "Recent development of boronic acid-based fluorescent sensors", Future Oncol. 13, 145–157, 2017.
81. W. Yang, H. Fan, X. Gao, S. Gao, V. V. Karnati, W. Ni, W. B. Hooks, J. Carson, B. Weston, B. Wang,"The first fluorescent diboronic acid sensor specific for hepatocellular carcinoma cells expressing sialyl Lewis X", Chem. Biol. 11, 439–448, 2004.
82. Y. E. Wang, X. Li, H. Chen, et al.,"Porous Co–C core–shell nanocomposites derived from Co-MOF-74 with enhanced electromagnetic wave absorption performanc", Chem. Res. Chin. Univ. 34, 415–422, 2018.
83. Y. Wang, R. Rong, H. Chen, M. Zhu, B. Wang, X. Li, "Triazole-linked fluorescent bisboronic acid capable of selective recognition of the Lewis Y antigen", Bioorg. Med. Chem. Lett. 27, 1983–1988, 2017.
84. D. Wang, E. Ozhegov, L. Wang, A. Zhou, H. Nie, Y. Li, X. L. Sun," Sialylation and desialylation dynamics of monocytes upon differentiation and polarization to macrophage", Glycoconjugate J. 33, 725–733, 2016.
85. A. Varki, P. Gagneux," Multifarious roles of sialic acids in immunity", Ann. N. Y. Acad. Sci. 1253, 16–36, 2012.
86. H.Juan, P. Wensheng, C.Jinlong, "Hypoglycemic effect of polysaccharides with different molecular weight of Pseudostellaria heterophylla", BMC Complement Altern. Med. 13, 267, 2013.
87. L. Kahanovitz, P. Sluss, S. Russell, "Type 1 Diabetes – A Clinical Perspective", Point Care. 16, 37–40, 2017.
88. T. Mogos, A. Evelin Iacobini, "A review of hereditary fructose intolerance", Romanian J. Diabet. Nutr. Metabol. Dis. 23,081-085, 2016.
89. H. Li, H.M. Byers, A. Diaz, "Acute liver failure in neonates with undiagnosed hereditary fructose intolerance due to exposure from widely available infant formulas", Molecular Genetics and Metabolism, 123, 428-432, 2018.
90. A. Quaglia, E.A. Roberts, M. Torbenson, "Macsween's Pathology of the Live", Developmental and Inherited Liver Disease, Chapter 3, 7th edition, 111-274, 2018.
91. S. Hannou, D. Haslam, N. Mckeown, M. Herman, "Fructose metabolism and metabolic disease", J. Clini. Inves. 128 ,554-555, 2018.
92. J. Yoon, A. W. Czarnik, "Fluorescent chemosensors of carbohydrates", J. Am. Chem. Soc. 114 ,5874–5875, 1992.
93. T. D. James, K. R. A. S. Sandanayake, S. Shinkai, "Novel photoinduced electron-transfer sensor for saccharides based on the interaction of boronic acid and amine",  J. Chem. Soc. Chem Commun. 4, 477, 1994.
94. Y. Nagai, K. Kobayashi, H. Toi, Y. Aoyama, "Stabilization of sugar-boronic esters of indolyboronic acid in water via sugarindole interaction: A notable selectivity in oligosaccharides",  B. Chem. Soc. Jpn. 66, 2965–2971, 1993.
95. K. R. A. S. Sandanayake, S. Imazu, T. D. James, M. Mikami, S. Shinkai, "Molecular fluorescence sensor for saccharides based on amino coumarin", Chem. Lett. 2 ,139–140, 1995.
96. H. Suenaga, M. Mikami, K. R. A. S. Sandanayake, S. Shinkai, "Screening of fluorescent boronic acids for sugar sensing which show a large fluorescence change" Tetrahedron Lett. 36, 4825– 4828, 1995.
97.G. P. Luis, M. Granda, R. Badia, M. E. D´ıaz-Garc´ıa, "Selective fluorescent chemosensor for fructose", Anal. 123, 155–158, 1998.
98.M.Shao, Y.Zhao,"Phenylboronic acid-functionalized TTFAQ: modular synthesis and electrochemical recognition for saccharides", Tetrahedron Lett. 51, 2508-2511, 2010.
99. Z. Wang, W. Tan, D. Zhang, "A new saccharides and nnucleosides sensor based on tetrathiafulvalene-anthracene dyad with two boronic acid groups", Sensor. 6, 954–961, 2006.
100. D. Zhang, Z. Wang, D. Zhu,"A new saccharide sensor based on a tetrathiafulvalene− anthracene dyad with a boronic acid group", J. Org. Chem. 70, 5729–5732, 2005.
101. S.Trupp, A.Schweitzer, J. Mohr, "A fluorescent water-soluble naphthalimide-based receptor for saccharides with highest sensitivity in the physiological pH range",               Org. Biomol. Chem. 4, 2965-2968, 2006.
102. J. Wang, S. Jin, S. Akay, B. Wang, "Design and synthesis of long‐wavelength fluorescent boronic acid reporter compounds", Eur. J. Org. Chem. 13 , 2091-2099, 2007.
103. S. Jin, J. Wang, M. Li, B. Wang, "Synthesis, evaluation, and computational studies of naphthalimide‐based long‐wavelength fluorescent boronic acid reporters", Chem. Eur. J. 14, 2795-2804, 2008.
104. H.Chen, L.Li, H.Guo, X.Wang, W.Qin, "Naphthalimide-based fluorescent photoinduced electron transfer sensors for saccharides", RSC Adv. 5, 13805-1381, 2015.
105. S. Liu, H. Bai, "Naphthalimide-based fluorescent photoinduced electron transfer sensors for saccharides", RSC Adv. 5, 2837, 2015.
106. S. Xu, A. C. Sedgwick,"A boronic acid-based fluorescent hydrogel for monosaccharide detection", Front. Chem. Sci. Eng, 1812-1815, 2019.
107. S. Seraj, S. Rouhani, F. Faridbod," Naphthalimide-based optical turn-on sensor for monosaccharide recognition using boronic acid receptor", RSC Adv. 9, 17933, 2019.