Anti-ice Coatings: A Review of Current Technologies and Evaluation Procedure

Document Type : Review paper

Authors

1 Surface Coatings and Corrosion Department, Institute for Color Science and Technology

2 Atlas Protecting Coating

3 Saba Shimi Arya,

4 MAPNA Generator and Wind Turbin Engineering and Manufacturing Co.(PARS)

Abstract

Conventional (active) and modern (passive) methods are available for ice removal from the surface. Passive approaches such as anti-ice coating do not require external energy. Anti ice coatings have diverse applications in disparate industries, including transportation, aviation industry, power transmission lines, and military applications. Due to the water repellency characteristics, anti-ice coatings reduce water accumulation on the surface. On the other hand, the elastic property of these coatings causes ice removal by weak mechanical forces, which leads to the emergence of easy defrost surfaces. In this paper, the prerequisites that are considered for acquiring anti-ice coatings are presented in the first place. Then active and passive methods are investigated, and the theory of each technique followed by an example for each is put forward.  Eventually, different evaluations which are available for anti-ice/ice phobic coatings are reviewed.


 

Keywords

Main Subjects


  1. 1. K. Wei, Y. Yang, H. Zuo, D. Zhong, "A review on ice detection technology and ice elimination technology for wind turbine", Wind Energy. 23, 433-457, 2020.
  2. 2. D. Chen, R. E. Cohen, G. H. McKinley, "Anti-icing coatings",USA, PCT/US2017/023477, 2017.
  3. 3. H. Makki, H. Yahyaei, M. Mohseni "Superhydrophobic antiicing and ice-release polymer coatings", Elsevier, 2019.
  4. 4. O. Parent, A. Ilinca, "Anti-icing and de-icing techniques for wind turbines: Critical review", Cold Reg. Sci. Technol. 65, 88-96, 2011.
  5. 5. O. Fakorede, Z. Feger, H. Ibrahim, A. Ilinca, J. Perron, C. Masson, "Ice protection systems for wind turbines in cold climate: characteristics, comparisons and analysis", Renewable Sustainable Energy Rev. 65, 662-675, 2016.
  6. 6. W. Liang, Acworth, GA, Viktoria Ren Wang, "Anti-icing composites", US, 13/784,517, 2016.
  7. 7. A. Amirfazli, C. Antonini "Fundamentals of Anti-Icing Surfaces", Royal Society of Chemistry, 2016.
  8. 8. H. L. Lein "Coatings and surfaces with hydrophobic and anti-icing properties". Elsevier, 14, 2019.
  9. 9. S. Zhang, J. Huang, Y. Cheng, H. Yang, Z. Chen, Y. Lai, "Bioinspired surfaces with superwettability for anti‐icing and ice‐phobic application: concept, mechanism, and design", Small. 13, 1701867, 2017.
  10. 10. R. Raj, R. Enright, Y. Zhu, S. Adera, E. N. Wang, "Unified model for contact angle hysteresis on heterogeneous and superhydrophobic surfaces", Langmuir. 28, 15777-15788, 2012.
  11. 11. S. Zhang, J. Huang, Y. Tang, et al., "Understanding the Role of Dynamic Wettability for Condensate Microdrop Self‐Propelling Based on Designed Superhydrophobic TiO2 Nanostructures", Small 13, 1600687, 2017.
  12. 12. D. Richard, C. Clanet, D. Quéré, "Contact time of a bouncing drop", Nature. 417, 811-811, 2002.
  13. 13. S. Jung, M. K. Tiwari, N. V. Doan, D. Poulikakos, "Mechanism of supercooled droplet freezing on surfaces" Nat. Commun. 3, 1-8, 2012.
  14. 14. S. Wen, Y. Wang, Z. Zhang, Y. Liu, "Application of anti-icing coating based on adsorption of functional substances by microporous sphere", Prog. Org. Coat. 137, 105320, 2019.
  15. 15. B. R. Solomon, S. B. Subramanyam, T. A. Farnham, K. S. Khalil, S. Anand, K. K. Varanasi, "Lubricant-impregnated surfaces", 2016.
  16. 16. V. Upadhyay, T. Galhenage, D. Battocchi, D. Webster, "Amphiphilic icephobic coatings", Prog. Org. Coat. 112, 191-199, 2017.
  17. 17. J. Bravo, L. Zhai, Z. Wu, R. E. Cohen, M. F. Rubner, "Transparent superhydrophobic films based on silica nanoparticles", Langmuir. 23, 7293-7298, 2007.
  18. 18. I. Yilgor, S. Bilgin, M. Isik, E. Yilgor, "Facile preparation of superhydrophobic polymer surfaces", Polym. 53, 1180-1188, 2012.
  19. 19. F. Piscitelli, F. Tescione, L. Mazzola, G. Bruno, M. Lavorgna, "On a simplified method to produce hydrophobic coatings for aeronautical applications", Appl. Surf. Sci. 472, 71-81, 2019.
  20. 20. Q. Fu, X. Wu, D. Kumar, "Development of sol–gel icephobic coatings: effect of surface roughness and surface energy", ACS appl. mater. interfaces, 6, 20685-20692, 2014.
  21. 21. P. Irajizad, A. Al-Bayati, B. Eslami, et al., "Stress-localized durable icephobic surfaces" Mater. Horiz. 6, 758-766, 2019.
  22. 22. J. Chen, R. Dou, D. Cui, et al., "Robust prototypical anti-icing coatings with a self-lubricating liquid water layer between ice and substrate", ACS appl. mater. interfaces. 5, 4026-4030, 2013.
  23. 23. C. C. Qin, A. T. Mulroney, M. C. Gupta, "Anti-icing epoxy resin surface modified by spray coating of PTFE Teflon particles for wind turbine blades", Mater. Today Commun. 22, 100770, 2020.
  24. 24. C. Peng, S. Xing, Z. Yuan, J. Xiao, C. Wang, J. Zeng, "Preparation and anti-icing of superhydrophobic PVDF coating on a wind turbine blade", Appl. Surf. Sci.  259, 764-768, 2012.
  25. 25. L. Gao, Y. Liu, L. Ma, H. Hu, "A hybrid strategy combining minimized leading-edge electric-heating and superhydro-/ice-phobic surface coating for wind turbine icing mitigation", Renewable Energy. 140, 943-956, 2019.
  26. 26. J. Chen, Z. Luo, Q. Fan, J. Lv, J. Wang, "Anti‐ice coating inspired by ice skating", Small. 10, 4693-4699, 2014.
  27. 27. R. Karmouch, G. G. Ross, "Superhydrophobic wind turbine blade surfaces obtained by a simple deposition of silica nanoparticles embedded in epoxy", Appl. Surf. Sci. 257, 665-669, 2010.
  28. 28. R. Karmouch, S. Coudé, G. Abel, G. G. Ross, "Icephobic PTFE coatings for wind turbines operating in cold climate conditions", IEEE Electrical Power & Energy Conference (EPEC), 2009.
  29. 29. S. Hong, R. Wang, X. Huang, H. Liu, "Facile one-step fabrication of PHC/PDMS anti-icing coatings with mechanical properties and good durability", Prog. Org. Coat.  135, 263-269, 2019.
  30. 30. A. W. JONES, LAMB, Robert Norman, "Hydrophobic material",2006.
  31. 31. H. Sojoudi, M. Wang, N. Boscher, G. H. McKinley, K. K. Gleason, "Durable and scalable icephobic surfaces: similarities and distinctions from superhydrophobic surfaces", Soft matter. 12, 1938-1963, 2016.
  32. 32. M. Zou, S. Beckford, R. Wei, C. Ellis, G. Hatton, M. Miller, "Effects of surface roughness and energy on ice adhesion strength", Appl. Surf. Sci. 257, 3786-3792, 2011.
  33. 33. N. R. Byrd, "polysiloxane(amide-ureid) anti-ice coating", US, 10/436, 015, 2004.
  34. 34. S. Zheng, C. Li, Q. Fu, et al., "Fabrication of a micro-nanostructured superhydrophobic aluminum surface with excellent corrosion resistance and anti-icing performance", RSC Adv. 6, 79389-79400, 2016.
  35. 35. S. Zheng, D. A. Bellido-Aguilar, X. Wu, et al., "Durable waterborne hydrophobic bio-epoxy coating with improved anti-icing and self-cleaning performance", ACS Sustainable Chem. Eng. 7, 641-649, 2018.
  36. 36. C. Laforte, A. Beisswenger, "Icephobic material centrifuge adhesion test", Proceedings of the 11th International Workshop on Atmospheric Icing of Structures, IWAIS, Montreal, QC, Canada,12-16, 2005.