New Dyeing Technology and Finishings Used in the Floor Coverings

Document Type : Review paper

Authors

1 Textile Engineering Department, Yazd University

2 Art Department, Science and Arts University

Abstract

Today, floor coverings play an essential role in human life and have a variety of uses. Among the most common home floor covering are carpets (handmade and machine-made) and moquette, which are used in various places, including office and home environments. On the other hand, increasing global competition in textiles has posed many challenges for researchers and the textile industry. The rapid growth in the production of textiles with multifunctional has created new opportunities for the application of new additions. New finishings with high value-added supplements for textiles are also in increasing demand by the global consumer market. Therefore, new technologies such as nanotechnology and plasma technology will be discussed in the current research to create capabilities such as antibacterial, anti-insect, anti-fire, etc., properties on floor coverings, especially carpets.

Keywords

Main Subjects


1. ع. عباسی، "کاربرد فناوری نانو در صنعت نساجی"، مجموعه گزارش‌های رصد فناوری نانو، 1391
2. ش. امامی رئوف، "کاربرد فناوری نانو در منسوجات خانگی"، ماهنامه نساجی امروز"، 170، 86-79، 1395 .
3. M. Montazer, T. Harifi, "Nanofinhishings of textiles materials", Woodhead publisher, Elsevier, 2018.
4. I. Holme, "Water repellency and waterproofing", Textile Finishing, Heywood D (ed.), Bradford, Society of Dyers and Colourists, 135–213, 2003.
5. W. D. Schindler and P. J. Hauser, "Chemical finishing of textiles", Woodhead Publishing Ltd, 2004.
6. ع. م. سلطانی، "کاربرد فناوری پلاسما در صنعت نساجی"، ماهنامه فناوری نانو، 247، 42-38، 1397.
7. M. J.Tsafack, F. Hochart, J. Levalois-Grützmacher, "Polymerization and surface modification by low pressure plasma technique", Eur. Phys. J. Appl. Phys. 26, 215–219, 2004.
8. A.L. King, K.R. Millington, "Trace metals can affect hydroxyl radical production and Yellowing of photo-irradiated wool", J. Text. 104, 648, 2013.
9.  M. Montazer, S. Seifollahzadeh, "Enhanced self-cleaning, antibacterial and UV protection properties             of nano TiO2 treated textile through enzymatic pretreatment", J. Photochem. 87, 877-883, 2011.
10. Shahid-ul-Islam, B.S. Butola, "Nanomaterials in the Wet Processing of Textiles", Scrivener Publishers, 2018.
11. M. Ghamsari, S. alamdariHan, H. Park, "Impact of nanostructured thin ZnO", Int. J. Nanomedicine. 12, 207–221, 2016.
12. S.Ghaffari, M.R. Mojtahedi, R. Dastjerdi, "Comparison of the morphological, mechanical and UV protection, properties of TiO2/polyamide 6 (PA6) and ZnO/PA6 nanocomposite multifilament yarns", J. Macromol. Sci. Part B. Phys. 54, 783–798, 2015.
13. S. Parthiban, "Self cleaning garments, silica     coated ZnO nano particles", Text. Res. J. 84, 2014.
14. M. Zhang, B. Tang, L. Sun, X. Wang, "Plasma modification on wool fibre: Effect on the dyeing properties", Color. Technol. 114, 61–65, 1998
15. M. Montazer, E. Pakdel, "Reducing photoyellowing of    wool using nano TiO2", J. Photochem. Photobiol. 86, 2010.
16. S. Barik, A. Khandual, L.Behera, , S.K.Badamali, A. Luximon,  "Nano-Mg–Al-layered Double hydroxide application to cotton for enhancing mechanical, UV protection and flame Retardancy at low cytotoxicity level", Cell. 24, 2017.
17. S. Lee, "Developing UV-protective textiles based on electrospun zinc oxide nanocomposite fibers", Fiber. Polym. 10, 295–301, 2009
18. G. Cai, Z. Xu, M. Yang, B.Tang, X. Wang,     "Functionalization of cotton    fabric through thermal reduction of graphene oxide", Appl. Surf. Sci. 393- 441, 2017.
19. A. A. Merati, A. Mousavi Shoushtari, J. Mirzaei, "A comparison between the UV protection of PAN/ZnO and PAN/ MWNT", J. Text. Inst. J. Text. I. 2017. 1.
20. A. L. Higginbotham, J. R. Lomed, A. B. Morgan, J. M. Tour, "Graphite oxide flame- Retardant polymer nano- composites", Appl. Mater. Interfaces, 1, 22-56, 2009.
21. X. Pu, L. Li, M. Liu, C.Jiang, C. Du, Z. Zhao, Z. Hu,      "Wearable self- charging power textile based on  flexible yarn supercapacitors and  fabric nanogenerators", J. Adv. Mater. 28, 98, 2016.
22. S. Dadvar, H. Tavanai, M. Morshed, "UV-protection      properties of electrospun Polyacrylonitrile nanofibrous mats embedded with MgO and Al2O3 nanoparticles", J. Nanopart. Res. 13, 5163, Doi:10.1007/s11051-011-0499-4, 2011.
23. S. Nissenken, "Functionality assessment for textile: Deodorization testing", Textiles Committee of Textile and Apparel to Japanese, 2017.
24. T. Yuranova, R. Mosteo, J. Bandara, D. Laub, J. Kiwi,   "Self-cleaning cotton textiles Surfaces modified by photoactive
SiO /TiO2 coating", J. Mol. Catal. A: Chem. 244, 160, 2006.
25. I.Sas, Gorga, R.E. Joines, A. K. Thone, "Review on superhydrophobic self- cleaning surfaces produced by elec trospinning", J. Polym. Sci. B Polym. Phys. 50, 824–845, 2012.
26. W.S. Tung, W.A. Daoud, "Self-cleaning fibers via nanotechnology: a virtual reality", J. Mater. Chem. 21, 7858, 2011.
27. B. Xu, Z. Cai, W. Wang, F. Ge, "Preparation   of superhydrophobic cotton fabrics based on SiO2 nanoparticles and ZnO nanorod arrays with subsequent hydrophobic modification", Surf. Coat. Technol. 204, 1556–1561, 2010.
28. M. Montazer, E. Pakdel, "Functionality of nano titanium dioxide on textiles with future aspects: focus on wool", J. Photochem. Photobiol. C. 12, 293–303. 2011
29. M. Montazer, S. Seifollahzadeh, "Enhanced self-cleaning, antibacterial and UV pro- tection properties of nano TiO2 treated textile through enzymatic pretreatment. Photo- chem. Photobiol. 87, 877–883, 2011.
30. M. Montazer, E. Pakdel, A. Behzadnia, "Novel feature of nano-titanium dioxide on textiles: antifelting and antibacterial wool", J. Appl. Polym. Sci. 121, 3407–3413, 2011.
31. H. F. Moafi, A.F. Shojaie, M. A. Zanjanchi, "The comparison of photocatalytic activity of synthesized TiO2 and ZrO2 nanosize onto wool fibers", Appl. Surf. Sci. 256, 4310–4316, 2010.
32. D. Lämmermann, "Fluorocarbons in textile finishing", Melliand Textilberichte, E 380, 72, 949–954, 1991.
33. Y. C. Liu,Y. Xiong, and D. N. Lu. "Surface characteristics and antistatic mechanism of plasma-treated acrylic fibers", Appl. Surf. Sci. 252, 2960–2966, 2006
34. R. A. Jelil, "A review of low-temperature plasma treatment of textile materials", J. Mater. Sci. 50, 5913–5943, 2015
35. N. Karthikeyan, K. A. Vijayalakshmi, and K. Vignesh, "Functionalisation of viscose fabric with chitosan particles using non-thermal oxygen plasma", Mater. Technol. 31, 358–363, 2016.
36. C. W. Kan, "Surface morphological study of low temperature plasma treated wool: A time dependence study", Modern research and educational topics in microscopy, Vol. 2, ed. A, Badajoz, Spain, Formatex, 683–689, 2007.
37. C. W. Kan, and C. W. M. Yuen, "Plasma technology in wool", Text. Prog.  39, 121–187, 2007.
38. N. Gomez, M. R. Julia, I. Munoz, M. R. Infante, A. Pinazo, A. Naik, P. Erra, "Wool treatments with mixtures of sulphite and amphiphilic cationic protein hydrolysate", J. Tex. Inst. 85, 215–224, 1994
39. R. Perumalraj, "Effect of silver nanoparticles on woolber", International Scholarly Research Network, 1-4,2012.
40. M. Taheri, L. Maleknia, N. Alizadeh Ghamsari, A. Almasian, Gh. Chizari Fard, "Effect of zirconium dioxide nanoparticles as a mordant on properties of wool with thyme: dyeing, flammability and antibacterial", Ori. J. Chem. 31, 85- 96, 2015.
41. K. M. Shojaei, "The stabilization of nano silver on polyester lament for a machine made carpet", Mat. Technol. 49, 461- 465, 2015.
42. L. Grocholl, "Hepes Zwitterionic biological buffer used in biological and biochemical research, sigma-aldrich corp, Hopax HEPES Sigma - hopaxfc.com, Nanomat for Ad", Appli. 5, 2015.
43. ستاد ویژه توسعه فناوری نانو، "محصولات فناوری نانو ساخت ایران"، 72-59، ویرایش دوم، پاییز 1394.
44. B. J. K. Park, M. H. Takatori, D.W. Lee, Y.I. Han, H.J. Woo, "Escherichia coli sterilization and lipopolysaccharide inactivation using microwave-induced argon plasma at atmospheric pressure", Surf. Coat. Technol. 201, 5738– 5741, 2007.
45. A. B. Demir, E. Arik, N. Seventekin, "The comparison of the effect of enzyme, peroxide, plasma and chitosan processes on wool fabrics and evaluation for  antimicrobial activity", Fibers Polym. 11, 989–995, 2010.
46. J. M. Cardamone, J. Yao, A. Nunez, "Controlling shrinkage in wool fabrics: Effective hydrogen peroxide systems", Tex. Res. J. 74, 887–898, 2004.
47. J. Shen, M. Rushforth, A. Cavaco-Paulo, G. Guebitz, H. Lenting, "Development and industrialisation of enzymatic shrink-resist process based on modified proteases for wool machine washability", Enzyme Microb. Technol. 40, 1656–1661, 2007.
48. C. J. Silva, M. Prabaharan, G. Gubitz, A. Cavaco-Paulo, "Treatment of wool fibres with subtilisin and subtilisin-PEG", Enzyme Microb. Technol. 36, 917–922, 2005.
49. A. Haji, A. M. Khajeh Mehrizi, R. Akbarpour, "Optimization of β­cyclodextrin  grafting on wool fibers improved by plasma treatment and assessment of antibacterial activity of berberine finished fabric", J. Incl. Phenom. Macrocycl. Chem. 81, 121–133. 2015
50. N. A. Ibrahim, W.A. Abdalla, E. M. R El-Zairy, H. M. Khalil, "Utilization of monochloro­triazine β­cyclodextrin for enhancing printability and functionality of wool", Carbohyd. Polym. 92, 1520–1529, 2013
51. N. A. Ibrahim,  M.Khalil, M. Basma , M. Tawfik, "Application of MCT­βCD to Modify Cellulose/Wool Blended Fabrics for Upgrading Their Reactive Printability and Antibacterial Functionality", Fibers Polym. 19, 1655–1662, 2018
52. R. Bano, "Use of chitosan in mosquito repellent finishing for cotton textiles". J. Text. Sci. Eng. 4, 1–3, 2014.
53. A. S. M. Raja, S. Kawlekar, S. Saxena, A. Arputharaj, P. G. Patil, "Mosquito protective textiles—a review", Int. J. Mosque. Res. 2, 49–53, 2015.
54. T. Nakajima, I.Shibazaki, "Managements of rats and pests in environmental sanitation", Fuji Techno System Ltd. Tokyo, 521–549, 1999.
55. A. Nazari, M. Montazer, F. Afzali, A. Sheibani, "Optimization of proteases pretreatment on natural dyeing of wool using response surface methodology", Clean Techn. Environ. Policy, 16, 1081–1093, 2014.
56. A. Nazari, M. Montazer, M. Dehghani-Zahedan, "Mothproofing of wool fabric utilizing ZnO nanoparticles optimized by statistical models", J. Ind. Eng. Chem. 20, 4207–4214, 2014.
57. A. Nazari, M. Montazer, M. Dehghani-Zahedan, "Nano TiO2 as a new tool for mothproofing of wool: protection of wool against Anthrenus verbasci", Ind. Eng. Chem.Res. 52, 1365–1371, 2014.
58. H. Y. Ki, Kim, J. H. Kwon, S. C. Jeong, "A study on multifunctional wool textiles treated with nano-sized silver", J. Mater. Sci. 42, 8020–8024, 2007.
59. S. J. McNeil, M. R. Sunderland, "The nanocidal and antifeedant activities of titanium dioxide desiccant toward wool-digesting Tineola bisselliella moth larvae", Clean Techn. Environ. Policy. 18, 843–852, 2016.
60. V. Totolin, M. Sarmadi, S. O. Manolache, F. S. Denes, "Atmospheric pressure plasma enhanced synthesis of flame retardant cellulosic materials", J. Appl. Polym. Sci. 117, 281–289, 2010.
61. D. Price, K. Pyrah, T. R. Hull, G. J. Milnes, J. R. Ebdon, B. J. Hunt, and P. Joseph, "Flame retardance of poly(methylmethacrylate) modified with phosphorus-containing compounds", Polym. Degrad. Stabil. 77, 227–233, 2002.
62. M. Shabbir, S. Ahmed, J. N. Sheikh, "Frontiers of textile materials polymers, nanomaterials, enzymes, and advanced modification techniques", Scrivener Publisher, 2020.
63. B. Voncian,V. Vivod, D. Jaušovec, "β-cyclodecxtrin as retarding reagent in polyacrylonitrile dyeing", Dyes Pigm. 74 642- 646, 2007
64. A. A. Zolriasatein, M .E. Yazdanshenas, R. Khajavi, A. Rashidi, "The application of poly(amidoamine) dendrimers for modification of jute yarns: preparation and dyeing properties", J. Saudi Chem. Soc. 19, 155- 162, 2015.
65. S. M. Burkinshaw, M. Mignanelli, P. E. Froehling, M. J. Bide, "The use of dendrimers to modify the dyeing behaviour of reactive dyes on cotton", Dyes Pigm. 47, 259- 267, 2000.
66. S. Shahidi, J. Wiener, M. Ghoranneviss, "Surface modication methods for improving the dyeability of textile fabrics", Intech edition, 33-42, 2013,
67. S. M. Gawish, A. M. Ramadan, S. M. Abo El-Ola, A. A. Abou El-Kheir, "Citric Acid used as a cross­Linking agent for grafting β­Cyclodextrin onto wool fabric", Polym. Plast. Technol. Eng. 48, 701–710. 2009,.
68. Y.E. Ghoul, B. Martel, A. El Achari, C. Campagne, L. Razafimahefa, I. Vroman, "Improved dyeability of polypropylene fabrics finished with β­cyclodextrin­citric acid polymer", Polym. J. 42, 804–811, 2010,
69. M. Molakarimi, M. Khajeh Mehrizi, A. Haji, "Effect of plasma treatment and grafting of β­cyclodextrin on color properties of wool fabric dyed with Shrimp shell extract", J. Text. I. 107, 10, 1314–1321, 2016.
70. R. Morent, N. De Geyter, J. Verschuren, K. De Clerck, P. Kiekens, C. Leys , "Non-thermal Plasma Treatment of Textiles", Surf. Coat. Tech. 202, 3427-3449, 2008.
71. C. W. K. Kan, C. W. M. Chan, M. H. Yuen, M. Miao, "Plasma modification on wool fibre: Effect on the dyeing properties", Color. Technol. 114, 61–65, 1998.
72. C. W. K. Kan, C. W. M. Chan, M. H. Yuen, "Application of low temperature plasma (LTP) on wool, Part II: Dyeing and felting properties", Nucleus. 37, 22–33, 2000
73. C. W. K. Kan, C. W. M. Chan, M. H. Yuen, M. Miao, "Low temperature plasma on wool substrate: The effect of nature of gas", Tex. Res. J. 69, 407–416, 1999
Volume 11, Issue 2
Special issue about color and carpet
August 2021
Pages 63-80
  • Receive Date: 20 February 2021
  • Revise Date: 29 May 2021
  • Accept Date: 02 June 2021