Review on Metal-based Complex Dyes for Dye-sensitized Solar Cells

Document Type : Review paper

Author

1 Department of Organic Colorants; Institute for Color Science and Technology

2 Center of Excellence for Color Science and Technology, Institute for Color Science and Technology

Abstract

Nowadays, fossil fuels, which are limited sources, are used to produce energy. According to energy consumption and its growing trend, it is necessary to introduce new sources of energy production. As a renewable, eco-friendly and abundant energy source, the sun has attracted the attention of the world. Solar energy is directly converted into electric energy with the help of photovoltaic devices. Dye-sensitized solar cells deliver a cheaper and dependable alternative for numerous photovoltaic devices such as mineral, thin-film, and hybrid solar cells. The performance of dye-sensitized solar cells depended on photosensitizer (Dye), electrolyte, and the semiconductor. Organometallic complex dyes are an important group of photosensitizer compounds that are suitable for use in the solar cell structure. These compounds illustrate an excellent performance in DSSCs, and an efficiency of about 17% was reported. The most important metal used in the synthesis of these compounds is ruthenium, which has shown the best efficiency. This article provides an overview of the types of organic-mineral complexes as sensitizers (dyes) in dye-sensitized solar cells.

Keywords

Main Subjects


  1. Seger, General rights Global Energy Consumption: The Numbers for Now and in the Future, 2017.
  2. م. حسین‌‌نژاد، م. قهاری، "مروری بر نانوکامپوزیت‌‌های دی‌‌اکسید تیانیم مورد استفاده در سلول خورشیدی حساس شده به مواد رنگزا"، نشریه مطالعات در دنیای رنگ، 9، 64-55، 1398.
  3. M.A. Hasan, K. Sumathy, "Photovoltaic thermal module concepts and their performance analysis: A review", Renew. Sustain. Energy Rev. 14, 1845-59, 2010.
  4. D. Ganta, K. Combrink, R. Villanueva, "Advances in Solar Energy Research", Springer publication, chapter 3, p. 129-155, 2019.
  5. J. Gong, K. Sumathy, Q. Qiao, Z. Zhou, "Review on dye-sensitized solar cells (DSSCs): Advanced techniques and research trends", Renew. Sustain. Energy Rev. 68, 234-246, 2017.
  6. T. Minami, "Present status of transparent conducting oxide thin-film development for Indium-Tin-Oxide (ITO) substitutes", Thin Solid Films. 516, 5822-5828, 2008.
  7. M. Yahy, A. Bouziani, C. Ocak, Z. Seferoğlu, M. Sillanpää, "Organic/metal-organic photosensitizers for dye-sensitized solar cells (DSSC): Recent developments, new trends, and future perceptions", Dye Pigm. 192, 109227, 2021.
  8. F. Babar, U. Mehmood, H. Asghar, M. H. Mehdi, A. Ul Haq Khan, H. Khalid, N. Ul Huda, Z. Fatima, "Nanostructured photoanode materials and their deposition methods for efficient and economical third generation dye-sensitized solar cells: A comprehensive review", Renew. Sustain Energy Rev. 129, 109919, 2020.
  9. D. K. Kumar, J. Kříž, N. Bennett, B. Chen, H. Upadhayaya, K. R. Reddy, V. Sadhu, "Functionalized metal oxide nanoparticles for efficient dye-sensitized solar cells (DSSCs): A review", Mater. Sci. Energy Technol. 3, 472-481, 2020.
  10. M. Hosseinnezhad, K. Gharanjig, M. Khodadadi Yazdi, P. Zarrintaj, S. Moradian, M. R. Saeb, F. J. Stadler, "Dye-sensitized solar cells based on natural photosensitizers: A green view from Iran", J. Alloy Compoun. 828, 154329, 2020.
  11. J. Gong, J. Liang, K. Sumathy, "Review on dye-sensitized solar cells (DSSCs): Fundamental concepts and novel materials", Renew. Sustain. Energy Rev. 16, 5848-5860, 2012
  12. M. Seifpanah Sowmehesaraee, M. Ranjbar, M. Abedi, F. Rouhani, A. Morsali, "The Effect of Zn (II) Containing Metal-Organic Frameworks on Perovskite Solar Cells", Prog. Color Colorants Coat. 14, 259-267, 2021.
  13. S. Hao, J. Wu, Y. Huang, J. Lin, "Natural dyes as photosensitizers for dye-sensitized solar cell", Sol. Energy. 80, 209-214, 2006.
  14. E. Kouhestanian, S. A. Mozaffari, M. Ranjbar, H. Salar Amoli, "Enhancing the electron transfer process of TiO2-based DSSC using DC magnetron sputtered ZnO as an efficient alternative for blocking layer", Org. Electron. 86, 105915, 2020.
  15. S. Shalini1, R. Balasundaraprabhu, T. Satish Kumar, N. Prabavathy, S. Senthilarasu, S. Prasanna, "Enhancing the electron transfer process of TiO2-based DSSC using DC magnetron sputtered ZnO as an efficient alternative for blocking layer", Int. J. Energy Res. 40, 1303-1320, 2016.
  16. S. Dayan, N. Kayaci, N. K. Özpozan, "Improved performance with molecular design of Ruthenium(II) complexes bearing diamine-based bidentate ligands as sensitizer for dye-sensitized solar cells (DSSC)", J. Mol. Struct. 1209, 127920, 2020.
  17. B. Pashaei, H. Shahroosvand, "Molecularly Engineered Ruthenium Polypyridyl Complexes for using in Dye-sensitized Solar Cell", Inorg. Chem. Commun. 112, 107737, 2020.
  18. J.S. Aguire-Araque, R.R. Guimaraes, H.E. Toma, "Chemistry of ternary monocarboxyterpyridine-bipyridinetrimercaptotriazine ruthenium complexes and application in dye sensitized solar cells", Polyhedron. 182, 114513, 2020.
  19. S. Lyu, C. Bertrand, T. Hamamura, L. Ducasse, T. Toupance, C. Olivier, "Molecular engineering of ruthenium-diacetylide organometallic complexes towards efficient green dye for DSSC", Dye Pigm. 158, 326-333, 2018.
  20. L. Jin, Sh. Shi, C. Zhao, X. Yu, J. Lu, Q. Wang, Y. Wei, "Y-shaped organic dyes with D2–π–A configuration as efficient co-sensitizers for ruthenium-based dye sensitized solar cells", J. Power Sourc. 481, 2021, 228952.
  21. S. Arora Abrol, C. Bhargava, P. Kumar Sharma,""Material and its selection attributes for improved DSSC", Matertoday, 42, 1477-1484, 2021.
  22. Y. Chi, K. L. Wu, T.C. Wei, “Ruthenium and Osmium Complexes That Bear Functional Azolate Chelates for Dye-Sensitized Solar Cells”, ACES, 10, 1098-1115, 2015.
  23. T. Swetha, K.R. Reddy, S.P. Singh, "Osmium polypyridyl and their applications to dye-sensitized solar cells", J. Chem. Sco. Japan, 15, 457-474, 2019.
  24. V. Komreddy, K. Ensz, H. Nguyen, D.P. Rillema, "Synthesis and characterization of rhenium(I) 4,4′-dicarboxy-2,2′-bipyridine tricarbonyl complexes for solar energy conversion", Inorg. Chem. Acta. 511, 119815, 2020.
  25. V. Komreddy, K. Ensz, H. Nguyen, D.P. Rillema, "Design, synthesis, and photophysical properties of Re(I) tricarbonyl 1,10-phenanthroline complexes", J. Mol. Struct. 1223, 128739, 2021.
  26. W. Wu, X. Xu, H. Yang, J. Hua, X. Zhang, L. Zhang, Y. Long, H. Tian, "D–π–M–π–A structured platinum acetylide sensitizer for dye-sensitized solar cells", J. Mater. Chem. 21, 10666-10671, 2011.
  27. N. Sekar, V.Y. Gehlot, "Metal complex dyes for dye-sensitized solar cells: Recent developments", Resonance. 15, 819-831, 2019.
  28. L. Zhang, J.M. Cole, "Dye aggregation in dye-sensitized solar cells", J. Mater. Chem A. 5, 19541-19559, 2017.
  29. Y. Tachibana, S.A. Haque, I.P. Mercer, J.R. Durrant, D.R. Klug DR, "Electron iInjection and recombination in dye sensitized nanocrystalline titanium dioxide films: A comparison of ruthenium bipyridyl and porphyrin sensitizer dyes", J. Phys. Chem. B. 104, 1198-1205, 2000.
  30. M. Yan, Q. Wang, Y. Zhu, M.L. Han, Y. Yan, J. Zheng, "Effect of triptycene unit on the performance of porphyrin-based dye-sensitized solar cells", J. Photochem. Photobiol. A Chem. 416, 11335, 2021.
  31. H. Zhou, J.M. Ji, H.K. Kim, "Porphyrin sensitizers with acceptor structural engineering for dye-sensitized solar cells", Dye Pigm. 187, 109082, 2021.
  32. A.V. Ezhov, A.E. Aleksandrov, K.A. Zhdanova, A.P. Zhdanov, I.N. Klyukin, K. Y. Zhizhin, N. A. Bragina, A. F. Mironov, A. R. Tameev, "Synthesis of Zn(II) porphyrin dyes and revealing an influence of their alkyl substituents on performance of dye-sensitized solar cells", Synth. Metal. 269, 116567, 2020..