A Review on Improving the Corrosion Resistance of 316L Stainless Steel by Coating with Nanoparticles of Chitosan/Gelatin Using Electrophoretic Deposition Method

Document Type : Review paper

Authors

1 Mechanically Assisted Corrosion Lab. , School of Metallurgy and Materials Engineering, College Engineering, University of Tehran,Tehran, Iran, P. O. Box: 11155 -4563

2 Department of Nanomaterials and Nanocoatings, Institute for Color Science and Technology, P. O. Box: 16765-654, Tehran, Iran.

Abstract

Today, nanostructured coatings are highly regarded as one of the most widely used areas of nanotechnology. Destructive factors like friction, wear, and environmental conditions in instruments and parts of the medical industry cause surface destruction. Therefore, to solve this challenge, researchers have reduced the percentage of component destruction by using surface engineering and applying nanocoatings. Orthopedic and dental implants are increasingly used in the medical field because of their high success rates. Implant-associated infections, however, still occur and are difficult to treat. Using an active coating on the implant surface is recommended to prohibit infection in medical parts. This review article mentions the types of medical materials used, especially the properties of 316L stainless steel alloy and the improvement of its corrosion resistance properties by coating with chitosan and gelatin nanoparticles by the electrophoretic method. Also, the effect of nanoparticles has been investigated. It was observed that the addition of nanomaterials reduces the amount of deposition, but due to the increase in surface quality and the reduction of porosity in the coating, it increases the corrosion resistance.

Keywords

Main Subjects


1.   P. Roach, D. Eglin, K. Rohde, C. C. Perry, "Nanostructured coatings", MSE, 336, 274-319, 2002.
2.   A. S. K. Kiran S. Ramakrishna, "Biomaterials: basic principles", Introd. Biomaterials. Sci. Eng. 237, 82-93, 2021.
3.   P. Roach, D. Eglin, K. Rohde, C. C. Perry, "Modern biomaterials: a review - bulk properties and implications of surface modifications", J. Mater. Sci. Mater. Med. 18, 1263-1277, 2007.
4.   W. H. Goldmann, "Biosensitive and antibacterial coatings on metallic material for medical applications", Cell Biol. Int. 45, 1624-1632, 2021.
5.   M. Saini, Y. Singh, P. Arora, V. Arora, K. Jain, "Implant biomaterials: A comprehensive review", World J. Clin. Cases, 3, 52-57, 2015.
6.   K. K. Chew, S. H. S. Zein, and A. L. Ahmad, "The corrosion scenario in human body: Stainless steel 316L orthopaedic implants", Nat. Sci. 4, 184-188, 2012.
7.   K. Sandrnezhaad, A. Rasooli, "Corrosion of metallic parts in human body", 5th National Iranian Corrosion Congress, 1997.
8.   D. C. Hansen, "Metal corrosion in the human body: The ultimate bio-corrosion scenario", Electrochem. Soc. Interface, 17, 31-34, 2008.
9.   J. L. Gilbert, "Metals: basic principles", Biomater. Sci. 205-227, Jan. 2020.
10.  H. Abdullah, A. R. Boccaccini, "Microporous organic-inorganic nanocomposite coatings on stainless steel via electrophoretic deposition for biomedical applications", ECS Trans. 82, 25-31, 2018.
11.  B. Bellich, I. D’Agostino, S. Semeraro, A. Gamini, A. Cesàro, "The good, the bad and the ugly’ of chitosans", Mar. Drugs,  14, 99, 2016.
12.  C. Prakash, "Development of chitosan and sodium alginate composite coating on 316l stainless", Tese. 2014.
13.  E. Pulieri, V. Chiono, G. Ciardelli, G.Vozzi, A. Ahluwalia, A. Ahluwalia, C. Domenici, F. Vozzi, P. Giusti "Chitosan/gelatin blends for biomedical applications", J. Biomed. Mater. Res. Part A, 86, 311-322, 2008.
14.  A. Nawaz, M. A. Ur Rehman, "Chitosan/gelatin-based bioactive and antibacterial coatings deposited via electrophoretic deposition", J. Appl. Polym. Sci. 138 1-10, 2021.
15.  R. Sikkema, K. Baker, I. Zhitomirsky, "Electrophoretic deposition of polymers and proteins for biomedical applications", Adv. Colloid Interface Sci. 284, 102-272, 2020.
16.  S. A. Batool, A. Wadood, S. W. Hussain, M. Yasir, M. A. Ur Rehman, "A brief insight to the electrophoretic deposition of PEEK-, chitosan-, gelatin-, and zein-based composite coatings for biomedical applications: recent developments and challenges", Surf.  4, 205-239, 2021.
17.  S. Seuss, A. R. Boccaccini, "Electrophoretic deposition of biological macromolecules, drugs, and cells", Bio Macromol. 14, 3355-3369, 2013.
18.  A. R. Boccaccini, S. Keim, R. Ma, Y. Li, I. Zhitomirsky, "Electrophoretic deposition of biomaterials", J. R. Soc. Interface, 5, 581-613, 2010.
19.  V. Migonney, "History of Biomaterials", Biomaterials, Wiley, 2014.
20.  M. Hussain, S. Rizvi, "Recent Developments in Coatings for Orthopedic Metallic Implants", Coat. 11, 791, 2021.
21.  F. Pahnaneh, F. Naiemi "A review of research challenges in 316L stainless steel used in medical applications", Nanomed. J. 3, 202-216, 2020.
22.  H. Toiserkani, F. Sadaghat, "Chitin and chitosan: structure, properties and applications", J. Polym. Environ. 2, 26–40, 2013.
23.  M. E. I. Badawy, E. I. Rabea, "A biopolymer chitosan and its derivatives as promising antimicrobial agents against plant pathogens and their applications in crop protection", Int. J. Carbohydr. Chem. 2011, 1-19, 2011.
24.  C. K. S. Pillai, W. Paul, and C. P. Sharma, "Chitin and chitosan polymers: Chemistry, solubility and fiber formation", Prog. Polym. Sci. 34, 641-678, 2009.
25.  K. Kurita, "Chitin and chitosan: Functional biopolymers from marine crustaceans", Mar. Biotechnol. 8, 203-226, 2006.
26.  S. Hirano, H. Inui, H. Kosaki, Y. Uno, and T. Toda, "Chitin and Chitosan: Ecologically Bioactive Polymers", Biotechnol. Bioact.  Polym. 43-54, 1994.
27.  O. Felt, P. Buri, R. Gurny, "Chitosan: A unique polysaccharide for drug delivery", Drug Dev. Ind. Pharm. 24, 979-993, 1998.
28.  S. P. Chawla, S. R. Kanatt, A. K. Sharma, "Chitosan ", FTD, 9, 46-51 2014.
29.  T. Jiang, R. James, S. G. Kumbar, C. T. Laurencin, "Chitosan as a Biomaterial: Structure, Properties, and Applications in Tissue Engineering and Drug Delivery", Nat. Synth. Biomed. Polym. 91-113, 2014.
30.  G. Crini, P. M. Badot, "Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: A review of recent literature", Prog. Polym. Sci. 33, 399-447, 2008.
31.  A. Di Martino, M. Sittinger, and M. V. Risbud, "Chitosan: A versatile biopolymer for orthopaedic tissue-engineering", Bio Mater. 26, 5983-5990, 2005.
32.  E. I. Rabea, M. E. T. Badawy, C. V. Stevens, G. Smagghe W. Steurbaut, "Chitosan as antimicrobial agent: Applications and mode of action", Biomacromolecules, 4, 1457-1465, 2003.
33.  T. R. Keenan, "Gelatin", Polym. Sci. A Compr. 10, 237-247, 2012.
34.  W. Zeng, Y. Li, Y. Wang, Y. Cao, "Tissue engineering of blood vessels", Encycl. Tissue Eng. Regen. Med. 3, 413-424, 2019.
35.  S. Habibi, H. Nazokdast, S. Samimi, "A Review of properties of gelatin and its applications in nanotechnology and medicine", The first national conference on nanotechnology advantages and applications, 2012.
36.  B. Laxmidhar, L. Meilin, "A review on fundamentals and applications of electrophoretic deposition (EPD)", Prog. Mater. Sci. 52, 1-61, 2007.
37.  L. Vorwerg, M. Antonietti, K. Tauer, "Electrophoretic mobility of latex particles: Effect of particle size and surface structure", Colloids Surf. A. 150, 129-135, 1999.
38.  N. Rahbari Fard, M. Gharagozlou, S. Allahkaram, "A Review of improving corrosion wear resistance properties of magnesium alloys using nanoparticles of zinc oxide pigment by plasma electrolytic oxidation method", J. Stud. Color World, 11, 73-93, 2021 (In Persian).
39.  C. Hansen, "Metal corrosion in the human body: the ultimate bio-corrosion scenario", Electrochem. Soc Interface, 45, 17-31, 2008.
40.  M. Yeganeh, S. Marashi, and N. Mohammadi, "Smart coatings in anti-corrosion applications: types and corrosion protection mechanisms", J. Stud. Color World, 7, 29-46, 2017 (In Persian).
41.  F. Bensebaa, "Nanoparticle assembling and system integration", Nanoparticle technologies from lab to market, 19, 185-277, 2013.
42.  H. Farnoush, J. A. Mohandesi, and D. Haghshenas, "Effect of Particle Size on the Electrophoretic Deposition of Hydroxyapatite Coatings: A Kinetic Study Based on a Statistical Analysis", Int. J. Appl. Ceram. Technol. 10, 87-96 2013.
43. M. Farrokhi-Rad, "Effect of particles size on the characteristics of wet deposits during electrophoretic deposition", J. Electroceramics, 40, 211-218, 2018