1. Ghosh Chaudhuri R, Paria S. Core/shell nanoparticles: Classes, properties, synthesis mechanisms, characterization, and applications. Chem Rev. 2012;112:2373–433. https://doi.org/10.1021/CR100449N.
2. Chiozzi V, Rossi F. Inorganic-organic core/shell nanoparticles: Progress and applications. Nanoscale Adv. 2020;2:5090-5105. https://doi.org/10.1039/D0NA00411A.
3. Ho KM, Li WY, Wong CH, Li P. Amphiphilic polymeric particles with core-shell nanostructures: Emulsion-based syntheses and potential applications. Colloid Polym Sci. 2010;288:1503–1523. https://doi.org/10.1007/S00396-010-2276-9.
4. Ma J, Liu Y, Bao Y, Liu J, Zhang J. Research advances in polymer emulsion based on “core-shell” structure particle design (Internet). Adv Colloid Interface Sci. 2013;197–198:118–131. https://doi.org/10.1016/J.CIS.2013.04.006.
5. Zou H, Zhai S. Synthetic strategies for raspberry-like polymer composite particles. Polym Chem. 2020;11:3370–3392. https://doi.org/10.1039/D0PY00394H.
6. Ramli RA, Laftah WA, Hashim S. Core-shell polymers: A review. RSC Adv. 2013;3:15543–15565.
https://doi.org/10.1039/C3RA41296B.
7. Mahdavi Z, Rezvani H, Keshavarz Moraveji M. Core-shell nanoparticles used in drug delivery-microfluidics: a review. RSC Adv. 2020;10:18280–18295.
https://doi.org/10.1039/D0RA01032D.
8. Chruściel J, Ślusarski L. Synthesis of nanosilica by the sol-gel method and its activity toward polymers. Mater Sci Pol (Internet). 2003;21:461–469.
9. Aboualigaledari N, Rahmani M. A review on the synthesis of the TiO2 -based photocatalyst for the environmental purification. J Compos Compd. 2021;3:25–42. https://doi.org/10.52547/JCC.3.1.4,
10. Patel P (ed). Polymer blends. John Wiley & Sons; 2019.
11. Chern CS. Principles and Applications of Emulsion Polymerization. Wiley; 2008.
12. Kim Y, Kwon HJ, Kook JW, Park JJ, Lee C, Koh WG, et al. Wetting properties and morphological behavior of core-shell polymer-based nanoparticle coatings (Internet). Prog Org Coatings. 2022;163:106606.
https://doi.org/10.1016/J.PORGCOAT.2021.106606.
13. Landfester K, Spiess HW. Characterization of interphases in core-shell latexes by solid-state NMR (Internet). Acta Polym. 1998;49:451–464.
https://doi.org/10.1002/(SICI)1521-4044(199809)49:9<451 ::AID-APOL451>3.0.CO;2-U.
14.Gui Y, Sun SL, Han Y, Zhang HX, Zhang BY. Influence of the rubber crosslinking density of a core–shell structure modifier on the properties of toughened poly (methyl methacrylate). J Appl Polym. Sci. 2010;115:2386-2393.
https://doi.org/10.1002/app.31176
15. Jasinski F, Teo VL, Kuchel RP, Mballa MM, Thickett SC, Brinkhuis RHG, et al. Core–shell and gradient morphology polymer particles analyzed by X-ray photoelectron spectroscopy: Effect of monomer feed order. J Polym Sci Part A Polym Chem. 2017;55:2513–2526.
https://doi.org/10.1002/POLA.28644.
16. Zhang X, Wei X, Yang W, Li Y, Chen H. Characterization and properties of gradient polyacrylate latex particles by gradient emulsion polymerization. J Coatings Technol Res. 2012;9:765–774.
https://doi.org/10.1007/S11998-012-9422-X
17. Ma J, Dong Y, Bao Y, Zhao Y, Liu C. Tunable microstructure of polyacrylate/ZnO nanorods composite emulsion and its film-forming properties. Prog Org Coatings. 2019;135:382–391.
https://doi.org/10.1016/J.PORGCOAT.2019.05.044
18. Tafreshinejad SA, Pishvaei M, Soleimani-Gorgani A. Synthesis of antibacterial conductive polypyrrole/titanium dioxide core–shell nanocomposites. Polym Sci - Ser B. 2020;62:137–143. https://doi.org/10.1134/S1560090420020074
19. Mamaghani MY, Pishvaei M, Kaffashi B. Synthesis of latex based antibacterial acrylate polymer/nanosilver via in situ miniemulsion polymerization. Macromol Res. 2011;19:243–249. https://doi.org/10.1007/S13233-011-0307-0.
20. Lv Y, Suo H, Zou H. An emulsion swelling route to surface-wrinkled polystyrene-silica colloidal nanocomposite particles. Polymer. 2022;254:125108. https://doi.org/10.1016/J.POLYMER.2022.125108.
21. Zhang F, Jing C, Yan Z, Ge S, Liu P, Maganti S, et al. Fluorinated acrylic monomer modified core-shell polyacrylate latex particles: Preparation, properties and characterizations. Polymer. 2022;247:124783.
https://doi.org/10.1016/J.POLYMER.2022.124783.
22. Christopher KR, Pal A, Mirchandani G, Dhar T. Synthesis and characterization of polystyrene-acrylate/polysiloxane (PSA/PSi) core shell polymers and evaluation of their properties for high durable exterior coatings. Prog Org Coat. 2014;77:1063-1068.
https://doi.org/10.1016/J.PORGCOAT.2014.03.008.
23. Limousin E, Ballard N, Asua JM. Soft core–hard shell latex particles for mechanically strong VOC-free polymer films. J Appl Polym Sci. 2019;136:47608.
https://doi.org/10.1002/APP.47608.
24. Meng Y, Gao Y, Li J, Liu J, Wang X, Yu F, et al. Preparation and characterization of cross-linked waterborne acrylic /PTFE composite coating with good hydrophobicity and anticorrosion properties. Colloids Surfaces A Physicochem Eng Asp. 2022;653:129872.
https://doi.org/10.1016/J.COLSURFA.2022.129872
25. Khan AK, Ray BC, Dolui SK. Preparation of core-shell emulsion polymer and optimization of shell composition with respect to opacity of paint film (Internet). Prog Org Coat. 2008;62:65–70.
https://doi.org/10.1016/J.PORGCOAT.2007.09.022.
26. Shaghaghi M, Yousefi A, Pishvaei M. Synthesis of artificial opals with core-shell morphology via emulsion polymerization technique. Polymers. 2012;1–4.
https://doi.org/10.1515/EPOLY.2012.12.1.217
27. Pishvaei M, Tabrizi FF. Synthesis of high solid content polyacrylate/nanosilica latexes via miniemulsion polymerization (Internet). Iran Polym J (English Ed) (Internet). 2010;19:707–716.