Polymeric Membranes and Their Role in the Removal of Dyes

Document Type : Review paper

Authors

1 Department of Chemical Engineering, Sharif University of Technology, Tehran, Iran, P.O. Box: 11155-1639.

2 Department of Resin and Additives, Surface Coating and Novel Technologies Faculty, Institute for Color, Science and Technology, Tehran, Iran, P.O. Box: 16765-654.

Abstract

In recent times, the growth of various industries has led to an increase in the generation of colored wastes and effluents. Dyes, in particular, are significant water pollutants that contribute to the production of colored effluents. Physical, chemical, and biological methods have been employed to treat and purify colored wastewater. With the progress of polymer science, the fabrication of diverse types of membranes for dye removal has increased based on the properties of different dyes. By manufacturing membranes in varying sizes, dyes can be eliminated from wastewater. In addition, the use of clay and metal-organic frameworks has facilitated the development of membranes for efficient dye purification and removal. This article discusses the production and application of different types of polymer membranes for the removal of dyes while introducing dyes

Keywords

Main Subjects


1.   Gupta VK, Suhas. Application of low-cost adsorbents for dye removal- a review. J Environ Manage. 2009;90(8):2313-42. 
https://doi.org/10.1016/j.jenvman .2008.11.017.
2.   Pan B, Zhang X, Jiang Z, Li Z, Zhang Q, Chen J. Polymer and polymer-based nanocomposite adsorbents for water treatment in polymeric materials for clean water. Das R, editor. Cham: Springer International Publishing; 2018. p. 105-32. https://doi.org/10.1007/978-3-030-00743-0_5.
3.   Uygur A. An overview of oxidative and photooxidative decolorisation treatments of textile wastewaters. J Soc Dyers Colourists. 1997;113(6):211-7. https://doi.org/10.1111/j.1478-4408.1997.tb01901.x.
4.   Oshani F, Allahverdi A. Ceramic membranes and their application in treatment of dye containing wastewaters. J Studies Color World. 2018;8(3):71-88. 
https://dorl.net/dor/20.1001.1.22517278.1397.8.3.7.8 [In Persian].
5.   hollom M. Treatment and Reuse of Reactive Dye Effluent from Textile Industry Using Membrance Technology [PhD Thesis]. Durban: Durban University of Technology; 2014. https://doi.org/10.51415/10321/1388
6.   Mohammadi T, Esmaeelifar A. Wastewater treatment using ultrafiltration at a vegetable oil factory. Desalination. 2004;166:329-37. https://doi.org/10.1016/j.desal.2004.06.087
7.    Rodriguze-Mozaz S, Ricart M, Kock-Schulmeyer M, Guasch H, Bonnineau C, Proia L, et al. Pharmaceuticals and pesticides in reclaimed water: Efficiency aessment of micro filtration reverse osmosis (MF-RO) pilot plant. J Hazard Mater. 2015;282:165-73. 
https://doi.org/10.1016/j.jhazmat.2014.09.015
8.    Dittrich J, Gnirss R, Peter-Frohlich A, Sarfert F. Microfiltration of municipal wastewater for disinfectionand advanced phosphorus removal. Water Sci Technol. 1996;34(3-4):125-31. https://doi.org/10.1016/S0273-1223(96)00795-0.
9.   Wang Y, Chen X, Zhang J, Yin J, Wang H. Investigation of microfiltration for treatmemt of emulsified oily wastewater from the processing of petroleum products. Desalination. 2009;249(3):1223-7.
 https://doi.org/10.1016/j.desal.2009.06.033
10.  Rautenbach R, Linaa T, Eilers L.Treatment of severely contaminated waste water by a combination of RO, high-pressure RO and NF-Potential and limits of the process.J Membr Sci 2000;174(2):231-41. 
https://doi.org/10.1016/S0376-7388(00)00388-4
11.  Yordanov D. Preliminary study of the efficiency of ultrafiltration treatment of poultry slaughterhouse wastewater. Bulg J Agric Sci. 2010;16:700-41. https://www.agrojournal.org/16/06-06-10.pdf
12.  Ellouze E, Tahri N, Amar RB. Enhancement of textile wastewater treatment process using nanofiltration. Desalination. 2012;286:16-23. 
https://doi.org/10.1016/j.desal.2011.09.025
13.  Petrinic I, Korenak J, Povodnik D, Helix-Nielsen C. A feasibility study of ultrafiltration reverse osmosis (UF/RO)- based wastewater treatment and reuse in the metalfinishing industry. J Clean Prod. 2015;101:292-300. https://doi.org/10.1016/j.jclepro.2015.04.022
14.  Salahi A, Badrnezhad R, Abbasi M, Mohammadi T, Rekabdar F. Oily wastewater treatment using a hybrid UF/RO system. Desalin Water Treat. 2011;28:75-82. https://doi.org/10.5004/dwt.2011.2204
15.  Sun X, Wang C, Li Y, Wang W, Wei J. Treatment of phenolic wastewater by combined UF and NF/RO processes. Desalination. 2015;355:68-74. 
https://doi.org/10.1016/j.desal.2014.10.018
16.  E Ezugbe EO, Rathilal S. Membrance technologies in wastewater treatment: A review Membranes.10(5)2020. https://doi.org/10.3390/membranes10050089
17.  Koyuncu I, Topacik D. Effects of operating conditions on the salt rejection ofnanofiltration membranes in reactive dye/salt mixtures. Sep Purif Technol. 2003;33:283-94. https://doi.org/10.1016/S1383-5866(03)00088-1
18.  Van der Bruggen B, Curcio E, Drioli E. Process intensification in the textile industry: the role of membrane technology. J Environ Manage. 2004;73:267-74. 
https://doi.org/10.1016/j.jenvman.2004.07.007
19.  Lin J, Ye W, Baltaru MC, Tang YP, Bernstein NJ, Gao P, et al.Tight ultrafiltration membranes for enhanced separation of dyes and Na2SO4 during textile wastewater treatment.J Membr Sci 2016;514:217-28. 
https://doi.org/10.1016/j.memsci.2016.04.057
20.  Lin J, Tang CY, Ye W, Sun SP, Hamdan SH, Volodin A, et al.Unraveling flux behavior of superhydrophilic loose nanofiltration membranes during textile wastewater treatment.J Membr Sci 2015;493:690-702. https://doi.org/10.1016/j.memsci.2015.07.018
21.  Samaei SM, Gato-Trinidad S, Altaee A. The application of pressure-driven ceramic membrane technology for the treatment of industrial wastewaters – A review. Sep Purif Technol. 2018;200:198-220.
https://doi.org/10.1016/j.seppur.2018.02.041
22.  Zou D, Chen X, Qiu M, Drioli E, Fan Y. Flux-enhanced α-alumina tight ultrafiltration membranes for effective treatment of dye/salt wastewater at high temperatures. Sep Purif Technol. 2019;215:143-54. 
https://doi.org/10.1016/j.seppur.2018.12.063
23.  Tavangar T, Jalali K, AlaeiShahmirzadi MA, Karimi M. Toward real textile wastewater treatment: Membrane fouling control and effective fractionation of dyes/inorganic salts using a hybrid electrocoagulation – Nanofiltration process. Sep Purif Technol. 2019;216:115-25. https://doi.org/10.1016/j.seppur.2019.01.070
24.  Guo S, Wan Y, Chen X, Luo J. Loose nanofiltration membrane custom-tailored for resource recovery. Chem Eng J. 2021;409:127376.
 https://doi.org/10.1016/j.cej.2020.127376
25.  Jin P, Chergaoui S, Zheng J, Volodine A, Zhang X, Liu Z, et al. Low-pressure highly permeable polyester loose nanofiltration membranes tailored by natural carbohydrates for effective dye/salt fractionation. J Hazard Mater. 2022;421:126716. https://doi.org/10.1016/j.jhazmat.2021.126716
26.  Huang L, Li Z, Luo Y, Zhang N, Qi W, Jiang E, et al. Low-pressure loose GO composite membrane intercalated by CNT for effective dye/salt separation. Sep Purif Technol. 2021;256:117839. https://doi.org/10.1016/j.seppur.2020.117839
27.  Mohammad AW, Teow YH, Ang WL, Chung YT, Oatley-Radcliffe DL, Hilal N. Nanofiltration membranes review: Recent advances and future prospects Desalination 2015;356:226-54. https://doi.org/10.1016/j.desal.2014.10.043
28.  Weng RG, Huang X, Liao DQ, Xu S, Peng L, Liu XZ.A novel cellulose/ chitosan composite nanofiltration membrane prepared with piperazine and trimesoyl chloride by interfacial polymerization.RSC Adv 2020;10:1309-18. https://doi.org/10.1039/C9RA09023A
29.  Feng X, Peng D, Zhu J, Wang Y, Zhang Y.Recent advances of loose nanofiltration membranes for dye/salt separation.Separation and Purification Technology 2022;285:120228. https://doi.org/10.1016/j.seppur.2021.120228
30.  Ye W, Lin J, Borrego R, Chen D, Sotto A, Luis P, et al.Advanced desalination of dye/NaCl mixtures by a loose nanofiltration membrane for digital ink-jet printing.Sep Purif Technol 2018;197:27-35. 
https://doi.org/10.1016/j.seppur.2017.12.045
31.  Hassan MM, Abudi ZN, Al-Furaiji MH. Polysulfone ultrafiltration membranes embedded with silica nanoparticles for enhanced dye removal performance. Prog Color Colorants Coat. 2023.
https://doi.org/10.30509/pccc.2022.167016.1185
32.  Jin P, Chergaoui S, Zheng J, Volodine A, Zhang X, Liu Z, et al. Low-pressure highly permeable polyester loose nanofiltration membranes tailored by natural carbohydrates for effective dye/salt fractionation. J Hazard Mater. 2022;421:126716. https://doi.org/10.1016/j.jhazmat.2021.126716
33.  Zahid M, Rashid A, Akram S, Rehan ZA, Razzag W. A comprehensive review on polymeric nano-composite membranes for water treatment. J Membr Sci Technol. 2018;8:179. http://dx.doi.org/10.4172/2155-9589.1000179
34.  karimi S, Yaraki MT, Karri RR. A comprehensive review of the adsorption mechanisms and factors influencing theadsorption process from the perspective of bioethanol dehydration. Renew Sust Energ Rev. 2019;107:535-53. https://doi.org/10.1016/j.rser.2019.03.025
35.  Aburabie J, Villalobos LF, Peinemann KV. Composite membrance formation by combination of reaction induced and nanosolvent-induced phase separation. Macromol Mater Eng. 2017;302:1700131. 
https://doi.org/10.1002/mame.201700131
36.  Menut P, Su Y, Chinpa W, Pochat C, Deratani A. A top surface liquid layer during membrane formation using vapor-induced phase sepration (VIPS)-evidence and mechanism of formation. J Membr Sci. 2008;310:278-88. https://doi.org/10.1016/j.memsci.2007.11.016
37.  Ng LY, Mohammad AW, Leo CP, Hilal N. Polymeric membranes incorporated with metal/metal oxide nanoparticles: A comprehensive review. Desalination 2013;308:15-33. https://doi.org/10.1016/j.desal.2010.11.033.
38.  Ying Y, Ying W, li Q, Meng D, Ren G, Yan R, et al.Recent advances of nanomaterial- based membrance for water purification.Appl Mater Today 2017;7:144-58. https://doi.org/10.1016/j.apmt.2017.02.010
39.  Kango S, Kalia S, Celli A, Njuguna J, Habibi Y, Kumar R.Surface modification of inorganic nanoparticles for development of organic-inorganic nanocomposites: A review.Prog Polym Sci 2013;38:1232-61. 
https://doi.org/10.1016/j.progpolymsci.2013.02.003
40.  Wang P, Ma J, Shi F, Ma Y, Wang Z, Zhao X.Behaviors and effects of differing dimensional nanomaterials in water filtration membranes through the classical phase inversion process: A review.Ind Eng Chem Res 2013;52:10355-63. https://doi.org/10.1021/ie303289k
41.  Sathish KR, Arthanareeswaran G, Paul D, Kweon JH.Modification methods of polyethersulfone membranes for minimizing fouling-Review.Membr Water Treat 2015;6:323-37. https://doi.org/10.12989/mwt.2015.6.4.323
42.  Sathish KR, Arthanareeswaran G, Paul D, Kweon JH.Modification methods of polyethersulfone membranes for minimizing fouling-Review.Membr Water Treat 2015;6:323-37. https://doi.org/10.12989/mwt.2015.6.4.323
43.  Wu H, Tang B, Wu P.MWNTs/polyester thin film nanocomposite membrane: An approach to overcome the trade off effect between permeability and selectivity.J Phys Chem C 2010;114:16395–400.
 https://doi.org/10.1021/jp107280m
44.  Brunet L, Lyon DY, Zodrow K, Rouch JC, Caussat B, Serp P, et al. Properties of membranes containing semi-dispersed carbon nanotubes. Environ Eng Sci. 2008;25:565-76. https://doi.org/10.1089/ees.2007.0076
45.  Kim S, Jinschek JR, Chen H, Sholl DS, Marand E. Scalable fabrication of carbon nanotube/polymer nanocomposite membranes for high flux gas transport. Nano Lett. 2007;7:2806-11. https://doi.org/10.1021/nl071414u
46.  Algailani HM, Al-Nassar SI, Mahmoud AK, Ali AA. Synthesis of bio-nanocomposite coating (silver-multi wall carbon nano tubes) by electroless plating method. Mater Today Proc. 2023. 
https://doi.org/10.1016/j.matpr.2023.02.017.
47.  Marino AFT, Boerrigter M, Faccini M, Chaumette C, Arockiasamy L, Bundschuh J. Photocatalytic activity and synthesis procedures of TiO2 nanoparticles for potential applications in membranes. In: Figoli Jbahjasae, editor. application of nanotechnology in membranes for water treatment. abingdon: CRC Press; 2017. 
48.  Berber MR. Current advances of polymer composites for water treatment and desalination. J Chem. 2020;2020:7608423. https://doi.org/10.1155/2020/7608423
49.  Yuan HG, Liu TY, Liu YY, Wang XL. A homogeneous polysulfone nanofiltration membrane with excellent chlorine resistance for removal of Na2SO4 from brine in chloralkali process. Desalination 2016;379:16-23. https://doi.org/10.1016/j.desal.2015.10.006
50.  Rodrigues R, Mierzwa JC, Vecitis CDJ. Mixed matrix polysulfone/clay nanoparticles ultrafiltration membranes for water treatment.Water Process Eng 2019;31:100788. https://doi.org/10.1016/j.jwpe.2019.100788
51.  Wenten IG, Syaifi YS, Saputra FA, Zunita M, Julian H, Khoiruddin K, et al.Preparation of antibacterial and antifouling PSF/ZnO/eugenol membrane for peat water ultrafiltration.Water Sci Technol Water Supply 2019;19:2248-55. https://doi.org/10.2166/ws.2019.103
52.  Allen MJ, Tung VC, Kaner RB.Honeycomb Carbon: A Review of Graphene.Chem Rev 2010;110:132-45. https://doi.org/10.1021/cr900070d
53.  McAllister MJ, Li JL, Adamson DH, Schniepp HC, Abdala AA, Liu J, et al.Single Sheet Functionalized Graphene by Oxidation and Thermal Expansion of Graphite.Chem Mater 2007;19:4396-404. https://doi.org/10.1021/cm0630800
54.  O. Moradi, S. Taghavi, S. Sedaghat, "Synthesis and Characterization of Nanocomposites of Biodegradable Polymers Based on Chitin, Alginic, Sr, SiO2 and Graphene Oxide Nanoparticles to Remove Some Colored Contaminants", J. Color Sci. Technol. 16, 3, 185-195, 2022, https://20.1001.1.17358779.1401.16.3.2.8, [In Persian].
Moradi O, Taghavi S, Sedaghat S. Synthesis and Characterization of Nanocomposites of Biodegradable Polymers Based on Chitin, Alginic, Sr, SiO2 and Graphene Oxide Nanoparticles to Remove Some Colored Contaminants. J Color Sci Technol. 2022;16:185-95 https://dorl.net/dor/20.1001.1.17358779.1401.16.3.2.8 [In Persian].
55.  Yoon HW, Cho YH, Park HB.Graphene-based membranes: status and prospects.Trans R Soc A 2016;374:20150024. https://doi.org/10.1098/rsta.2015.0024
56.  .Hu B, Liu L, Zhao Y, Lü C.A facile construction of quaternized polymer brush-grafted graphene modified polysulfone based composite anion exchange membranes with enhanced performance.RSC Adv 2016;6:51057-67. https://doi.org/10.1039/C6RA06363B
57.  Wang J, Chen Z, Chen B.Adsorption of Polycyclic Aromatic Hydrocarbons by Graphene and Graphene Oxide Nanosheets.Environ Sci Technol 2014;48:4817-25. https://doi.org/10.1021/es405227u
58.  El-Sayed AA, Khalil AM, El-Shahat M, Khaireldin NYRSTJ.Antimicrobial activity of PVC-pyrazolone-silver nanocomposites.Macromol Sci A Pure Appl Chem 2016;53:346-53. https://doi.org/10.1080/10601325.2016.1166000
59.  Nasr MN, Gineinah MM. Pyrido [2, 3-d]pyrimidines and Pyrimido[5′, 4′:5, 6]pyrido[2, 3-d]pyrimidines as New Antiviral Agents: Synthesis and Biological Activity. Pharmazie (Weinheim). 2002;335:289-95. https://doi.org/10.1002/1521-4184(200208)335:6% 3C289::AID-ARDP289%3E3.0.CO;2-Z. 
60.  Zidan TA, Abdelhamid AE, Zaki EG. N-Aminorhodanine modified chitosan hydrogel for antibacterial and copper ions removal from aqueous solutions. Int J Biol Macromol. 2020;158:32-42. https://doi.org/10.1016/j.ijbiomac.2020.04.180
61.  Lygo B, Crosby J, Peterson JA. An enantioselective approach to bis-α-amino acids. Tetrahedron. 2001;57:6447-53. https://doi.org/10.1016/S0040-4020(01)00536-1
62.  J Quiroga J, Portilla J, Serrano H, Abonia R, Insuasty B, Nogueras M, et al. Regioselective synthesis of fused benzopyrazolo[3,4-b]quinolines under solvent-free conditions. Tetrahedron Lett. 2007;48:1987-90. https://doi.org/10.1016/j.tetlet.2007.01.074
63.  El-Saidi MMT, El-Sayed AA, Pedersen EB, Tantawy MA, Mohamed NR. Synthesis, characterization and docking study of novel pyrimidine derivatives as anticancer agents. Indones J Chem. 2020;20:868-79. https://doi.org/10.22146/ijc.50582
64.  El-Sayed AA, El-Saidi MMT. Polyvinyl Alcohol Food Packaging System Comprising Green Synthesized Silver Nanoparticles. Egy J Chem. 2019;62:315-26. 
https://doi.org/10.22146/ijc.55483
65.  Abdelhamid AE, El-Sayed AA, Khalil AM. Polysulfonenanofiltration membranes enrichedwith functionalized graphene oxide for dyeremoval from wastewater. J Polym Eng 2020;40:833-41. 
https://doi.org/10.1515/polyeng-2020-0141
66.  Thamer MB, Aldalbahi A, Moydeen AM, Rahaman M, El-Newehy MH.Modified electrospun polymeric nanofibers and their nanocomposites as nano adsorbents for toxic dye removal from contaminated waters: A review.Polymers 2021;13:20. https://doi.org/10.3390/polym13010020
67.  Liao Y, Loh CH, Tian M, Wang R, Fane AG.Progress in electrospun polymeric nanofibrous membranes for water treatment: Fabrication, modification and applications. Prog Polym Sci 2018;77:69-94.
 https://doi.org/10.1016/j.progpolymsci.2017.10.003
68.  Gezici O, Guven I, Özcan F, Ertul S, Bayrakci M.Humic-makeup approach for simultaneous functionalization of polyacrylonitrile nanofibers during electrospinning process, and dye adsorption study.Soft Mater. 2016;14:278-87.https://doi.org/10.1080/1539445X.2016.1201506
69.  Gupta A, Sharma V, Mishra PK, Ekielski A.A Review on Polyacrylonitrile as an Effective and Economic Constituent of Adsorbents for Wastewater Treatment.Molecules 2022;27:8689. https://doi.org/10.3390/molecules27248689
70.  Ali ASM, El-Aassar MR, Hashem FS, Moussa NA.Surface Modified of Cellulose Acetate Electrospun Nanofibers by Polyaniline/β-cyclodextrin Composite for Removal of Cationic Dye from Aqueous Medium.Fibers Polym 2019;20:2057-69. https://doi.org/10.1007/s12221-019-9162-y. 
71.  Yasir AT, Benamor A, Hawari AH, Mahmoudi E.Poly (amido amine) dendrimer based membranes for wastewater treatment – A critical review.Chem Eng Sci 2023;273:18665. https://doi.org/10.1016/j.ces.2023.118665
72.  Li Z, Sellaoui L, Dotto GL, Ben AL, Bonilla-Petriciolet A, Hanafy H, et al. Interpretation of the adsorption mechanism of ReactiveBlack 5 and Ponceau 4R dyes on chitosan/polyamide nanofibers viaadvanced statistical physics model. J Mol Liq. 2019;285:165-70. https://doi.org/10.1016/j.molliq.2019.04.091
73.  Dotto GL, Santos JMN, Tanabe EH, Bertuol DA, Foletto EL, Lima EC, et al. Chitosan/polyamide nanofibers prepared by Forcespinning ® technology: A new adsorbentto remove anionic dyes from aqueous solutions. J Clean Prod. 2017;144:120-9. 
https://doi.org/10.1016/j.jclepro.2017.01.004.
74.  Novikova L, Belchinskaya L. Adsorption of Industrial Pollutants by Natural and Modified Aluminosilicates. In: Clays, ClayMinerals and Ceramic Materials Based on Clay Minerals. London: Intech Open; 2016. https://dx.doi.org/10.5772/61678 
75.  Hosseini SA, Vossoughi M, Mahmoodi NM, Sadrzadeh M. Clay-based electrospun nanofibrous membranes for coloredwastewater treatment. Appl Clay Sci. 2019;168:77-86. https://doi.org/10.1016/j.clay.2018.11.003
76.  Lim JHX, Goh K, Ng DYF, Jiang X, Chuah CY, Chew JW, et al. Alternating spin-and-spray electrospun scaffold membranes with fractionated MIL-101(Cr) adsorbent for high-performance single-pass dye adsorption process. Chem Eng J 2022;450:137963.
https://doi.org/10.1016/j.cej.2022.137963
77.  Elrasheedy A, Nady N, Bassyouni M, El-Shazly A.Metal Organic Framework BasedPolymer Mixed Matrix Membranes:Review on Applications in Water Purification.Membranes 2019;9:88. 
https://doi.org/10.3390/membranes9070088
78.  Tan Y, Sun Z, Meng H, Han Y, Wu J, Xu J, et al.A new MOFs/polymer hybrid membrane: MIL-68(Al)/PVDF, fabrication and application in highefficient removal of p-nitrophenol and methylene blue.Sep Purif Technol 2019;215:217-26. https://doi.org/10.1016/j.seppur.2019.01.008
79.  Zhuang Y, Kong Y, Wang X, Shi B.Novel one step preparation of a 3D alginate based MOF hydrogel for water treatment.New J Chem 2019;43:7202-8. 2019. https://doi.org/10.1039/C8NJ06031B
80.  Sun DT, Peng L, Reeder WS, Moosavi SM, Tiana D, Britt DK, et al.Rapid, Selective Heavy Metal Removal from Water by a Metal–Organic Framework/Polydopamine Composite.ACS Cent Sci 2018;4:349-56. 
https://doi.org/10.1021/acscentsci.7b00605
81.  Li T, Liu L, Zhang Z, Han Z.Preparation of nanofibrous metal-organic framework filter for rapid adsorption and selective separation of cationic dye from aqueous solution.Sep Purif Technol 2020;237:116360.
https://doi.org/10.1016/j.seppur.2019.116360