Investigating the Electrocoagulation Process Performance in Textile Dyeing Wastewater Treatment

Document Type : Review paper

Authors

1 Department of Chemical Engineering, Amirkabir University of Technology, P. O. Box: 15875-4413, Tehran, Iran

2 Energy Department, Materials and Energy Research Center, P. O. Box: 31787-316, Karaj, Iran

3 Department of Chemical Engineering, Amirkabir University of Technology, P. O. Box: 15875-4413, Tehran, Iran.

Abstract

Dyeing wastewater is one of the most important environmental problems in the textile industry. This wastewater contains harmful pollutants that can damage human health and the environment. Electrocoagulation (EC) is a promising technology for dyeing wastewater treatment. This technology passes an electric current through the wastewater, which generates metal hydroxides that act as coagulants to remove pollutants. This article first introduces the EC system and its operation mechanism, then discusses the components that affect the system's performance in removing dye and chemical oxygen demand. The article also summarizes the studies that have been conducted on the use of this process in the treatment of textile dyeing wastewater. In addition, the economic aspects of the EC process and recommendations for its improvement are provided. Finally, the challenges and prospects of the process are discussed. This article provides an effective overview of the current advances and achievements in the EC process for dyeing wastewater treatment, which provides new insights into improving dyeing wastewater treatment with promising environmental applications.

Keywords

Main Subjects


1.  Das PP, Sharma M, Purkait MK. Recent progress on electrocoagulation process for wastewater treatment : A review. Sep Purif Technol. 2022;292:121058. https://doi. org/10.1016/j.seppur.2022.121058.
2.  Bener S, Bulca Ö, Palas B, Tekin G, Atalay S, Ersöz G. Electrocoagulation process for the treatment of real textile wastewater: Effect of operative conditions on the organic carbon removal and kinetic study. Process Saf Environ Prot. 2019;129:47–54. https://doi.org/10.1016/j.psep.2019. 06.010.
.3  Vanaki A, Abdollahzadeh Sharghi E, Boanakdarpour B, Shariati M. Investigating the performance of up-flow anaerobic sludge blanket reactor in textile dyeing wastewater treatment. J Stud color world. 2023;13(3):283-299. https:// dorl.net/dor/20.1001.1.22517278.1402.13.3.4.0 [In Persian].
4.  Donkadokula NY, Kola AK, Naz I, Saroj D. A review on advanced physico-chemical and biological textile dye wastewater treatment techniques. Rev Environ Sci Biotechnol. 2020;19(3):543–60. https://doi.org/10.1007/s11157-020-095 43-z.
5.  Islam M, Mostafa M. Textile dyeing effluents and environment concerns - a review. J Environ Sci Nat Resour. 2019;11(1–2):131–44.  https://doi.org/10.3329/jesnr.v11i1-2.43380.
6.  Dos Santos AB, Cervantes FJ, van Lier JB. Review paper on current technologies for decolourisation of textile wastewaters: Perspectives for anaerobic biotechnology. Bioresour Technol. 2007;98(12):2369–85. https://doi.org/10.1016/j.biortech.2006. 11.013.
7.  Dalvand A, Gholami M, Joneidi A, Mahmoodi NM. Dye removal, energy consumption and operating cost of electrocoagulation of textile wastewater as a clean process. Clean-Soil, Air, Water. 2011;39(7):665–72. https://doi. org/10.1002/clen.201000233.
8.  Adesanmi BM, Hung YT, Paul HH, Huhnke CR. Comparison of dye wastewater treatment methods: A review. GSC Adv Res Rev. 2022;10(2), 126–137. https:// doi.org/10.30574/gscarr.2022.10.2.0054.
9.  Tahreen A, Jami MS, Ali F. Role of electrocoagulation in wastewater treatment : a developmental review. J Water Process Eng. 2020;37, 101440.https://doi.org/10.1016/ j.jwpe.2020.101440.
10. Kishor R, Purchase D, Saratale GD, Saratale RG, Ferreira LFR, Bilal M, et al. Ecotoxicological and health concerns of persistent coloring pollutants of textile industry wastewater and treatment approaches for environmental safety. J Environ Chem Eng. 2021;9(2):105012. https://doi. org/10.1016/j.jece.2020.105012.
11. Akter S, Suhan BK, Islam S. Recent advances and perspective of electrocoagulation in the treatment of wastewater: A review. Environ Nanotechnology, Monit Manag. 2022;17:100643.https://doi.org/10.1016/j.enmm. 2022.100643.
12. Can OT, Kobya M, Demirbas E, Bayramoglu M. Treatment of the textile wastewater by combined electrocoagulation. Chemosphere. 2006;62(2):181–7. https://doi.org/10.1016 /j.chemosphere.2005.05.022.
13. Yasir F, Mohsen S, Ahmed SA, Dawood A, Cretescu I, Le P, et al. Can electrocoagulation technology be integrated with wastewater treatment systems to improve treatment efficiency?. Environ Research. 2022;214(2):113890. https:// doi.org/10.1016/j.envres.2022.113890.
14. Alinsafi A, Khemis M, Pons MN, Leclerc JP, Yaacoubi A, Benhammou A, et al. Electro-coagulation of reactive textile dyes and textile wastewater. Chem Eng Process Process Intensif. 2005;44(4):461–70. https://doi.org/10.1016/j.cep. 2004.06.010.
15. Naje AS, Chelliapan S, Zakaria Z, Abbas SA. Treatment Performance of Textile Wastewater Using Electrocoagulation ( EC) Process under Combined Electrical Connection of Electrodes. Int J Electrochem Sci. 2015;10:5924–41. https://doi.org/10.1016/S1452-3981(23)17305-6.
16. Bilińska L, Blus K, Gmurek M, Ledakowicz S. Coupling of electrocoagulation and ozone treatment for textile wastewater reuse. Chem Eng J. 2019;358:992-1001. https: //doi.org/ 10.1016/j.cej.2018.10.093.
17. Naje AS, Chelliapan S, Zakaria Z, Ajeel MA, Alaba PA. A review of electrocoagulation technology for the treatment of textile wastewater. Rev Chem Eng. 2017;33(3):263–92. https://doi.org/10.1515/revce-2016-0019.
18. Akanksha, Roopashree GB, Lokesh KS. Comparative study of electrode material (iron, aluminium and stainless steel) for treatment of textile industry wastewater. Int J Environ Sci. 2013;4(4):519–31.https://doi.org/10.6088/ijes2014040400009.
19.            Bayramoglu M, Eyvaz M, Kobya M. Treatment of the textile wastewater by electrocoagulation. Economical evaluation. Chem Eng J. 2007;128(2–3):155–61. https:// doi.org/10.1016/j.cej.2006.10.008.
20.            Wei MC, Wang KS, Huang CL, Chiang CW, Chang TJ, Lee SS, et al. Improvement of textile dye removal by electrocoagulation with low-cost steel wool cathode reactor. Chem Eng J. 2012;192:37–44. http://doi.org/ 10.1016/j.cej.2012.03.086.
21. Shaker AM, Moneer AA, El-Sadaawy MM, El-Mallah NM, Ramadan MSH. Comparative study for removal of acid green 20 dye by electrocoagulation technique using aluminum and iron electrodes. Desalin Water Treat. 2020;198:345–63.  http://doi.org/10.5004/dwt.2020.26007.
22.            Hendaoui K, Ayari F, trabelsi ayadi M. Optimization of Indigo Dye Removal by Continuous Electrocoagulation Process. 2021. 183–8. 
23. El-Hosiny FI, Abdel-Khalek MA, Selim KA, Osama I. Physicochemical study of dye removal using electro-coagulation-flotation process. Physicochem Probl Miner Process. 2018;54(2):32133. https://doi.org/10.5277/ppm p1825.
24. Tezcan Un U, Aytac E. Electrocoagulation in a packed bed reactor-complete treatment of color and cod from real textile wastewater. J Environ Manage. 2013;123:113–9. http://doi.org/10.1016/j.jenvman.2013.03.016
25. Khandegar V, Saroha AK. Electrochemical Treatment of Effluent from Small-Scale Dyeing Unit. Indian Chem Eng. 2013;55(2):112–20. https://doi.org/10.1016/j.jenvman.2013 .06.043.
26. Merzouk B, Gourich B, Sekki A, Madani K, Chibane M. Removal turbidity and separation of heavy metals using electrocoagulation-electroflotation technique. A case study. J Hazard Mater. 2009;164(1):215–22. https://doi.org/10. 1016/j.jhazmat.2008.07.144.
27. Merzouk B, Madani K, Sekki A. Using electrocoagulation-electroflotation technology to treat synthetic solution and textile wastewater, two case studies. Desalin. 2010;250(2):573–7.http://doi.org/10.1016/j.desal .2009.09. 026.
28. Aouni A, Fersi C, Ben Sik Ali M, Dhahbi M. Treatment of textile wastewater by a hybrid electrocoagulation/ nanofiltration process. J Hazard Mater. 2009;168(2–3):868–74. https://doi.org/10.1016/j.jhazmat.2009.02.112.
29. Taheri M. Techno-economical aspects of electrocoagulation optimization in three acid azo dyes  removal comparison. Clean Chem Eng. 2022;2:100007. https://doi.org/10.1016 /j.clce.2022.100007. 
30. Yaqub A, Raza H, Ajab H, Shah SH, Shad A, Ahmad Z. Decolorization of reactive blue-2 dye in aqueous solution by electrocoagulation process using aluminum and steel electrodes. J Hazard Mater Adv. 2023;9:100248. https://doi .org/10.1016/j.hazadv.2023.100248.
31. Hashim KS, Hussein AH, Zubaidi SL, Kot P, Kraidi L, Alkhaddar R, et al. Effect of initial pH value on the removal of reactive black dye from water by electrocoagulation (EC) method. In: Journal of Physics: Conference Series. 2019. p. 2–8. https://doi.org/10.1088/ 1742-6596/1294/7/072017.
32. Shokri A. Application of electrocoagulation process for the removal of acid orange 5 in synthetic wastewater. Iran J Chem Chem Eng. 2019;38(2):113–9. https://doi.org /10.30492/IJCCE.2019.30593.
33. Khandegar V, Saroha AK. Electrochemical Treatment of Textile Effluent Containing Acid Red 131 Dye. J Hazardous, Toxic, Radioact Waste. 2014;18(1):38–44. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000194.
34. Verma AK. Treatment of textile wastewaters by electrocoagulation employing Fe-Al composite electrode. J Water Process Eng. 2017;20:168–72. https://doi.org/ 10.1016/ j.jwpe.2017.11.001.
35. Demirci Y, Pekel LC, Alpbaz M. Investigation of different electrode connections in electrocoagulation of textile wastewater treatment. Int J Electrochem Sci. 2015;10(3):2685–93. https://doi.org/10.1016/S1452-3981 (23)04877-0.
36. Khaled B, Wided B, Béchir H, Limam A, Mouna L, Tlili Z. Investigation of electrocoagulation reactor design parameters effect on the removal of cadmium from synthetic and phosphate industrial wastewater. Arab J Chem. 2015. http://dx.doi.org/10.1016/j.arabjc.2014.12 .012.
37. Naje AS, Chelliapan S, Zakaria Z, Abbas SA. Electrocoagulation using a rotated anode: A novel reactor design for textile wastewater treatment. J Environ Manag. 2016;176:34–44.https://doi.org/10.1016/j.jenvman.2016.03 .034.
38. Bayramoglu M, Eyvaz M, Kobya M. Treatment of the textile wastewater by electrocoagulation Economical evaluation. 2007;128:155–61.https://doi.org/10.1016/ j.cej. 2006.10.008.
39. ong S, He Z, Qiu J, Xu L, Chen J. Ozone assisted electrocoagulation for decolorization of C.I. Reactive Black 5 in aqueous solution: An investigation of the effect of operational parameters. Sep Purif Technol. 2007;55(2):238–45. https://doi.org/10.1016/j.seppur .2006. 12.013. 
40. Zodi S, Potier O, Lapicque F, Leclerc JP. Treatment of the industrial wastewaters by electrocoagulation: Optimization of coupled electrochemical and sedimentation processes. Desalin. 2010;261(1–2):186–90. http://doi.org/10.1016/j. desal.2010.04.024. 
41. GilPavas E, Dobrosz-Gómez I, Gómez-García MÁ, Efficient treatment for textile wastewater through sequential electrocoagulation, electrochemical oxidation and adsorption processes: Optimization and toxicity assessment. J Electroanal Chem. 2020;878: 114578. http:// doi.org/10.1016/j.jelechem.2020.114578.
42. Raju GB, Karuppiah MT, Latha SS, Parvathy S, Prabhakar S. Treatment of wastewater from synthetic textile industry by electrocoagulation-electrooxidation. J Chem Eng. 2008;144(1):51–58. http://doi.org/10.1016/j.cej.2008.01 .008.