Printed Solar Cells, an Inevitable Remedy for the Global Energy Crisis

Document Type : Review paper

Authors

1 Department of Printing Science and Technology, Faculty of color physics, Institute for Color Science and Technology, P. O. Box: 16765-654, Tehran, Iran.

2 Department of Printing Science and Technology, Faculty of color physics, Institute for Color Science and Technology,

3 Department of Surface Coating and Corrosion, Institute for Color Science and Technology,

4 Department of Nanomaterials and Nanocoatings, Institute for Colour Science and Technology, Tehran, Iran, P. O. Box: 16765-654.

Abstract

The ever-increasing human need for energy and the increase in the world's population have caused significant demand increases. This has created a global movement toward new energy sources, especially green energies with minimal negative environmental effects, with solar energy on top. On the other hand, an important requirement in the growth and consolidation of the position of solar cells is the reduction of the production cost of these cells and the increase in the speed of their production on a large scale, which can be achieved by using printing methods. The global energy crisis and its significance are first discussed in this study, after which the solutions are briefly discussed. Additionally, the different types of solar cells and their most recent advancements have been reviewed, and different printing techniques that may be exploited in each form of solar cell have been explained. Finally, the market forecasts for solar cells have been studied.

Keywords

Main Subjects


1.   Da Rosa AV, Ordóñez JC. Fundamentals of renewable energy processes. 2022.
2.   Ahmad T, Zhang D. A critical review of comparative global historical energy consumption and future demand: The story told so far. Energy Reports. 2020;6:1973-91 https://doi.org/10.1016/j.egyr.2020.07.020.
3.   BP. Statistical Review of World Energy. 2018 June. https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2018-full-report.pdfEIA. Annual Energy Outlook. Energy Information Administration; 2018.
4.   EIA. Annual Energy Outlook. Energy Information Administration; 2018.
5.   Klein Goldewijk K, Beusen A, Janssen P. Long-term dynamic modeling of global population and built-up area in a spatially explicit way: HYDE 3.1. The Holocene. 2010;20(4):565-73 https://doi.org/10.1177/095968360935658.
6.   Skoczkowski T, Bielecki S, Wojtyńska J. Long-Term Projection of Renewable Energy Technology Diffusion. Energies. 2019;12(22):4261 
    https://doi.org/10.3390/en12224261.
7.   Hoekstra AY. The water footprint of modern consumer society. 2nd ed. London, UK.: Routledge; 2020.  https://doi.org/10.4324/9780429424557.
8.   Hadian S, Madani K. The water demand of energy: implications for sustainable energy policy development. Sustainability. 2013;5(11):4674-87.
     https://doi.org/10.3390/su5114674.
9.   Mekonnen MM, Gerbens-Leenes P, Hoekstra AY. The consumptive water footprint of electricity and heat: a global assessment. Environmental Science: Water Research & Technology. 2015;1(3):285-97.
        https://doi.org/10.1039/C5EW00026B.
10.    Keeling CD, Piper SC, Bacastow RB, Wahlen M, Whorf TP, Heimann M, et al. Atmospheric CO2 and 13CO2 exchange with the terrestrial biosphere and oceans from 1978 to 2000: observations and carbon cycle implications.  A history of atmospheric CO2 and its effects on plants, animals, and ecosystems: Springer; 2005. p. 83-113 https://doi.org/10.1007/0-387-27048-5_5.
11.    Friedlingstein P, O'sullivan M, Jones MW, Andrew RM, Hauck J, Olsen A, et al. Global carbon budget 2020. Earth System Science Data. 2020;12(4):3269-340.
 https://doi.org/10.5194/essd-12-3269-2020.
12.    Ansari MIH, Qurashi A, Nazeeruddin MK. Frontiers, opportunities, and challenges in perovskite solar cells: A critical review. Journal of Photochemistry and Photobiology C: Photochemistry Reviews. 2018;35:1-24 https://doi.org/10.1016/j.jphotochemrev.2017.11.002.
13.    Hosseinnezhad M, Moradian S. Organic dyes for Using in Dye-sensitized solar cells. Journal of Studies in Color World. 2011;1(3):29-32
https://dor.net/20.1001.1.22517278.1390.1.3.5.7.
14.    Grätzel M. Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells. J Photochem Photobiol A: Chem. 2004;164(1-3):3-14
 https://doi.org/10.1016/j.jphotochem.2004.02.023.
15.    Fu R, Feldman DJ, Margolis RM. US solar photovoltaic system cost benchmark: Q1 2018. National Renewable Energy Lab.(NREL), Golden, CO (United States); 2018.
16.    Simya O, Radhakrishnan P, Ashok A, Kavitha K, Althaf R. Engineered Nanomaterials for Energy Applications. Handbook of Nanomaterials for Industrial Applications. In: Mustansar Hussain C, editor. Handbook of Nanomaterials for Industrial Applications. Amsterdam, The Netherlands: Elsevier BV; 2018. p. 751-67
 https://doi.org/10.1016/B978-0-12-813351-4.00043-2.
17.    Nazeeruddin MK, Zakeeruddin S, Lagref J-J, Liska P, Comte P, Barolo C, et al. Stepwise assembly of amphiphilic ruthenium sensitizers and their applications in dye-sensitized solar cell. Coord Chem Rev. 2004;248(13-14):1317-28 https://doi.org/10.1016/j.ccr.2004.03.012.
18.    O'regan B, Grätzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO 2 films. Nature. 1991;353(6346):737-40 https://doi.org/10.1038/353737a0.
19.    Bach U, Lupo D, Comte P, Moser J-E, Weissörtel F, Salbeck J, et al. Solid-state dye-sensitized mesoporous TiO 2 solar cells with high photon-to-electron conversion efficiencies. Nature. 1998;395(6702):583-5 https://doi.org/10.1038/26936.
20.    Płaczek-Popko E. Top PV market solar cells 2016. Opto-Electronics Review. 2017;25(2):55-64
       https://doi.org/10.1016/j.opelre.2017.03.002.
21.    Printed, Organic & Flexible Electronics Forecasts, Players & Opportunities 2017-2027 [Internet]. IDTechEx. 2017. Available from: https://www.idtechex.com/en/research-report/printed-organic-and-flexible-electronics-forecasts-players-and-opportunities-2017-2027/510.
22.    Kamyshny A, Magdassi S. Conductive nanomaterials for 2D and 3D printed flexible electronics. Chem Soc Rev. 2019;48(6):1712-40 https://doi.org/10.1039/C8CS00738A.
23.    Singh M, Haverinen HM, Dhagat P, Jabbour GE. Inkjet printing—process and its applications. Adv Mater. 2010;22(6):673-85 https://doi.org/10.1002/adma.200901141.
24.    Kamyshny A, Magdassi S. Conductive Nanomaterials for Printed Electronics. Small. 2014;10(17):3515-35.
 https://doi.org/10.1002/smll.201303000.
25.    Tam SK, Fung KY, Poon GSH, Ng KM. Product design: Metal nanoparticle-based conductive inkjet inks. AIChE J.2016;62(8):53-2740. https://doi.org/10.1002/aic.15271.
26.    Liu Y-F, Tsai M-H, Pai Y-F, Hwang W-S. Control of droplet formation by operating waveform for inks with various viscosities in piezoelectric inkjet printing. Appl Phys A. 2013;111(2):509-16.
 https://doi.org/10.1007/s00339-013-7569-7.
27.    Mohsen MRN, Mojtaba J, Zahra R. Printed Electronics, Based on Carbon Nanotubes and Graphene Nanosheets. Journal of studies in color world. 2020;10(3):29-42 https://dor.net/20.1001.1.22517278.1399.10.3.3.8.
28.    Bhatnagar M, Jha S, Pattnaik A. Analysis of different printing technologies for metallization of crystalline silicon solar cells. International Journal of Materials Research. 2023 https://doi.org/10.1515/ijmr-2021-8686.
29.    Ganesan S, Mehta S, Gupta D. Fully printed organic solar cells – a review of techniques, challenges and their solutions. Opto-Electronics Review. 2019;27(3):298-320 https://doi.org/10.1016/j.opelre.2019.09.002.
30.    Kipphan H. Fundamentals. In: Kipphan H, editor. Handbook of Print Media: Technologies and Production Methods. Berlin, Heidelberg: Springer Berlin Heidelberg; 2001. p. 1-202 https://doi.org/10.1007/978-3-540-29900-4_1.
31.    Southee D, York N, editors. Printed electronics, product design and the education of future industrial designers. DS 82: Proceedings of the 17th International Conference on Engineering and Product Design Education (E&PDE15), Great Expectations: Design Teaching, Research & Enterprise, Loughborough, UK, 03-0409 2015; 2015.
32.    Saga T. Advances in crystalline silicon solar cell technology for industrial mass production. NPG Asia Materials. 2010;2(3):96-102.
      https://doi.org/10.1038/asiamat.2010.82.
33.    Tepner S, Wengenmeyr N, Linse M, Lorenz A, Pospischil M, Clement F. The Link between Ag-Paste Rheology and Screen-Printed Solar Cell Metallization. Adv Mater Technol. 2020;5(10):2000654.
       https://doi.org/10.1002/admt.202000654.
34.    Erath D, Filipović A, Retzlaff M, Goetz AK, Clement F, Biro D, et al. Advanced screen printing technique for high definition front side metallization of crystalline silicon solar cells. Sol Energy Mater Sol Cells. 2010;94(1):57-61 https://doi.org/10.1016/j.solmat.2009.05.018.
35.    Messmer C, Tutsch L, Pingel S, Erath D, Schön J, Fell A, et al. Optimized front TCO and metal grid electrode for module-integrated perovskite–silicon tandem solar cells. Progress in Photovoltaics: Research and Applications. 2022;30(4):374-83 https://doi.org/10.1002/pip.3491.
36.    Jost N, Askins S, Dixon R, Ackermann M, Dominguez C, Anton I. Array of micro multijunction solar cells interconnected by conductive inks. Sol Energy Mater Sol Cells. 2022;240:111693.
 https://doi.org/10.1016/j.solmat.2022.111693.
37.    Wu X, Zhou Z, Wang Y, Li J. Syntheses of Silver Nanowires Ink and Printable Flexible Transparent Conductive Film: A Review. Coatings. 2020;10(9):865, https://www.mdpi.com/2079-6412/10/9/865
38.    Li D, Lai W-Y, Zhang Y-Z, Huang W. Printable Transparent Conductive Films for Flexible Electronics. Adv Mater. 2018;30(10):1704738.
       https://doi.org/10.1002/adma.201704738.
39.    Ostfeld AE, Arias AC. Flexible photovoltaic power systems: integration opportunities, challenges and advances. Flexible Printed Electron. 2017;2(1):013001 https://doi.org/10.1088/2058-8585/aa5750.
40.    Han G, Zhang S, Boix PP, Wong LH, Sun L, Lien S-Y. Towards high efficiency thin film solar cells. Prog Mater Sci. 2017;87:246-91
 https://doi.org/10.1016/j.pmatsci.2017.02.003.
41.    Stuckelberger M, Biron R, Wyrsch N, Haug F-J, Ballif C. Progress in solar cells from hydrogenated amorphous silicon. Renewable and Sustainable Energy Reviews. 2017;76:1497-523 https://doi.org/10.1016/j.rser.2016.11.190.
42.    Ramanujam J, Bishop DM, Todorov TK, Gunawan O, Rath J, Nekovei R, et al. Flexible CIGS, CdTe and a-Si: H based thin film solar cells: A review. Prog Mater Sci. 2020;110:100619 https://doi.org/10.1016/j.pmatsci.2019.100619.
43.    Green MA, Dunlop ED, Siefer G, Yoshita M, Kopidakis N, Bothe K, et al. Solar cell efficiency tables (Version 61). Progress in Photovoltaics: Research and Applications. 2023;31(1):3-16 https://doi.org/10.1002/pip.3646.
44.    Faraj M, Ibrahim K, Salhin A. Fabrication and characterization of thin-film Cu (In, Ga) Se2 solar cells on a PET plastic substrate using screen printing. Mater Sci Semicond Process. 2012;15(2):165-73
 https://doi.org/10.1016/j.mssp.2011.10.006.
45.    Dai P, Zhang Y, Xue Y, Jiang X, Wang X, zhan J, et al. Nanoparticle-based screen printing of copper zinc tin sulfide thin film as photocathode for quantum dot sensitized solar cell. Mater Lett. 2015;158:198-201 https://doi.org/10.1016/j.matlet.2015.06.016.
46.    Wang W, Su Y-W, Chang C-h. Inkjet printed chalcopyrite CuInxGa1− xSe2 thin film solar cells. Sol Energy Mater Sol Cells. 2011;95(9):2616-20
        https://doi.org/10.1016/j.solmat.2011.05.011.
47.    Lin X, Klenk R, Wang L, Köhler T, Albert J, Fiechter S, et al. 11.3% efficiency Cu (In, Ga)(S, Se) 2 thin film solar cells via drop-on-demand inkjet printing. Energy & Environmental Science. 2016;9(6):2037-43
       https://doi.org/10.1039/C6EE00587J.
48.    Yadav BS, Dey SR, Dhage SR. Effective ink-jet printing of aqueous ink for Cu (In, Ga) Se2 thin film absorber for solar cell application. Solar Energy. 2019;179:363-70
       https://doi.org/10.1016/j.solener.2019.01.003.
49.    Karunakaran SK, Arumugam GM, Yang W, Ge S, Khan SN, Lin X, et al. Recent progress in inkjet-printed solar cells. Journal of Materials Chemistry A. 2019;7(23):13873-902. https://doi.org/10.1039/C9TA03155C.
50.    Lin X, Kavalakkatt J, Lux‐Steiner MC, Ennaoui A. Inkjet‐Printed Cu2ZnSn (S, Se) 4 Solar Cells. Advanced science. 2015;2. https://doi.org/10.1002/advs.201500028.
51.    Colina M, Bailo E, Medina-Rodríguez B, Kondrotas R, Sánchez-González Y, Sylla D, et al. Optimization of ink-jet printed precursors for Cu2ZnSn (S, Se) 4 solar cells. J Alloys Compd. 2018;735:2462-70
        https://doi.org/10.1016/j.jallcom.2017.12.035.
52.    Lin X, Madhavan VE, Kavalakkatt J, Hinrichs V, Lauermann I, Lux-Steiner MC, et al. Inkjet-printed CZTSSe absorbers and influence of sodium on device performance. Sol Energy Mater Sol Cells. 2018;180:373-80. https://doi.org/10.1016/j.solmat.2017.09.003.
53.    Nakada T, Mizutani M, Hagiwara Y, Kunioka A. High-efficiency Cu (In, Ga) Se2 thin-film solar cells with a CBD-ZnS buffer layer. Sol Energy Mater Sol Cells. 2001;67(1-4):255-60 https://doi.org/10.1016/S0927-0248.
54.    Mughal MA, Engelken R, Sharma R. Progress in indium (III) sulfide (In2S3) buffer layer deposition techniques for CIS, CIGS, and CdTe-based thin film solar cells. Solar Energy. 2015;120:131-46
       https://doi.org/10.1016/j.solener.2015.07.028.
55.    Mohammed IM, Gubari GM, Huse NP, Dive AS, Han S-H, Sharma R. Effect of Cd/S ratio on growth and physical properties of CdS thin films for photosensor application. Journal of Materials Science: Materials in Electronics. 2020;31:9989-96.
       https://doi.org/10.1007s10854-020-03543-z.
56.    Wang L, Lin X, Ennaoui A, Wolf C, Lux-Steiner MC, Klenk R. Solution-processed In2S3 buffer layer for chalcopyrite thin film solar cells. EPJ Photovoltaics. 2016;7:70303 https://doi.org/10.1051/epjpv/2016001.
57.    Debot A, Chu VB, Adeleye D, Guillot J, Arl D, Melchiorre M, et al. Inkjet-printed indium sulfide buffer layer for Cu(In,Ga)(S,Se)2 thin film solar cells. Thin Solid Films. 2022;745:139096 https://doi.org/10.1016/j.tsf.2022.139096.
58.    Gensowski K, Jimenez A, Freund T, Wengenmeyr N, Tepner S, Pospischil M, et al. CIGS Mini-Modules with Dispensed Metallization on Transparent Conductive Oxide Layer. Solar RRL. 2020;4(12):2000475 https://doi.org/10.1002/solr.202000475.
59.    Hersh PA, Curtis CJ, van Hest MF, Kreuder JJ, Pasquarelli R, Miedaner A, et al. Inkjet printed metallizations for Cu (In1− x Ga x) Se2 photovoltaic cells. Progress in Photovoltaics: Research and Applications. 2011;19(8):973-6. https://doi.org/10.1002/pip.1105.
60.    Hao Y, Gao J, Xu Z, Zhang N, Luo J, Liu X. Preparation of silver nanoparticles with hyperbranched polymers as a stabilizer for inkjet printing of flexible circuits. New J Chem. 2019;43(6):2797-803. 
       https://doi.org/10.1039/C8NJ05639K.
61.    Hosseinnezhad M. Review on Metal-based Complex Dyes for Dye-sensitized Solar Cells. Journal of Studies in Color World. 2021;11(3):45-54
         https://dor.net/20.1001.1.22517278.1400.11.3.4.6.
62.    Rouhani S, Hosseinnezhad M, Sohrab N, Gharanjig K, Salem A, Ranjbar Z. Investigation of the Effect of rGO/TiO2 on Photovoltaic Performance of DSSCs Devices. Progress in Color, Colorants and Coatings. 2022;15(2):123-31 https://doi.org/10.30509/pccc.2021.166738.1094.
63.    Hosseinnezhad M, Masoud Etezad S. A Review of Bacterial-sensitizers for Photovoltaic Devices. Journal of Studies in Color World. 2021;11(1):1-10 https://dor.net/20.1001.1.22517278.1400.11.1.1.9.
64.    Agrawal A, Siddiqui SA, Soni A, Khandelwal K, Sharma GD. Performance analysis of TiO2 based dye sensitized solar cell prepared by screen printing and doctor blade deposition techniques. Solar Energy. 2021;226:9-19 https://doi.org/10.1016/j.solener.2021.08.001.
65.    Cherrington R, Hughes DJ, Senthilarasu S, Goodship V. Inkjet-Printed TiO2 Nanoparticles from Aqueous Solutions for Dye-Sensitized Solar Cells (DSSCs). Energy Technology. 2015;3(8):866-70
       https://doi.org/10.1002/ente.201500096.
66.    Raïssi M, Pellegrin Y, Lefevre F-X, Boujtita M, Rousseau D, Berthelot T, et al. Digital printing of efficient dye-sensitized solar cells (DSSCs). Solar Energy. 2020;199:92-9 https://doi.org/10.1016/j.solener.2020.02.004.
67.    Hashmi SG, Ozkan M, Halme J, Paltakari J, Lund PD. Highly conductive, non-permeable, fiber based substrate for counter electrode application in dye-sensitized solar cells. Nano Energy. 2014;9:212-20
         https://doi.org/10.1016/j.nanoen.2014.07.013.
68.    Özkan M, Hashmi SG, Halme J, Karakoc A, Sarikka T, Paltakari J, et al. Inkjet-printed platinum counter electrodes for dye-sensitized solar cells. Org Electron. 2017;44:159-67 https://doi.org/10.1016/j.orgel.2017..02.015..
69.    Hashmi SG, Sonai GG, Iftikhar H, Lund PD, Nogueira AF. Printed single-walled carbon-nanotubes-based counter electrodes for dye-sensitized solar cells with copper-based redox mediators. Semicond Sci Technol. 2019;34(10):105001.
       https://doi.org/10.1088/1361-6641/ab39f0.
70.    Abdulrazzaq OA, Saini V, Bourdo S, Dervishi E, Biris AS. Organic solar cells: a review of materials, limitations, and possibilities for improvement. Particulate science and technology. 2013;31(5):427-42
         https://doi.org/10.1080/02726351.2013.769470.
71.    Xu H, Yuan F, Zhou D, Liao X, Chen L, Chen Y. Hole transport layers for organic solar cells: recent progress and prospects. Journal of Materials Chemistry A. 2020;8(23):11478-92 https://doi.org/10.1039/D0TA03511D.
72.    Ashtiani Abdi A, Nourmohammadian F, Mohammadi Y, Saeb MR. Control over Power Conversion Efficiency of BHJ Solar Cells: Learn more from Less, with Artificial Intelligence. Progress in Color, Colorants and Coatings. 2019;12(1):1-14 https://doi.org/10.30509/pccc.2019.80308303.
73.    Benghanem M, Almohammedi A. Organic Solar Cells: A Review. In: Mellit A, Benghanem M, editors. A Practical Guide for Advanced Methods in Solar Photovoltaic Systems. Cham: Springer International Publishing; 2020. p. 81-106. https://doi.org/10.1007/978-3-030-43473-1_5.
74.    Krebs FC, Gevorgyan SA, Alstrup J. A roll-to-roll process to flexible polymer solar cells: model studies, manufacture and operational stability studies. J Mater Chem. 2009;19(30):5442-51. https://doi.org/10.1039/B823001C.
75.    Krebs FC. All solution roll-to-roll processed polymer solar cells free from indium-tin-oxide and vacuum coating steps. Org Electron. 2009;10(5):761-8.
        https://doi.org/10.1016/j.orgel.2009.03.009.
76.    Krebs FC, Søndergaard R, Jørgensen M. Printed metal back electrodes for R2R fabricated polymer solar cells studied using the LBIC technique. Sol Energy Mater Sol Cells. 2011;95(5):1348-53.
      https://doi.org/10.1016/j.solmat.2010.11.007.
77.    77.    Manceau M, Angmo D, Jørgensen M, Krebs FC. ITO-free flexible polymer solar cells: From small model devices to roll-to-roll processed large modules. Org Electron. 2011;12(4):566-74 
      https://doi.org/10.1016/j.orgel.2011.01.009.
78.    Galagan Y, J.M. Rubingh J-E, Andriessen R, Fan C-C, W.M. Blom P, C. Veenstra S, et al. ITO-free flexible organic solar cells with printed current collecting grids. Sol Energy Mater Sol Cells. 2011;95(5):1339-43 https://doi.org/10.1016/j.solmat.2010.08.011.
79.    Deganello D, Cherry JA, Gethin DT, Claypole TC. Patterning of micro-scale conductive networks using reel-to-reel flexographic printing. Thin Solid Films. 2010;518(21):6113-6 https://doi.org/10.1016/j.tsf.2010.05.125.
80.    Hübler A, Trnovec B, Zillger T, Ali M, Wetzold N, Mingebach M, et al. Printed Paper Photovoltaic Cells. Advanced Energy Materials. 2011;1(6):1018-22.
        https://doi.org/10.1002/aenm.201100394.
81.    Eom SH, Senthilarasu S, Uthirakumar P, Yoon SC, Lim J, Lee C, et al. Polymer solar cells based on inkjet-printed PEDOT:PSS layer. Org Electron. 2009;10(3):536-42 https://doi.org/10.1016/j.orgel.2009.01.015.
82.    Steirer KX, Berry JJ, Reese MO, van Hest MFAM, Miedaner A, Liberatore MW, et al. Ultrasonically sprayed and inkjet printed thin film electrodes for organic solar cells. Thin Solid Films. 2009;517(8):2781-6 https://doi.org/10.1016/j.tsf.2008.10.124.
83.    Singh A, Gupta SK, Garg A. Inkjet printing of NiO films and integration as hole transporting layers in polymer solar cells. Scientific Reports. 2017;7(1):1775
       https://doi.org/10.1038/s41598-017-01897-9.
84.    Krebs FC, Spanggard H, Kjær T, Biancardo M, Alstrup J. Large area plastic solar cell modules. Materials Science and Engineering: B. 2007;138(2):106-11
       https://doi.org/10.1016/j.mseb.2006.06.008.
85.    Krebs FC, Jørgensen M, Norrman K, Hagemann O, Alstrup J, Nielsen TD, et al. A complete process for production of flexible large area polymer solar cells entirely using screen printing—first public demonstration. Sol Energy Mater Sol Cells. 2009;93(4):422-41
        https://doi.org/10.1016/j.solmat.2008.12.001.
86.    Zhang B, Chae H, Cho SM. Screen-printed polymer: fullerene bulk-heterojunction solar cells. Jpn J Appl Phys. 2009;48(2R):020208 https://doi.org/10.1143/JJAP.48.020208.
87.    Kopola P, Aernouts T, Sliz R, Guillerez S, Ylikunnari M, Cheyns D, et al. Gravure printed flexible organic photovoltaic modules. Sol Energy Mater Sol Cells. 2011;95(5):1344-7 https://doi.org/10.1016/j.solmat.2010.12.020.
88.    Kopola P, Aernouts T, Guillerez S, Jin H, Tuomikoski M, Maaninen A, et al. High efficient plastic solar cells fabricated with a high-throughput gravure printing method. Sol Energy Mater Sol Cells. 2010;94(10):1673-80 https://doi.org/10.1016/j.solmat.2010.05.027.
89.    Voigt MM, Mackenzie RCI, Yau CP, Atienzar P, Dane J, Keivanidis PE, et al. Gravure printing for three subsequent solar cell layers of inverted structures on flexible substrates. Sol Energy Mater Sol Cells. 2011;95(2):731-4 https://doi.org/10.1016/j.solmat.2010.10.013.
90.    Jung J, Kim D, Lim J, Lee C, Yoon SC. Highly Efficient Inkjet-Printed Organic Photovoltaic Cells. Jpn J Appl Phys. 2010:49(5S1):05EB3 https://doi.org/10.1143/JJAP.49.05EB03.https://doi.org/10.1143/JJAP.49.05EB03.
91.    Hermerschmidt F, Papagiorgis P, Savva A, Christodoulou C, Itskos G, Choulis SA. Inkjet printing processing conditions for bulk-heterojunction solar cells using two high-performing conjugated polymer donors. Sol Energy Mater Sol Cells. 2014;130:474-80
        https://doi.org/10.1016/j.solmat.2014.07.050.
92.    Eom SH, Park H, Mujawar S, Yoon SC, Kim S-S, Na S-I, et al. High efficiency polymer solar cells via sequential inkjet-printing of PEDOT: PSS and P3HT: PCBM inks with additives. Org Electron. 2010;11(9):1516-22 https://doi.org/10.1016/j.orgel.2010.06.007.
93.    Lamont CA, Eggenhuisen TM, Coenen MJJ, Slaats TWL, Andriessen R, Groen P. Tuning the viscosity of halogen free bulk heterojunction inks for inkjet printed organic solar cells. Org Electron. 2015;17:107-14 https://doi.org/10.1016/j.orgel.2014.10.052.
94.    Arredondo B, Romero B, Beliatis MJ, del Pozo G, Martín-Martín D, Blakesley JC, et al. Analysing impact of oxygen and water exposure on roll-coated organic solar cell performance using impedance spectroscopy. Sol Energy Mater Sol Cells. 2018;176:397-404 https://doi.org/10.1016/j.solmat.2017.10.028.
95.    Krebs FC, Tromholt T, Jørgensen M. Upscaling of polymer solar cell fabrication using full roll-to-roll processing. Nanoscale. 2010;2(6):873-86
        https://doi.org/10.1039/B9NR00430K 
96.    Machui F, Hösel M, Li N, Spyropoulos GD, Ameri T, Søndergaard RR, et al. Cost analysis of roll-to-roll fabricated ITO free single and tandem organic solar modules based on data from manufacture. Energy & Environmental Science. 2014;7(9):2792-802
       https://doi.org/10.1039/C4EE01222D.
97.    Kojima A, Teshima K, Shirai Y, Miyasaka T. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. Journal of the American Chemical Society. 2009;131(17):6050-1
       https://doi.org/10.1021/ja809598r.
98.    Shi B, Duan L, Zhao Y, Luo J, Zhang X. Semitransparent perovskite solar cells: from materials and devices to applications. Adv Mater. 2020;32(3):1806474 https://doi.org/10.1002/adma.201806474.
99.    Djurišić AB, Liu FZ, Tam HW, Wong MK, Ng A, Surya C, et al. Perovskite solar cells - An overview of critical issues. Progress in Quantum Electronics. 2017;53:1-37 https://doi.org/10.1016/j.pquantelec.2017.05.002.
100. Fu F, Feurer T, Weiss Thomas P, Pisoni S, Avancini E, Andres C, et al. High-efficiency inverted semi-transparent planar perovskite solar cells in substrate configuration. Nature Energy. 2016;2(1):16190
        https://doi.org/10.1038/nenergy.2016.190.
101. Fallahdoust Moghadam S, Gilani N, Yousefi Aa. A Review of Recent Progress in Fabrication of Perovskite Solar Cells. J Stud Color World. 2023;13(2):159-84 https://dor.net/20.1001.1.22517278.1402.13.2.3.7.
102. Maleki E, Ranjbar M, Kahani SA. The Effect of Antisolvent Dropping Delay Time on The Morphology and Structure of the Perovskite Layer in the Hole Transport Material Free Perovskite Solar Cells. Progress in Color, Colorants and Coatings. 2021;14(1):47-54 https://doi.org/10.30509/pccc.2021.81671.
103. You J, Yang Y, Hong Z, Song T-B, Meng L, Liu Y, et al. Moisture assisted perovskite film growth for high performance solar cells. Appl Phys Lett. 2014;105(18) https://doi.org/10.1063/1.4901510.
104. Xiong J, Qi Y, Zhang Q, Box D, Williams K, Tatum J, et al. Enhanced moisture and water resistance in inverted perovskite solar cells by poly (3-hexylthiophene). ACS Applied Energy Materials. 2021;4(2):1815-23
       https://doi.org/10.1021/acsaem.0c02941.
105. Salado M, Contreras-Bernal L, Caliò L, Todinova A, López-Santos C, Ahmad S, et al. Impact of moisture on efficiency-determining electronic processes in perovskite solar cells. Journal of Materials Chemistry A. 2017;5(22):10917-27 https://doi.org/10.1039/C7TA02264F.
106. Parida B, Singh A, Kalathil Soopy AK, Sangaraju S, Sundaray M, Mishra S, et al. Recent developments in upscalable printing techniques for perovskite solar cells. Advanced Science. 2022;9(14):2200308
       https://doi.org/10.1002/advs.202200308.
107. Huddy JE, Ye Y, Scheideler WJ. Eliminating the Perovskite Solar Cell Manufacturing Bottleneck via High‐Speed Flexography. Adv Mater Technol. 2022;7(7):2101282 https://doi.org/10.1002/admt.202101282.
108. Kim YY, Yang T-Y, Suhonen R, Kemppainen A, Hwang K, Jeon NJ, et al. Roll-to-roll gravure-printed flexible perovskite solar cells using eco-friendly antisolvent bathing with wide processing window. Nature Communications. 2020;11(1):5146
 https://doi.org/10.1038/s41467-020-18940-5.
109. Wei Z, Chen H, Yan K, Yang S. Inkjet printing and instant chemical transformation of a CH3NH3PbI3/nanocarbon electrode and interface for planar perovskite solar cells. Angew Chem Int Ed. 2014;53(48):13239-43 https://doi.org/10.1002/anie.201408638.
110. Li S-G, Jiang K-J, Su M-J, Cui X-P, Huang J-H, Zhang Q-Q, et al. Inkjet printing of CH 3 NH 3 PbI 3 on a mesoscopic TiO 2 film for highly efficient perovskite solar cells. Journal of Materials Chemistry A. 2015;3(17):9092-7 https://doi.org/10.1039/C4TA05675B.
111. Bag M, Jiang Z, Renna LA, Jeong SP, Rotello VM, Venkataraman D. Rapid combinatorial screening of inkjet-printed alkyl-ammonium cations in perovskite solar cells. Mater Lett. 2016;164:472-5 https://doi.org/10.1016/j.matlet.2015.11.058.
112. Mathies F, Abzieher T, Hochstuhl A, Glaser K, Colsmann A, Paetzold UW, et al. Multipass inkjet printed planar methylammonium lead iodide perovskite solar cells. Journal of Materials Chemistry A. 2016;4(48):19207-13 https://doi.org/10.1039/C6TA07972E.
113. Mathies F, Eggers H, Richards BS, Hernandez-Sosa G, Lemmer U, Paetzold UW. Inkjet-printed triple cation perovskite solar cells. ACS Applied Energy Materials. 2018;1(5):1834-9 https://doi.org/10.1021/acsaem.8b00222.
114. Solar Power Market Size, Share & Industry Analysis, By Technology, By Application and Regional Forecast, 20212028.- Fortune Business Insights; 2021.  Contract No.: 103761 .https://www.fortunebusinessinsights .com /industry-reports/solar-power-market-100764
115. Smith BL, Woodhouse M, Horowitz KA, Silverman TJ, Zuboy J, Margolis RM. Photovoltaic (PV) module technologies: 2020 benchmark costs and technology evolution framework results. National Renewable Energy Lab.(NREL), Golden, CO (United States); 2021. https://www.nrel.gov/docs/fy22osti/78173.pdf
116. Feldman D, Ramasamy V, Margolis R. US Solar photovoltaic BESS system cost Benchmark Q1 2020 report. National Renewable Energy Laboratory-Data (NREL-DATA), Golden; 2021. https://www.nrel.gov /docs/fy22osti/80694.pdf
117. Thin-film solar cell market by type, installation, end-user, and region: Global opportunity analysis and industry forecast, 2020–2030. . Allied Market Research; 2022.  https://www.alliedmarketresearch.com/thin-film-solar-cell-market
118. Chang NL, Ho-Baillie AWY, Vak D, Gao M, Green MA, Egan RJ. Manufacturing cost and market potential analysis of demonstrated roll-to-roll perovskite photovoltaic cell processes. Sol Energy Mater Sol Cells. 2018;174:314-24 https://doi.org/10.1016/j.solmat.2017.08.038.
119. Chang NL, Yi Ho-Baillie AW, Basore PA, Young TL, Evans R, Egan RJ. A manufacturing cost estimation method with uncertainty analysis and its application to perovskite on glass photovoltaic modules. Progress in Photovoltaics: Research and Applications. 2017;25(5):390-405 https://doi.org/10.1002/pip.2871.
120. Kajal P, Verma B, Vadaga SGR, Powar S. Costing Analysis of Scalable Carbon-Based Perovskite Modules Using Bottom Up Technique. Global Challenges. 2022;6(2):2100070 https://doi.org/10.1002/gch2.202100070.
121. De Bastiani M, Larini V, Montecucco R, Grancini G. The levelized cost of electricity from perovskite photovoltaics. Energy & Environmental Science. 2023;16(2):421-9 https://doi.org/10.1039/D2EE03136A.