A Review on Providing Nanocoating Based on Nanoparticles of Zinc Oxide on magnesium alloy AZ31B by Plasma Electrolytic Oxidation Method and its Corrosion and Antibacterial Properties

Document Type : Review paper

Authors

1 School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P. O. Box: 4563-11155, Tehran, Iran.

2 Department of Nanomaterials and Nanocoatings, Institute for Color Science and Technology, P. O. Box: 16765-654, Tehran, Iran

Abstract

Although the high chemical activity of magnesium alloys has given these metals biodegradable properties and an important place as a sacrificial anode in protection issues, it has caused them to have important weaknesses in corrosion and wear resistance. Their use in industry should be limited. However, these weaknesses mostly interact with the material's surface and can be overcome using appropriate surface modification. Electrochemical plasma oxidation (PEO) is a popular method to modify the surface of magnesium alloys, which creates a ceramic coating layer on the surface of the alloy, which is not perfect. The presence of a porous structure in this layer is its important weakness because it is a suitable path for the penetration of corrosive agents to the bare surface of the substrate. One of the attractive issues for researchers is to deal with this porosity by using appropriate ceramic additives in the electrolyte during the process. Zinc oxide nanoparticles are a good option for this. These nanoparticles are multifunctional, and in this article, their effects on corrosion properties and antibacterial properties are investigated

Keywords

Main Subjects


1.   Fattah-Alhoseini A, Molaiee M, Babiee K. Influence of Electrolyte Composition and Voltage on the Microstructure and Growth Mechanism of Plasma. Anal. Bioanal. Electrochem. 2020;12(4):517-535.  https://doi.org/10.1016/j.surfcoat.2019.125214 .
2.   Moosbrugger C. Introduction to Magnesium Alloys. In Engineering Properties of Magnesium Alloys. Detroit: ASM International; 2017. 
3.   Armani A. Development of corrosion resistant coatings using natural biopolymer and pollen.[M.S thesis]. [Stokholm]: KTH Royal Institute of Thechnology ; 2020.
4.   Li CY., Fan XL., Cui LY., R.C. Zeng. Effects of Hydroxide and Silicate ions on the Plasma Electrolytic Oxidation of AZ31 Mg Alloy.Cor Sci. 2020; 47(4):. 147-154.  https://doi.org/10.22059/jufgnsm.2022.01.01.
5.   Molaiea M, Babiee K, Fattah-Alhoseini. Improving the wear resistance of plasma electrolytic oxidation (PEO) coatings applied on Mg and its alloys under the addition of nano- and micro-sized additives into the electrolytes. JOM. 2020; 9(4). https://doi.org/10.1016/j.jma.2020.11.016.
6.   Sundararajan  L, Rama K  . Aqueous Corrosion Behavior of Micro Arc Oxidation (MAO)-Coated Magnesium Alloys. Springer JOM. 2014;66:1045–1060.  https://doi.org/10.1007/s11837-014-0952-9.
7.   Xiaopeng L, Carsten B, Yuanding H, Henry O, Mikhail L. Zheludkevich, Karl Ulrich Kainer. Plasma electrolytic oxidation coatings on Mg alloy with addition of SiO2 particles. Electrochimica Acta. 2016;187:20-33. https://doi.org/10.1016/j.electacta.2015.11.033.
8.   van Doremalen N, Bushmaker T, Morris DH. Aerosol and surface stability of SARS-CoV-2 as compared with SARSCoV-19. N Engl J Med. 2020;382:1564–1567. https://doi.org/10.1056/NEJMc2004973.
9.   Veerachandra K, Yen-Con H. Using Photocatalyst Metal Oxides as Antimicrobial Surface Coatings to Ensure Food Safety—Opportunities and Challenges.J. Food Saf. 2017; 16(4): 617-631. https://doi.org/10.1111/1541-4337.12267.
10.  Khan VP·. ZnO‑based antimicrobial coatings for biomedical applications. Bioprocess Biosyst Eng . 2022; 45: 1421–1445. https://doi.org/10.1111/1541-4337.12267.
11.  Aboorvakani  R., S. John K ,Vethanathan DY, and  Madhu K. U. nfluence of Znconcentration on zinc oxide nanoparticles and their anti-corrosion property. J Alloys Comp . 2020;843. https://doi.org/ 10.1016/j.jallcom.2020.155078 .
12.  Maldhure AS, Aswar AK. Preparation of Zinc Oxide Nanomaterial usingUnsymmetrical. J Chem. 2018;7(2). https://doi.org/10.3390/nano13111795 .
13.  Babayevska  N, Łucja P, Iatsunsky I, Grzegorz N, Marcin J, Janiszewska E. ZnO size and shape effect on antibacterialactivity and cytotoxicity profile. Sci Rep. 2022; 12(1): 8148. https://doi.org/10.1038/s41598-022-12134-3.
14.  Chaharmahali R, Fattah-alhosseini A, Babaei K. Surface characterization and corrosion behavior of calcium phosphate (Ca-P) base composite layer on Mg and its alloys using plasma electrolytic oxidation (PEO): a review. J. Magnes. Alloy. 2021;9(1): 21–40. https://doi.org/ doi.org/10.1016/j.jma.2020.07.004.
15.  Mashtalyar DV, Imshinetsky IM, Sinebryukhov SL. Formation and properties of composite nanostructured PEO-coatings on metals and alloys. In International Conference on Modern Trends in Manufacturing Technologies and Equipment; 2017 ; Sevostopol , Russia Federation.
16.  Barati Darband Gh, Aliofkhazraei M, Hamghalam P , Valizade N. Plasmaelectrolytic oxidation of magnesium and its alloys: Mechanism. J Magnes .2017;5(1): 74-132. http://dx.doi.org/10.1016/j.jma.2017.02.004 .
17.  Gu Y, Bandopadhyay S, Chen C. Effect of oxidation time on the corrosion behavior of micro-arc oxidation produced AZ31 magnesium alloys in simulated body fluid. J Alloys Compd. 2012;543:109–117.  https://doi.org/10.1016/j.jallcom.2012.07.130 .
18.  Hadeer Mohammed S, Ali Taleb B, Hazim Yahya AG. Synthesis andCharacterization of ZnO Nanoparticles via Thermal Decomposition for Zn(II) SchiffBase Complex. Indon  J Chem. 2022; 22(5): 11396-1406. https://doi.org/ 10.22146/ijc.74753 .
19.  Iran Sh, Sheikhshoaie M, Ramezanpour S. Synthesis and Characterization of Nano Sized ZnO and CdO. Chem Meth . 2018;2(2):103-113.
 https://doi.org/ 10.22034/chemm.2018.60129.
20.  KavitaK, Chhabra V, and Prasad N. Antibacterial activities of zincoxide nanoparticles: a mini review. J  Phys : Conference Series. 2022; 2267(1): 012049.  https://doi.org/ 10.1088/1742-6596/2267/1/012049 .
21.  Leśniak-Ziółkowska K, Kazek-Kęsik A, Rokosz K. Electrochemical modification of the Ti-15Mo alloy surface in solutions containing ZnO and Zn3(PO4)2 particles. Mater Sci Eng. 2020;111098. https://doi.org/10.1016/j.msec.2020.111098 .
22.  Mahmoud Walaa H, Omar MM, Sayed  N, Gehad GM. Synthesis, characterization, spectroscopic and theoretical studies of transition metalcomplexes of new nano Schiff base derived from L‐histidine and 2‐acetylferrocene andevaluation of biological and anticancer activities. Appl Organomet Chem . 2018;32(7):4386.  https://doi.org/10.1002/aoc.4386
23.  Marzoli F, Bortolami A, Pezzuto A. A systematic review of human coronaviruses survival on environmental surfaces. Sci Tot Env. 2021;778:146191. https://doi.org/10.1016/j.scitotenv.2021.146191
24.  Roknian M, Fattah-alhosseini A, Gashti SO, Keshavarz M K. Study of the effect of ZnO nanoparticles addition to PEO coatings on pure titanium substrate: microstructural analysis, antibacterial effect cor- rosion behavior of coatings in Ringer’s physiological solution. J. Alloys Compd. 2018;740:330–345. https://doi.org/10.1016/J.JALLCOM.2017.12.366 .
25.  Vakili-Azghi M, Fattah-alhosseini A, Keshavarz M K. Effects of Al2O3 nano-particles on corrosion performance of plasma elec- trolytic oxidation coatings formed on 6061 aluminum alloy. J. Mater. Eng. Perform. 2016;25:5302–5313.  https://doi.org/10.1007/s11665-016-2405-9 .
26.  Puspasari V, Ridhova A, Hermawan A, Ikhlasul Amal M, Mansoob Khan M. ZnO-based antimicrobial coatings for biomedicalapplications. Bioproc and biosys eng. 2022; 45(9): 1421-1445.  
27.  Hussein RO, Nie X, Northwood DO, Yerokhin A , Matthews A. Spectroscopicstudy of electrolytic plasma and discharging behaviour during the plasma electrolyticoxidation (PEO) process. J Phys D: App Phys. 2010; 43. https://doi.org/10.1088/0022-3727/43/10/105203 
28.  Seyfi M, Fattah-alhosseini A, Pajohi-Alamoti M  , Nikoomanzari E. Effect of ZnO nanoparticles addition to PEO coatings on AZ31B Mgalloy. Journal of Asian Ceramic Societies. 2021; 9(3): 1114-1127. https://doi.org/10.1080/21870764.2021.1940728 .
29.  Rehman ZU, Hun Shin S, Hussain I, Heun Koo B. Structure corrosion properties of the two-step PEO coatings formed on AZ91D Mg alloy in K2ZrF6-based electrolyte solution. Surf. Coat. Technol. 2016; 307: 84-490. https://doi.org/10.1016/j.surfcoat.2016.09.030 .
30.  Yong KL, Kangsoo L, Taeho J. Study on microarc oxidation of AZ31Bmagnesium alloy in alkaline metal silicate solution. Electrochem Communi. 2008; 10(11): 1716-1719. https://doi.org/10.1016/j.elecom.2008.08.048
31.  Xianghua S, Jianhong L , Xijiang Y , Jianping J , Jing W. The effect ofpulse frequency on the electrochemical properties of micro arc oxidation coatingsformed on magnesium alloy. J  Mag. 2013; 1(4): p. 318-322. https://doi.org/10.1016/j.jma.2013.12.003 .
32.  Doremalen N,Bushmaker T, Morris DH. Aerosol and surface stability ofSARS-CoV-2 as compared with SARSCoV-19". N Engl J Med. 2020; 382: 1564–1567. https://doi.org/10.1056/NEJMc2004973.
33.  Ullrich, Sina S., Penelope CE Fitzgerald, Iris Nkamba, Robert E. Steinert, MichaelHorowitz, and Christine Feinle-Bisset. Intragastric lysine lowers the circulating glucoseand insulin responses to a mixed-nutrient drink without slowing gastr.
34.  Stern M, Geary L. Electrochemical polarization: I. A theoretical analysisof the shape of polarization curves. J  electrochem soci. 1957; 104(1): 56.  http://dx.doi.org/10.1149/1.2428496.
35.  Sharma R, Firoz A, Sharma AK., Dutta V, Dhawan SK. Role of zincoxide and carbonaceous nanomaterials in non-fullerene-based polymer bulkheterojunction solar cells for improved cost-to-performance ratio. J  Mat Chem . 2015; 3(44): 22227-22238. https://doi.org/10.1039/C5TA06802A.
Sikdar S, Pramod VM, Raven M, Timo J, Pradeep LM. Plasma Electrolytic Oxidation (PEO) Process—Processing, Properties, and Applications. Nanomat . 2021 May; 11(6). https://doi.org/10.3390/nano11061375