1. Peng XX, Gai S, Cheng K, Yang F. Roles of humic substances redox activity on environmental remediation. J Hazard Mater. 2022;435:129070. https://doi.org/10.1016/ j.jhazmat.2022.129070.
2. Qu J, Shi J, Wang Y, Tong H, Zhu Y, Xu L, et al. Applications of functionalized magnetic biochar in environmental remediation: A review. J Hazard Mater. 2022;434:128841. https://doi.org/10.1016/j.jhazmat.2022. 128841.
3. Tang F, Yu H, Yassin Hussain Abdalkarim S, Sun J, Fan X, Li Y, et al. Green acid-free hydrolysis of wasted pomelo peel to produce carboxylated cellulose nanofibers with super absorption/flocculation ability for environmental remediation materials. Chem Eng J. 2020;395:125070. https://doi.org/10.1016/j.cej.2020.125070
4. Xu H, Jia Y, Sun Z, Su J, Liu QS, Zhou Q, et al. Environmental pollution, a hidden culprit for health issues. Eco-Environment Heal. 2022;1(1):31–45. https://doi.org /10. 1016/j.eehl.2022.04.003
5. Wang F, Wang R, He Z. The impact of environmental pollution and green finance on the high-quality development of energy based on spatial Dubin model. Resour Policy. 2021;74:102451. https://doi.org/10.1016/j. resourpol.2021.102451
6. Liu W, Xu Y, Fan D, Li Y, Shao XF, Zheng J. Alleviating corporate environmental pollution threats toward public health and safety: The role of smart city and artificial intelligence. Saf Sci. 2021;143:105433. https://doi.org/ 10.1016/j.ssci.2021.105433
7. Jabbar KQ, Barzinjy AA, Hamad SM. Iron oxide nanoparticles: Preparation methods, functions, adsorption and coagulation/flocculation in wastewater treatment. Environ Nanotechnology, Monit Manag. 2022;17:100661. https://doi.org/10.1016/j.enmm.2022.100661
8. Badawi AK, Zaher K. Hybrid treatment system for real textile wastewater remediation based on coagulation/flocculation, adsorption and filtration processes: Performance and economic evaluation. J Water Process Eng. 2021;40:101963. https://doi.org/10.1016/ j.jwpe.2021.101963.
9. Kundu S, Karak N. Polymeric photocatalytic membrane: An emerging solution for environmental remediation. Chem Eng J. 2022;438:135575. https://doi.org/10.1016 /j.cej.2022.135575.
10. Liu Q, Luo Y, Shi J. Reagent elution combined with positive pressure filtration: A zero-discharge method for cyanide tailings remediation. J Environ Sci. 2022;113:376–84. https://doi.org/10.1016/j.jes.2021.06.028
11. Xiao H, Low ZX, Gore DB, Kumar R, Asadnia M, Zhong Z. Porous metal–organic framework-based filters: Synthesis methods and applications for environmental remediation. Chem Eng J. 2022;430:133160. https://doi.org /10.1016/j.cej.2021.133160
12. Musarurwa H, Tavengwa NT. Application of carboxymethyl polysaccharides as bio-sorbents for the sequestration of heavy metals in aquatic environments. Carbohydr Polym. 2020;237:116142. https://doi.org/10.10 16/ j.carbpol.2020.116142
13. Zhang N, Ishag A, Li Y, Wang H, Guo H, Mei P, et al. Recent investigations and progress in environmental remediation by using covalent organic framework-based adsorption method: A review. J Clean Prod. 2020; 277:123360. https://doi.org/ 10.1016/j.jclepro .2020.123360.
14. Musarurwa H, Tavengwa NT. Sustainable extraction of pesticides in food and environmental samples using emerging green adsorbents. Sustain Chem Pharm. 2021;24: 100545.https://doi.org/10.1016/j.scp.2021.100545.
15. Uriakhil MA, Sidnell T, De Castro Fernández A, Lee J, Ross I, Bussemaker M. Per- and poly-fluoroalkyl substance remediation from soil and sorbents: A review of adsorption behaviour and ultrasonic treatment. Chemosphere. 2021; 282:131025.https://doi.org/10.1016/j.chemosphere.2021.131025.
16. Qi X, Yin H, Zhu M, Yu X, Shao P, Dang Z. MgO-loaded nitrogen and phosphorus self-doped biochar: High-efficient adsorption of aquatic Cu2+, Cd2+, and Pb2+ and its remediation efficiency on heavy metal contaminated soil. Chemosphere. 2022;294:133733.https://doi.org/10.1016/j.chemosphere.2022.133733.
17. Navaie Diva T. Various Adsorbents for removal of rhodamine b dye: a review. J Stud Color World. 2023;12(4):387–404. https://dorl.net/dor/20.1001.1. 22517278. 1401.12.4.6.7 [In Persian].
18. Oladoye PO, Adegboyega SA, Giwa ARA. Remediation potentials of composite metal-organic frameworks (MOFs) for dyes as water contaminants: A comprehensive review of recent literatures. Environ Nanotechnology, Monit Manag. 2021;16:100568. https://doi.org/10.1016/ j.enmm. 2021.100568.
19. Pourebrahimi S, Pirooz M. Functionalized covalent triazine frameworks as promising platforms for environmental remediation: A review. Clean Chem Eng. 2022;2:100012. https://doi.org/10.1016/j.clce.2022.100012
20. Rai PK. Novel adsorbents in remediation of hazardous environmental pollutants: Progress, selectivity, and sustainability prospects. Clean Mater. 2022;3:100054. https://doi.org/10.1016/j.clema.2022.100054
21. He Y, Wang Y, Shi J, Lu X, Liu Q, Liu Y, et al. Incorporating metal–organic frameworks into substrates for environmental applications. Chem Eng J. 2022;446:136866. https://doi. org/10.1016/j.cej.2022.136866.
22. Qi X, Tong X, Pan W, Zeng Q, You S, Shen J. Recent advances in polysaccharide-based adsorbents for wastewater treatment. J Clean Prod. 2021;315:128221. https://doi.org/10.1016/j.jclepro.2021.128221.
23. Musarurwa H, Tavengwa NT. Application of polysaccharide-based metal organic framework membranes in separation science. Carbohydr Polym. 2022;275:118743. https://doi.org/10.1016/j.carbpol.2021.118743
24. Jian N, Dai Y, Wang Y, Qi F, Li S, Wu Y. Preparation of polydopamine nanofibers mat as a recyclable and efficient adsorbent for simultaneous adsorption of multiple tetracyclines in water. J Clean Prod. 2021;320:128875. https://doi.org/10.1016/j.jclepro.2021.128875.
25. Musarurwa H, Tawanda Tavengwa N. Extraction and electrochemical sensing of pesticides in food and environmental samples by use of polydopamine-based materials. Chemosphere. 2021;266:129222. https://doi.org/ 10.1016/j.chemosphere.2020.129222.
26. Orta M del M, Martín J, Santos JL, Aparicio I, Medina-Carrasco S, Alonso E. Biopolymer-clay nanocomposites as novel and ecofriendly adsorbents for environmental remediation. Appl Clay Sci. 2020;198:105838. https://doi. org/10.1016/j.clay.2020.105838.
27. Musarurwa H, Chimuka L, Tavengwa NT. Metal organic framework-based magnetic solid phase extraction of pesticides in complex matrices. Microchem J. 2021;171:106907. https://doi.org/10.1016/j.microc.2021. 106907.
28. Najafi M, Abednatanzi S, Gohari Derakhshandeh P, Mollarasouli F, Bahrani S, Behbahani ES, et al. Metal-organic and covalent organic frameworks for the remediation of aqueous dye solutions: Adsorptive, catalytic and extractive processes. Coord Chem Rev. 2022;454:214332. https://doi. org/10.1016/j.ccr.2021. 214332
29. Sadiq AC, Olasupo A, Rahim NY, Ngah WSW, Suah FBM. Comparative removal of malachite green dye from aqueous solution using deep eutectic solvents modified magnetic chitosan nanoparticles and modified protonated chitosan beads. J Environ Chem Eng. 2021;9(5):106281. https://doi.org/10.1016/j.jece.2021.106281
30. Heydari M, Gharagozlou M, Ghahari M. An Overview of the Types of Edible Metal Organic Framework (MOF) Nanostructures as Biocompatible and Efficient Dye Adsorbent. J Stud Color World. 2020;9(4):29–41. https:// dorl.net/dor/20.1001.1.22517278.1398.9.4.5.5 [In Persian].
31. Daglar H, Altintas C, Erucar I, Heidari G, Zare EN, Moradi O, et al. Metal-organic framework-based materials for the abatement of air pollution and decontamination of wastewater. Chemosphere. 2022;303:135082. https://doi. org/10.1016/j. chemosphere. 2022.135082.
32. Peng H, Xiong W, Yang Z, Xu Z, Cao J, Jia M, et al. Advanced MOFs@aerogel composites: Construction and application towards environmental remediation. J Hazard Mater. 2022;432:128684. https://doi.org/10.1016/j.jhazmat. 2022.128684
33. Gorky F, Nambo A, Carreon ML. Cold plasma-Metal Organic Framework (MOF)-177 breathable system for atmospheric remediation. J CO2 Util. 2021;51:101642. https://doi.org/10.1016/j.jcou.2021.101642.
34. Bhuyan A, Ahmaruzzaman M. Metal-organic frameworks: A new generation potential material for aqueous environmental remediation. Inorg Chem Commun. 2022;140:109436. https://doi.org/10.1016/j.inoche.2022. 109436.
35. Khan S, Guan Q, Liu Q, Qin Z, Rasheed B, Liang X, et al. Synthesis, modifications and applications of MILs Metal-organic frameworks for environmental remediation: The cutting-edge review. Sci Total Environ. 2022;810:152279. https://doi.org/10.1016/j.scitotenv.2021.152279.
36. Zhu L, Meng L, Shi J, Li J, Zhang X, Feng M. Metal-organic frameworks/carbon-based materials for environmental remediation: A state-of-the-art mini-review. J Environ Manage. 2019;232:964–77. https://doi.org/10.1016/ j.jenvman. 2018.12.004
37. Liu X, Shan Y, Zhang S, Kong Q, Pang H. Application of metal organic framework in wastewater treatment. Green Energy Environ. 2023;8(3):698–721. https://doi.org/10.1016 /j.gee.2022.03.005.
38. Hayashi K, Matsuyama T, Ida J. A simple magnetite nanoparticle immobilized thermoresponsive polymer synthesis for heavy metal ion recovery. Powder Technol. 2019;355:183–90. https://doi.org/10.1016/j.powtec. 2019.07.007
39. Shamim MA, Zia H, Zeeshan M, Khan MY, Shahid M. Metal organic frameworks (MOFs) as a cutting-edge tool for the selective detection and rapid removal of heavy metal ions from water: Recent progress. J Environ Chem Eng. 2022; 10(1):106991. https://doi.org/10.1016/j.jece.2021. 106991.
40. Ahmad Isiyaka H, Jumbri K, Soraya Sambudi N, Uba Zango Z, Ain Fathihah Binti Abdullah N, Saad B. Effective adsorption of metolachlor herbicide by MIL-53(Al) metal-organic framework: Optimization, validation and molecular docking simulation studies. Environ Nanotechnology, Monit Manag. 2022;18:100663. https://doi.org/10.1016/ j.enmm. 2022.100663.
41. Musarurwa H, Tavengwa NT. Stimuli-responsive polymers and their applications in separation science. React Funct Polym. 2022;175:105282. https://doi.org/10.1016/j. reactfunct polym.2022.105282
42. Xu XY, Chu C, Fu H, Du XD, Wang P, Zheng W, et al. Light-responsive UiO-66-NH2/Ag3PO4 MOF-nanoparticle composites for the capture and release of sulfamethoxazole. Chem Eng J. 2018;350:436–44. https://doi.org/10.1016/ j.cej.2018.06.005
43. Xia Z, Shi B, Zhu W, Lü C. Temperature-responsive polymer-tethered Zr-porphyrin MOFs encapsulated carbon dot nanohybrids with boosted visible-light photodegradation for organic contaminants in water. Chem Eng J. 2021;426:131794. https://doi.org/10.1016/j.cej. 2021.131794.
44. Wei X, Wang Y, Chen J, Xu F, Liu Z, He X, et al. Adsorption of pharmaceuticals and personal care products by deep eutectic solvents-regulated magnetic metal-organic framework adsorbents: Performance and mechanism. Chem Eng J. 2020;392:124808. https://doi.org/10.1016/j.cej.2020. 124808.
45. Zhang W, Sun P, Wang X, zhang X, ran L, Zhao Q, et al. Elevating the stability and adsorption performance of metal-organic frameworks by chitosan and attapulgite for capturing methylene blue in the water. Mater Today Commun. 2022;31:103601. https://doi.org/10.1016/j. mtcomm.2022. 103601.
46. Xin Q, Cao X, Huang D, Li S, Zhang X, Xuan G, et al. Smart light-responsive hierarchical metal organic frameworks constructed mixed matrix membranes for efficient gas separation. Green Chem Eng. 2022;3(1):71–82. https://doi.org/10.1016/j.gce.2021.09.004
47. Mogale R, Akpomie KG, Conradie J, Langner EHG. Dye adsorption of aluminium- and zirconium-based metal organic frameworks with azobenzene dicarboxylate linkers. J Environ Manage. 2022;304:114166. https://doi.org/10.1016/ j.jenvman. 2021.114166
48. Zhang S, Ou R, Ma H, Lu J, Banaszak Holl MM, Wang H. Thermally regenerable metal-organic framework with high monovalent metal ion selectivity. Chem Eng J. 2021;405:127037. https://doi.org/10.1016/j.cej.2020.127037
49. Choe J, Yang X, Yu J, Jang K, Kim M, An K. Visible- light responsive PPynt@NH2-MIL-125 nanocomposite for efficient reduction of Cr(VI). Colloids Surfaces A Physicochem Eng Asp. 2022;636:128147.
https://doi.org/10.1016/j.colsurfa.2021.128147
50. Prasetya N, Ladewig BP. An insight into the effect of azobenzene functionalities studied in UiO-66 frameworks for low energy CO2 capture and CO2/N2 membrane separation. J Mater Chem A. 2019;7(25):15164–72. https://doi.org/10.1039/C9TA02096A
51. Allegretto JA, Giussi JM, Moya SE, Azzaroni O, Rafti M. Synthesis and characterization of thermoresponsive ZIF-8@PNIPAm-co-MAA microgel composites with enhanced performance as an adsorption/release platform. RSC Adv. 2020;10(5):2453–61. https://doi.org/10.1039/C9RA09729E.
52. Li Z, Liu Q, Lu X, Deng C, Sun N, Yang X. Magnetic metal-organic framework nanocomposites for enrichment and direct detection of environmental pollutants by negative-ion matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Talanta. 2019;194:329–35. https://doi.org/10.1016/j.talanta.2018.10.058
53. Huo J bo, Yu G, Wang J. Magnetic zeolitic imidazolate frameworks composite as an efficient adsorbent for arsenic removal from aqueous solution. J Hazard Mater. 2021;412:125298. https://doi.org/10.1016/j.jhazmat.2021.125298
54. Lian L, Zhang X, Hao J, Lv J, Wang X, Zhu B, et al. Magnetic solid-phase extraction of fluoroquinolones from water samples using titanium-based metal-organic framework functionalized magnetic microspheres. J Chromatogr A. 2018;1579:1–8.
https://doi.org/10.1016/j.chroma.2018.10.019
55. Tran NT, Trung LG, Nguyen MK. The degradation of organic dye contaminants in wastewater and solution from highly visible light responsive ZIF-67 monodisperse photocatalyst. J Solid State Chem. 2021;300:122287. https://doi.org/10.1016/j.jssc.2021.122287
56. Zhang X, Yuan N, Li Y, Han L, Wang Q. Fabrication of new MIL-53(Fe)@TiO2 visible-light responsive adsorptive photocatalysts for efficient elimination of tetracycline. Chem Eng J. 2022;428:131077. https://doi.org/10.1016/j. cej.2021. 131077
57. Rajput K, Sareen S, Saini S, Kumar N, Sharma V, Mehta SK, et al. Metal organic frameworks as versatile platforms for wastewater remediation. Mater Today Proc. 2022;57:846–50. https://doi.org/10.1016/j.matpr.2022.02. 457.
58. Yu H, Wang Z, Wu R, Chen X, Chan TWD. Water-dispersible pH/thermo dual-responsive microporous polymeric microspheres as adsorbent for dispersive solid-phase extraction of fluoroquinolones from environmental water samples and food samples. J Chromatogr A. 2019;1601:27–34. https://doi.org/10.1016/j.chroma.2019.05.004.
59. Musarurwa H, Tavengwa NT. Thermo-responsive polymers and advances in their applications in separation science. Microchem J. 2022;179:107554. https://doi.org /10.1016/j.microc.2022.107554
60. Hosseinian Naeini A, Kalaee M, Moradi O, Mahmoodi N. Investigating Factors Affecting the Removal of dyestuff from Wastewater Using Different Nanocomposites: A Review Study. J Stud Color World. 2023;12(4):343–368. [In Persian]. https://doi.org/20.1001.1.22517278.1401. 12.4.4.5
61. Prasetya N, Ladewig BP. Dynamic photo-switching in light-responsive JUC-62 for CO2 capture. Sci Rep. 2017;7(1):13355. https://doi.org/10.1038/s41598-017-13536-4.
62. Hadavi Moghadam B, Hasanzadeh M. Enhancing Photocatalytic Activity by Piezoelectric Effect in Dye Removal from Wastewater. J Stud Color World. 2022;12(2):117–131. https://dorl.net/dor/20.1001. 1.22517278. 1401.12.2.2.9 [In Persian].
63. Park J, Yuan D, Pham KT, Li JR, Yakovenko A, Zhou HC. Reversible Alteration of CO2 Adsorption upon Photochemical or Thermal Treatment in a Metal–Organic Framework. J Am Chem Soc. 2012;134(1):99–102. https://doi.org/10.1021/ja209197f.
64. Khan MM, Rahman A, Matussin SN. Recent Progress of Metal-Organic Frameworks and Metal-Organic Frameworks-Based Heterostructures as Photocatalysts. Nanomater (Basel, Switzerland). 2022;12(16). https://doi.org/ 10.3390/nano 12162820
65. Zheng HQ, Zhang L, Cui Y, Qian G. Dynamically responsive photonic metal–organic frameworks. Adv Photonics. 2023;5(05):3–4. https://doi.org/10.1117/1.ap. 5.5.054001
66. Scandura G, Eid S, Alnajjar AA, Paul T, Karanikolos GN, Shetty D, et al. Photo-responsive metal-organic frameworks - design strategies and emerging applications in photocatalysis and adsorption. Mater Adv. 2023; 4(5):1258–85. https://doi.org/10.1039/d2ma01022d.
67. Ragheb E, Shamsipur M, Jalali F, Mousavi F. Modified magnetic-metal organic framework as a green and efficient adsorbent for removal of heavy metals. J Environ Chem Eng. 2022;10(2):107297. https://doi.org/10.1016/j.jece.2022. 107297.
68. Zhao G, Qin N, Pan A, Wu X, Peng C, Ke F, et al. Magnetic Nanoparticles@Metal-Organic Framework Composites as Sustainable Environment Adsorbents. Fratoddi I, editor. J Nanomater. 2019;2019:1454358. https://doi.org/10.1155/2019/1454358.
69. Zhao X, Liu S, Tang Z, Niu H, Cai Y, Meng W, et al. Synthesis of magnetic metal-organic framework (MOF) for efficient removal of organic dyes from water. Sci Rep. 2015;5(1):11849. https://doi.org/10.1038/srep11849.
70. Mínguez Espallargas G, Coronado E. Magnetic functionalities in MOFs: From the framework to the pore. Chem Soc Rev. 2018;47(2):533–57. https://doi.org/ 10.1039/ c7cs00653e