Metal Organic Framework Nanocomposite Adsorbents with Enzyme Function to Remove Direct Green 6 Dye Pollution

Document Type : Research

Authors

1 Department of civil engineering, Engineering Faculty, Qom university of technology Qom, P. O. Code: 3716146611, Qom, Iran.

2 Faculty of Chemistry, Urmia University, P. O. Box: 165, Urmia, Iran.

Abstract

This research aims to investigate the separation of dyes by using the combination of enzyme-containing organometallic nanostructure resulting from the enzymatic layering process on the organometallic compound. For this purpose, 15 experiments were designed with the surface response method (RSM) and using the Central Composite design by Design Expert 7.0.0 Trial software and three factors of time, amount of adsorbent and solution concentration at three levels (+1 , 0, -1) was selected. In each test, a specific amount of absorbent was placed in 10 ml of 6-cation green color solution, and the amount of color removal was measured. The bioactive nanoabsorbent has a porosity of 30 Angstroms and a specific surface area of 2500 g/m2. Instrumental methods investigated the physical properties of prepared nanoparticles. The conditions of the tests included contact time (5-60 minutes), amount of absorbent (1-5 g/l), dye concentration (up to 1000 g/l) and different pH. The electron microscope image confirmed the nanostructure of the adsorbent. The maximum dye removal was determined with the amount of enzyme nanoabsorbent at five mg/L and a contact time of 45 minutes.

Keywords

Main Subjects


Cristovão Raquel Oliveria . Degradation of dye-containing textile effluents by enzymatic catalysis Dissertation presented for the degree of Doctor in Chemical and Biological Engineering by University of Porto. 2016.
2.  Assi N, Tehrani PMS, Aberoomand Azar, S.W Husain. J. Iran. Chem. Soc.2017;14:221-232. https://doi.org/10.1007/ s13738-016-0972-1.
3.  Mane VS. , Mall ID, Srivastava VC. Use of bagasse fly ash as an adsorbent for the removal of brilliant. Dyes Pigm. 2007;73(3):269-278. https://doi.org/10.1016/j.dyepig.2005. 12.006.
4.  Donia AM,. Atia AA, WA Al-amrani, El-Nahas AM. Effect of structural properties of acid dyes on their adsorption behaviour from aqueous solutions by amine modified silica. J Hazard Mater. 2019;161(2):1544-1550. https://doi.org/10.1016/j.jhazmat.2008.05.042.
5.  Asouhidou D., Triantafyllidis KS., Lazaridis, NK., Matis, KA.. Adsorption of remazol red 3bs from aqueous solutions using aptes-and cyclodextrin-modifiedhms-type mesoporous silicas. Colloids Surf A Physicochem Eng Asp.2009; 346(1): 83-90. https://doi.org/10.1016/j.colsurfa. 2009.05.029.
6.  Taguchi A, Schüth F. Ordered mesoporous materials in catalysis. Micropor Mesopor Mater.2014;77(1):1-45. https://doi.org/10.1016/j.micromeso.2004.06.030
7.  Xiao X., Zhang F, Feng Z, Deng S, Wang Y. Adsorptive removal and kinetics of methylene blue from aqueous solution using NiO/MCM-41 composite. Physica E Low Dimens Syst Nanostruct; 2015;6(5):4-12. https://doi.org/ 10.1016/j.physe.2014.08.006.
8.  Michniewicz, A., Ledakowicz, S., Ullrich, R., Hofrichter, M Kinetics of the enzymatic decolorization of textile dyes by laccase from Cerrena unicolor. Dyes pigm. 2008;77(2) .295-302. https://doi.org/10.1016/j.dyepig.2007.05.015.
9.  Sanchez M, de Asua I, Ruano D, Diaz K. Direct Synthesis, Structural Features, and enhanced catalytic activity of the Basolite F300-like semiamorphous Fe-BTC framework. Cryst. Growth Des. 2015;15:4498. https://doi.org/10.1021/ acs.cgd.5b00755.
10.           Castañeda Ramírez AA, Garcia Rojas E, Medina. RL, Contreras Larios JL, Suárez Parra Raúl Maubert Franco AM. Selective adsorption of aqueous diclofenac sodium, naproxen sodium, and ibuprofen using a stable fe3o4–febtc metal–organic frameworka. Mater. 2021;14:2293. https:// doi.org/10.3390/ma14092293.
11. Hou H, Zhou  R,Wu  P.Wu, LRemoval of Congo red dye from aqueous solution with hydroxyapatite/chitosan composite. Chem Eng J.2012;21(1) ,336-34. https://doi.org /10.1016/j.cej.2012.09.100
12. Greluk M, Hubicki Z . Efficient removal of Acid Orange 7 dye from water using the strongly basic anion exchange resin Amberlite IRA-958. Desalin. 2011;278(1) ,219-226. https://doi.org/10.1016/j.desal.2011.05.024
13. Alizadeh R . Removal of lead Battery manufacture industry by Magnetite iron nano particles. Iranian Journal of Chemistry & Chemical Engineering, 1393;30(1):71-77. 
14. Shahbazi A,Younesi H, Badiei A.synthesis of organic-inorganic hybrid amine based on  nanostructured silicate materials and its application for removal of heavy metal ions from aqueous solution.Water and Wastewater. 2013;23(84):13-21. 
15. Greluk M, Hubicki Z .Kinetics, isotherm and thermodynamic studies of reactive black 5 removal by acid acrylic resins. Chemical Eng 2010; 162(3): 919-26
16. Moussavi SP, Emamjomeh MM, Ehrampoush MH, ehvari M, Jamshidi S. Removal of Acid Orange 7 dye from synthetic textile wastewater by single-walled carbon nanotubes: adsorption studies, isotherms and kinetics. J Rafsanjan uniiversity Med Sci. 2013;12(11), 907-918.
17. Paul M, Pal N, Bhaumik A. Selective adsorption and release of cationic organic dye molecules on mesoporous borosilicates. Mater Sci Eng, C. 2012;32(6),1461-1468. https://doi.org/10.1016/j.msec.2012.04.026.
18. Bao cheng, QU, Jiti, Zhou., XIANG, X., ZHENG C, Hongxia ZH, Xiaobai Zhou. Adsorption behavior of Azo Dye CI Acid Red 14 in aqueous solution on surface soils. J Environ Sci. 2018;20(6):704-9. https://doi.org/10.1016/ S1001-0742(08)62116-6.
19. Chen Z, Zhou L, Zhang F, Yu C, Wei Z. Multicarboxylic hyperbranche polyglycerol modified SBA-15 for the adsorption of cationic dyes and copper ions from aqueous media. Appl Surf Sci. 2012;258(13):5291-5298. https://doi.org/10.1016/j.apsusc.2012.02.021 
20. Sheshmani S, Ashori A, Hasanzadeh S. Removal of Acid Orange 7 from aqueous solution using magnetic graphene/chitosan: a promising nano-adsorbent. Int J Biol Macromol. 2014; 68:218-224. https://doi.org/10.1016 /j.ijbiomac.2014.04.057
21.  Daneshvar N, Rasoulifard MH., Khataee, AR, Hosseinzadeh, F .Removal of CI Acid Orange 7 from aqueous solution by UV irradiation in the presence of ZnO nanopowder. J Hazard Mater. 2006;143(1):95-101. https://doi.org/10.1016/j.jhazmat.2006.08.072 
22. Torki F, Alizadeh. R. Preperation of Speseafic functionalized Magnetite nano particles for Removal of lead .J FNMM;1394;1(1):11.
23. Yanjing Y, Bai Y, Fengqi Z, Erbang Y, Jianhua Y, Chunlei X, et al. Effects of metal organic framework Fe-BTC on the thermal decomposition of ammonium perchlorate. RSC Adv. 2016:6,67308-67314. https://doi.org/10.1039/C6RA 12634K. 
24. Hosseine Z, Amirhandeh S, Salem A, Salem Sh. Adsorption of chromium iii species from colorant tannery wastewater by silica nano-particles. J Stud Color World. 2023;13(3):237-252. https://dor1.net/dor/20.1001.1. 2251 7278 .1402.13.3.1.7 [In persian).
25. Navai diva T. Various adsorbents for removal of rhodamine b dye: A review.2022 J Stud Color World, 20234;12(4):387-404. https://dor1.net/dor/20.1001.1.225 17278.1401.12.4.6.7 [In Persian].
26. Tabaraki R, Sadeghinejad N, Poorajam H. Study of dyes removal from binary system by hazelnut husk as agricultural waste by response surface methodology. J Stud Color World. 2020;14:13-23. https://dor1.net/dor/20.1001 .1.17358779.1399.14.1.2.0 [In Persian].
27.           Haque F.Z, R Nandanwar, Optik P Singh. 2016;128: 191 https://doi.org/10.1016/j.ijleo.2016.10.025