Metamaterials and invisibility

Document Type : Review paper

Author

Department of Nanomaterial and Nanocoating, Institute for Color Science and Technology, Tehran, Iran, P. O. Box: 167654-654.

Abstract

Invisibility is one of the aspirations of human beings that the optics and materials have made, and metamaterials make this achievable. Metamaterials have amazing optical properties, including a negative refractive index, which are not found in nature and must be prepared with special techniques. Normally, the light that hits an opaque object is reflected from it and becomes visible. Metamaterials transform this two-way relationship between light and objects so that the light changes its direction around the object without being reflected and passing through it. In this case, the object becomes invisible because no light is visible. In this article, general information about how objects become invisible and methods of preparing metamaterials will be presented by using the principles of light physics and explaining the phenomena of light refraction and surface plasmon.

Keywords

Main Subjects


Metamaterials based optical cloaks that promise invisible planes, vehicles and armies, and protection from earthquakes & tsunamis, 2018 Available from: https:// idstch.com.
2. Cai W, Chettiar UK, Kildishev AV, Shalaev VM. Optical cloaking with metamaterials, nature photonics. 2007;1:224–227. https://doi.org/10.1016/j.crhy.2009.01.002.
3. David H, Ann S, Morgenthaler W, Kong JA. Electromagnetic waves, Published by Pearson (edition First Edition), 1993.
4. Rupali S, Refractive Index and it's application, LAP Lambert Academic Publishing, 2018.
5. Andrews DL. Photonics, Volume 2. nanophotonic structures and materials. johnwiley&sons, 2015.
6. Chen J, Hu Sh, Zhu Sh, Li1 T, Metamaterials: From fundamental physics to intelligent design. Wily Interdisciplinary Materials. 2022;1–25. https://doi.org/ 10.1002/idm2.12049
7. Dolling G, Wegener M, Photorealistic images of objects in effective negative-index materials. Opt. Express. 2006;14(5):1842-1849. https://doi.org/10.1364 /oc.14.001842.
8. William L B, Dereux A, Thomas W E. Surface plasmon subwavelength optics. Natures, 2003;424(6950):824–30.  https://doi.org/10.1038/nature01937.
9. Wang L, Hasanzadeh Kafshgari M, Meunier M. Optical properties and applications of plasmonic-metal nanoparticles. Adv Funct Mater. 2020,30(51),2005400. https://doi.org/10.1002/adfm.202005400. 
10. Sato A. Surface plasmon fluorescence spectroscopy and optical waveguide fluorescence spectroscopy in limit of detection studies, [Master Thesis] Max Planck Institute for Polymer Research, Mainz, 2006.
11. Keusgen M. Biosensors: new approaches in drug discovery. Naturwissenschaften. 2002;89:433–444. https://doi.org/10. 1007/s00114-002-0358-3.
12. Zeng Sh. Baillargeat D, Hod HP, Yong KT. Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications, Chem Soc Rev. 2014,43,3426. https://doi.org/10.1039/c3cs60479a.
13. Abdulkarim YI, Abdulkarim YI, Bakır M, Yaşar İ, Ulutaş H, Karaaslan M, Alkurt FÖ, Sabah C, Dong J. Highly sensitive metamaterial-based microwave sensor for the application of milk and dairy products. Appl Opt AO. 2022; 61: 1972–1981. http://doi.org/10.1364/AO.451900. 
14. Islam MR, Islam MT. Metamaterial sensor based on rectangular enclosed adjacent triple circle split ring resonator with good quality factor for microwave sensing application. Sci Rep. 2022;12:6792. https://doi.org/10.10 38/s41598-022-10729-4.
15. Lin KT, Lin H, Yang, T. Structured graphene metamaterial selective absorbers for high efficiency and omnidirectional solar thermal energy conversion. Nat Commun. 2020;11:1389. https://doi.org/10.1038/s41467-020-15116-z.
16. Malen L, Fiser O, Stauffer PR., Drizdal T, Vrba J, Vrba D. Feasibility evaluation of metamaterial microwave sensors for non-invasive blood glucose monitoring, sensors. 2021;21:6871. https://doi.org/10.3390/s21206871.
17. Veselago VG. The electrodynamics of substances with simultaneously negative values of εandμ. Sov Phys Usp. 1968;10:509–514. https://doi.org/10.1070/PU1968v010n04 ABEH003699.
18. Góra P, Łopato P. Metamaterials’ application in sustainable technologies and an introduction to their influence on energy harvesting devices, Appl Sci. 2023;13:7742. https:// doi.org/10.3390/app13137742
19. Rajni, Marwaha A. An accurate approach of mathematical modeling of srr and sr for metamaterials, J Eng Sci Technol Rev. 2016;9(6),82-86. https://doi.org /10.25103/ jestr.096. 11.
20. Pendry J, Schurig D, Smith D. Controlling electromagnetic fields. Sci. 2006;1780-1782. https://doi.org/10.1126/ science.1125907.
21. Smith D, Pendry J, Wiltshire, M. Metamaterials and negative refractive index. Sci. 2004;305:788-792. https:// doi.org/10.1126/science.1096796.
22. Bao G, Liu H, Zou J, Nearly cloaking the full Maxwell equations: Cloaking active contents with general conducting layers. J Math Pures Appl. 2014;101:716–733. https://doi.org/10.1016/j.matpur.2013.10.010.
23. Stefik M, Guldin S, Vignolini S, Wiesnerd U, Steinere U, Block copolymer self-assembly for nanophotonics, Chem Soc Rev.2015. https://doi.org/10.1039/c4cs00517a.
24. Alvarez-Fernandez A, Cummins C, Saba M, Steiner U, Fleury G, Ponsinet V, Guldin S. Block copolymer directed metamaterials and metasurfaces for novel optical devices Adv. Optical Mater. 2021;9:2100175. https://doi.org/ 10.1002/adom.202100175.
25. Furusawa G, Kan T. Au nanospirals transferred onto pdms film exhibiting circular dichroism at visible wavelengths. Micromachines. 2020;11(7):641-649. https://doi.org/ 10.3390/mi11070641
26. Ke Wang, Seong Hun Park, Jintao Zhu, Jung Kyu Kim, Lianbin Zhang, and Gi-Ra Yi, Self-Assembled colloidal nanopatterns toward unnatural optical meta-materials, Adv Funct Mater. 2020,2008246. http://doi.org/10.1002/adfm. 202008246.
27. Bergmair I, Dastmalchi B, Bergmair M, Saeed A, Hilber W, Hesser G, et al. Single and multilayer metamaterials fabricated by nanoimprint lithography. Nanotechnol. 2011;22:325301.2011. http://doi.org/10.1088/0957-4484/22/ 32/325301.
28. Chao J, Lin Y, Liu H, Wang Lianhui, Fan Ch. Mater Today.2015;18. http://dx.doi.org/10.1016/j.mattod.2015.01.018.
29. Muhlig S, Cunningham A, Dintinger J, Scharf T, Bu rgi Th. Lederer Falk, et al. Self-assembled plasmonic metamaterials. Nanophotonics. 2013;2(3):211–240, http://doi.org/10.1515/nanoph-2012-0036