Synthesis of MOF-5 / Cellulose Aerogel Composite and Investigation of Its Performance in Removing Methylene Blue Dye

Document Type : Research

Authors

1 Faculty of Civil Engineering, Department of Environmental Engineering, Iran University of Science and Technology, P. O. Code: 1684613114, Tehran, Iran.

2 Faculty of Chemistry, Department of Chemistry, Iran University of Science and Technology, P. O. Code: 1684613114, Tehran, Iran

3 Department of Organic Colorants, Institute for Color Science and Technology, P. O. Box. 16765-654, Tehran, Iran

10.30509/jscw.2024.167288.1188

Abstract

Metal-organic framework (MOF) aerogels are porous materials with unique characteristics such as tunability, high surface area, chemical stability, and high mechanical strength, making them among the leading adsorbents in pollutant adsorption and identification. One of the fundamental challenges with these structures during the adsorption process is their separation at the end of the adsorption process due to their powdery nature. To address this issue, this study used aerogels and their composites with synthesized metal-organic framework (MOF). In this research, a composite of MOF-5/cellulose aerogel was fabricated using cellulose extracted from the cotton plant, and its effectiveness in removing an organic dye (methylene blue) from aqueous environments was investigated. Characterization was performed using electron microscopy, X-ray diffraction, and IR analysis. The adsorption of the pollutant (methylene blue cationic dye) was measured using a UV-vis spectrophotometer, showing a removal efficiency of 95% at alkaline pH within a 60-minute time frame. The effects of pH, time, and dye concentration were also examined. The reusability of the adsorbent material was demonstrated, with only a 5% reduction in adsorption capacity after three cycles of use.

Keywords

Main Subjects


1.     Yang X, Tang Q, Jiang Y, Zhang M, Wang M, Mao L. Nanoscale ATP-responsive zeolitic imidazole framework-90 as a general platform for cytosolic protein delivery and genome editing. ACS.2019;141(9):3782-6.https://doi.org/ 10.1021/jacs.8b11996. 
2.     Zhou Y, Wang D, Feng Q, Wu Q, Cao F, Jiang L, et al. A facile synthesis of a Ce-based MOF at room temperature for effective adsorption of methylene blue. Crys tEng Comm. 2024;26(14):2009-1.https://doi.org/10.1039/D4CE 00096J.
3.     El Messaoudi N, El Mouden A, El Khomri M, Bouich A, Fernine Y, Ciğeroğlu Z, et al. Experimental study and theoretical statistical modeling of acid blue 25 remediation using activated carbon from Citrus sinensis leaf. Fluid Ph. Equilib. 2023;563:113585. https://doi.org/10.1016/j.fluid. 2022.113585
4.      Cao Y, Lu S, Cui W, Xu Y, Cao Z, Zeng Y. Adsorption desulfurization via π-complexation with Ag+-exchanged anionic metal–organic framework. I&EC Res. 2019;58(16):6704-11. https://doi.org/10.1021/acs.iecr. 9b006 17.
5.     Kitchamsetti N, Chakra CS, De Barros ALF, Kim D. Development of MOF based recyclable photocatalyst for the removal of different organic dye pollutants. Nanomater. 2023;13(2):336. https://doi.org/10.3390/nano13020336.
6.     Lin J, Ye W, Xie M, Seo DH, Luo J, Wan Y, et al. Environmental impacts and remediation of dye-containing wastewater. Nat Rev Earth Environ . 2023;4(11):785-803. https://doi.org/10.1038/s43017-023-00489-8.
7.     . Hemashenpagam N, Selvajeyanthi S. Textile Dyes and Their Effect on Human Beings. Nanohybrid Materials for Treatment of Textiles Dyes: Springer; 2023. p. 41-60. https://doi.org/10.1007/978-981-99-3901-5_3.
8.      Solayman H, Hossen MA, Abd Aziz A, Yahya NY, Leong KH, Sim LC, et al. Performance evaluation of dye wastewater treatment technologies: A review. J Environ Chem Eng. 2023;11(3):109610.https://doi.org/10.1016/j.jece.2023.109610
9.     Khan MD, Singh A, Khan MZ, Tabraiz S, Sheikh J. Current perspectives, recent advancements, and efficiencies of various dye-containing wastewater treatment technologies. JWPE. 2023;53:103579.
10.   Taher T, Munandar A, Mawaddah N, Wisnubroto MS, Siregar PMSBN, Palapa NR, et al. Synthesis and characterization of montmorillonite–Mixed metal oxide composite and its adsorption performance for anionic and cationic dyes removal. Inorg Chem Commun.2023;147:110231.https://doi.org/10.1016/j.jwpe.2023.103579.
11.  Lawal IM, Soja UB, Hussaini A, Saleh D, Aliyu M, Noor A, et al. Sequential batch reactors for aerobic and anaerobic dye removal: a mini-review.CSCEE. 2023:100547. https://doi.org 10.1016/j.cscee.2023.100547
12.  Zhu L, Zong L, Wu X, Li M, Wang H, You J, et al. Shapeable fibrous aerogels of metal–organic-frameworks templated with nanocellulose for rapid and large-capacity adsorption. ACS nano. 2018;12(5):4462-8.https://doi.org 10.1021/acsnano.8b00566
13.  Aghayi‐Anaraki M, Safarifard V. Fe3O4@ MOF magnetic nanocomposites: Synthesis and applications. Eur J Inorg. Chem. 2020;2020(20):1916-37. https://doi.org/10.1002 /ejic. 202000012
14.  Shaheed N, Javanshir S, Esmkhani M, Dekamin MG, Naimi-Jamal MR. Synthesis of nanocellulose aerogels and Cu-BTC/nanocellulose aerogel composites for adsorption of organic dyes and heavy metal ions. Sci Rep. 2021;11(1):18553. https://doi.org/10.1038/s41598-021-978 61-9
15.  Lei C, Gao J, Ren W, Xie Y, Abdalkarim SYH, Wang S, et al. Fabrication of metal-organic frameworks@ cellulose aerogels composite materials for removal of heavy metal ions in water. Carbohydr Polym.2019;205:35-41 https://doi.org/10.1016/j.carbpol.2018.10.029
16.  Ma X, Lou Y, Chen X-B, Shi Z, Xu Y. Multifunctional flexible composite aerogels constructed through in-situ growth of metal-organic framework nanoparticles on bacterial cellulose. J Chem Eng. 2019;356:227-35. https://doi.org/ 10.1016/j.cej.2018.09.034
17.  Long L-Y, Weng Y-X, Wang Y-Z. Cellulose aerogels: Synthesis, applications, and prospects. Polymers. 2018;10(6):623. https://doi.org/10.3390/polym10060623.
18.  Hoepfner S, Ratke L, Milow B. Synthesis and characterisation of nanofibrillar cellulose aerogels. Cellulose. 2008;15:121-9. https://doi.org/10.1007/s10570-007-9146-8.
19.  Zhou Y, Hu Y, Tan Z, Zhou T. Cellulose extraction from rice straw waste for biodegradable ethyl cellulose films preparation using green chemical technology. J Clean Prod. 2024;439:140839 https://doi.org/. 10.1016/j.jclepro.2024. 140839.
20.  Manian AP, Cordin M, Pham T. Extraction of cellulose fibers from flax and hemp: a review. Cellulose. 2021;28(13):8275-94. https://doi.org/10.1007/s10570-021-04051-x.
21.  Zhai X, Xiang Y, Tian Y, Wang A, Li Z, Wang W, et al. Extraction and characterization of cellulose nanocrystals from cotton fiber by enzymatic hydrolysis‐assisted high‐pressure homogenization.  J Vinyl Addit Techn. 2021;27(4):781-94. https://doi.org/10.1002/vnl.21849.
22.   Vinhas S, Sarraguça M, Moniz T, Reis S, Rangel M. A New Microwave-Assisted Protocol for Cellulose Extraction from Eucalyptus and Pine Tree Wood Waste. Polym. 2023;16(1):20. https://doi.org/10.3390/polym16010020.
23.  Emenike EC, Iwuozor KO, Saliu OD, Ramontja J, Adeniyi AG. Advances in the extraction, classification, modification, emerging and advanced applications of crystalline cellulose: a review.Carbohydr Polym. 2023:100337. https://doi.org/10.1016/j.carpta.2023.100337
24.  Zhou J, Liu M, Bai S, Sun J, Wei J, Wang J. Well‐Dispersed MOF‐5 on The Polyvinylpyrrolidone‐Coated Random Lamellas of Clinoptilolites for Adsorptive Separation Performance of CO2, CH4, and N2. Adv Sustain. Syst.2024:2300466. https://doi.org/10.1002/adsu. 202300466
25.  Yu S, Ai L, Qiao Y, Ju X. Li-decorated C48B12 and Li12C48B12-impregnated MOF-5 for hydrogen storage: A multi-scale simulation study. Int J Hydrogen Energy. 2024;69:570-5. https://doi.org/10.1016/j.ijhydene. 2022. 09.123.
26.  Zhang S, Ding J, Tian D, Su W, Liu F, Li Q, et al. Preparation of novel poly (sodium p-styrenesulfonate) /sodium alginate hydrogel incorporated with MOF-5 nanoparticles for the adsorption of Pb (II) and tetracycline. J Mol Struct. 2024;1300:137313. https://doi.org/10.1016/ j.molstruc.2023.137313.
27.  Cheng S, Li Y, Yu Z, Gu R, Wu W, Su Y. Waste PET-derived MOF-5 for high-efficiency removal of tetracycline.Sep Purif Technol. 2024;339:126490. https://doi.org/10.1016/j.seppur.2024.126490.
28.  Jun B-M, Heo J, Taheri-Qazvini N, Park CM, Yoon Y. Adsorption of selected dyes on Ti3C2Tx MXene and Al-based metal-organic framework. Ceram Int. 2020; 46(3):2960-8. https://doi.org/10.1016/j.ceramint.2019.09 .293.
29.  Liu S, Zhang X, Wang J, Wu J, Jiang X, Xu M. Preparation of underwater superoleophobic polyimide mesh for oil/water separation via a simple Ce/Cu-MOF in-situ growth strategy Surf Coat Technol. 2021;421:127422. https://doi.org/ 10.1016/j.surfcoat.2021.127422
30.  Wang J, Wang X, Zhao G, Song G, Chen D, Chen H, et al. Polyvinylpyrrolidone and polyacrylamide intercalated molybdenum disulfide as adsorbents for enhanced removal of chromium (VI) from aqueous solutions.J Chem Eng. 2018;334:569-78. https://doi.org/10.1016/j.cej.2017.10.068
31.  Khan NA, Bhadra BN, Jhung SH. Heteropoly acid-loaded ionic liquid@ metal-organic frameworks: Effective and reusable adsorbents for the desulfurization of a liquid model fuel. J Chem Eng. 2018;334:2215-21. https://doi.org/10.1016/j.cej.2017.11.159
32.  Özacar M, Şengil İA. A two stage batch adsorber design for methylene blue removal to minimize contact time. J. Environ. Manage. 2006;80(4):372-9. https://doi.org/ 10.1016/j.jenvman.2005.10.004
33.  Hethnawi A, Nassar NN, Manasrah AD, Vitale G. Polyethylenimine-functionalized pyroxene nanoparticles embedded on Diatomite for adsorptive removal of dye from textile wastewater in a fixed-bed column. J Chem Eng. 389;320-404,2017. https://doi.org/10.1016/j.cej. 2017. 03. 057.
34.  Liang Z, Marshall M, Chaffee AL. CO2 adsorption, selectivity and water tolerance of pillared-layer metal organic frameworks. Micropor Mesopor Mat. 2010;132(3):305-10. https://doi.org/10.1016/j.micromeso. 2009.11.026.
35.  Freundlich H. Über die adsorption in lösungen. Zeitschrift für physikalische Chemie. 1907;57(1):385-470.
36.  Shao Y, Zhou L, Bao C, Ma J, Liu M, Wang F. Magnetic responsive metal–organic frameworks4 nanosphere with core–shell structure for highly efficient removal of methylene blue. J Chem Eng. 2016;283:1127-36. https://doi.org/10.1016/j.cej.2015.08.051
37.  Zhang C-F, Qiu L-G, Ke F, Zhu Y-J, Yuan Y-P, Xu G-S, et al. A novel magnetic recyclable photocatalyst based on a core–shell metal–organic framework Fe3O4@ MIL-100 (Fe) for the decolorization of methylene blue dye. J Mater Chem. A. 2013;1(45):14329-34. https://doi.org/10.1039 /C3TA13030D
38.  Liu T, Li Y, Du Q, Sun J, Jiao Y, Yang G, et al. Adsorption of methylene blue from aqueous solution by graphene. Colloids Surf B Biointerfaces. 2012;90:197-203. https://doi.org/ 10.1016/j.colsurfb.2011.10.019.