A Review of New Methods for the Synthesis of Dyes: Microwave and Ultrasound

Document Type : Review paper

Authors

1 Department of Organic Colorants, Institute for Color Science and Technology, P. O. Box. 16765-654, Tehran, Iran.

2 Department of Science, K.N. Toosi University of Technology, P. O. Box: 15785-4416, Tehran, Iran.

10.30509/jscw.2024.167321.1191

Abstract

Two important challenges in today's world are environmental pollution and energy production.Due to the increase in population, the production of many chemical compounds, including dyes, is increasing. Important groups of organic dyes, whose preparation process was developed by this new technology, are: Fluorescent sulforhodamine dyes for protein labeling, coumarins, fluorescein dyes, red and near-red luminescent compounds.In this article, ultrasound and microwave methods and general principles are introduced, and the latest scientific achievements published on the synthesis of organic dyes using the electrosonde or microwave method are examined.At the end, these two methods are compared with the conventional method of synthesis of organic dyes and its advantages and disadvantages are introduced.
 

Keywords

Main Subjects


  1. Zollinger H. Color chemistry: synthesis, properties and application of organic dyes and pigments, Wiley-VCH pub., Switzerland, 2003.

    1. M. Hosseinnezhad, S. Safapour, Sources, chemistry, classification, challenges, and prospects of renewable dyes and pigments. Renewable Dyes and Pigments, Elsevier Pub. 2024. https://doi.org/10.1016/B978-0-443-15213-9.00001-6.
    2. Hosseinnezhad M, Nasiri S. Review on organometallic dyes for light-emitting diodes. J Studies Color World. 2023: 13(4): 359-375. https://dorl.net/dor/20.1001.1.22517278. 1402.13.4.5.3.
    3. Hosseinnezhad M, Nasiri S, Gharanjig K. Review on light-emitting organic dyes based on naphthalimide. J Stud Color World. 2023;13(1):1-14. https://dorl.net/dor/20.1001.1. 225 17278.1402.13.1.1.3.
    4. Zeng L, Huang L, Han G. Dye doped metal-organic frameworks for enhanced phototherapy. Adv Drug Delivery. 2022;189:114479. https://doi.org/10.1016/ j.addr. 2022.114479.
    5. Lidstrom P, Tierney J, Wathey B, Westman J. Microwave assisted organic synthesis—a review. Tetrahedron. 2001: 57(45): 9225-9283. https://doi.org/10.1016/S0040-4020 (01)00906-1
    6. Elgemeie GH, Mohamed RA. Microwave synthesis of fluorescent and luminescent dyes (1990-2017). J Mol Struct. 2018;1173:707-742. https://doi.org/10.1016 /j.molstruc.2018.06.101
    7. Gawande MB, Shelke SN, Zboril R. Microwave-assisted chemistry: synthetic applications for rapid assembly of nanomaterials and organics. Acc Chem Res.2014;47(4):1338-1348. https://doi.org/10.1021/ar 400309b
    8. Klinowsk J, Almeida Paz FA, Silva P, Rocha J. Microwave-assisted synthesis of metal–organic frameworks. Dalton Trans. 2011;40:321-330. https://doi.org/10.1039/C0DT00 708K.

    10.Poorolnik W, Koczorowski T, Wieczoerk-Szweda E, Szczolko W, Falkowski M, Piskorz J. Microwave-assisted synthesis, photochemical and electrochemical studies of long-wavelength BODIPY dyes. Spectrochim. Acta Part A: Mol Biomol Spect. 2024;314:124188. https://doi.org/ 10.1016/j.saa.2024.124188.

    1. Bargujar S, Ratnani S, Jauin R. Recent advances in microwave assisted synthesis of Schiff base metal complexes. Inorg Chem Commun. 2024;162:112250. https://doi.org/10.1016/j.inoche.2024.112250.
    2. Beagle LK, Horsting E, Buechele J, Beagle JK. Microwave assisted synthesis of quinoxaline derivatives. Results Chem. 2023;6:101211. https://doi.org/10.1016 /j.rechem .2023.101211.
    3. Alazemi AM, Dawood KM, Al-Matar HM, Tohamy WM. Microwave-assisted chemoselective synthesis and photophysical properties of 2-arylazo-biphenyl-4-carboxamides from hydrazonals. RSC Adv. 2023;13(36):25054-25068. https://doi.org/10.1039/ d3ra 04 558g.
    4. Hafez NS, Amer WA, Okba EA, Saker MA, Alganzory HH, Ebeid EM. Novel ultra-sensitive and highly selective cyanine sensors based on solvent-free microwave synthesis for the detection of trace hypochlorite ions in drinking water. Spectrochim. Acta Part A: Mol Biomol Spect. 2023;303:123116. https://doi.org/10.1016/ j.saa.2023.123116.
    5. Thakuri A, Banerjee M, Chatterjee A. Microwave-assisted rapid and sustainable synthesis of unsymmetrical azo dyes by coupling of nitroarenes with aniline derivatives. I Sci. 2022;25(6):104497. https://doi.org/10.1016/ j.isci.2022. 104497.
    6. Bathula C, Mk R, Kumar A, Yadav H, Ramesh S, Shinde S, Shrestha NK, Km M, Reddy V, Mohammed A. Microwave assisted synthesis of imidazolyl fluorescent dyes as antimicrobial agents. J Mater Res Technol. 2020;9(3):6900-6908. https://doi.org/10.1016/j.jmrt. 2020.01.011.
    7. Winstead AJ, Williams R, Zhang Y, Mclean C, Oyaghire S. Microwave synthesis of cyanine dyes. J Microwave Power Electromagnetic Energy. 2020; 44(4): 207-212. https://doi.org/10.1080/08327823.2010.11689789.
    8. Khattab TA, Haggag KM, Elnagdi MH, Abdelrahman AA, Abdelmoez Aly S. Microwave-assisted synthesis of arylazoaminopyrazoles as disperse dyes for textile printing. J Inorg General Chem. 2018;642(13):766-772. https://doi.org/10.1002/zaac.201600148.
    9. Al-Etaibi AM, El-Apasery MA, Mahmoud HM, Al-Awadi NA. One-pot synthesis of disperse dyes under microwave irradiation: dyebath reuse in dyeing of polyester fabrics. Molecules. 2019;19(4):4266-4280. https://doi.org/ 10. 3390/molecules17044266.
    10. Elgemeie GH, Ahmed KA, Ahmed EA, Helal MH, Masoud DM. A simple approach for the synthesis of coumarin fluorescent dyes under microwave irradiation and their application in textile printing. Pigm Resin Technol. 2018; 45(4):217-224. https://doi.org/10.1108/PRT-02-2015-0019.
    11. Wang LY, Zhang XG, Shi YP, Zhanj ZX. Microwave-assisted solvent-free synthesis of some hemicyanine dyes. Dye Pigm. 2014;62(1):21-25. https://doi.org/10.1016 /j.dyepig.2003.10.019.
    12. El-Apasery MA. Solvent-free one-pot synthesis of some azo disperse dyes under microwave irradiation: Dyeing of polyester fabrics. J Appl Polymer Sci. 2012;109(2):695-699. https://doi.org/10.1002/app.28129
    13. Gharat NN, Rathod VK. Green Sustainable Process for Chemical and Environmental Engineering and Science. Chapter 1: Ultrasound-assisted organic synthesis. Elsevier Pub. 2020, 1-44. https://doi.org/10.1016/B978-0-12-819540-6.00001-2.
    14. Singh V, Kaur KP, Khurana A. et al. Ultrasound: A boon in the synthesis of organic compounds. Reson 1998; 3: 56-60. https://doi.org/10.1007/BF02836081
    15. Hosseinnezhad M, Nasiri S. Review on metal-free light-emitting dyes for OLED. J Studies Color World. 2022: 12(2):105-116. https://dorl.net/dor/20.1001. 1.22517278. 1401.12.2.1.8.
    16. Chen S, Wang Y, Li F. et al. Generation and evolution of cavitation bubbles in volume alternate cavitation (VAC). Chin J Mech Eng. 2023;36:66-77. https://doi. org/10.1186/s10033-023-00890-w.
    17. Karanlik CC, Erdogmus A. The ultrasound and light combination as a new approach for BODIPY dyes with the enhanced singlet oxygen formation. J Photochem Photobiol Chem. 2024;447(15):115210. https://doi.org/ 10.1016/ j.jphotochem.2023.115210.
    18. Khan SA, Alam MZ, Mohasin M. et al. Ultrasound-assisted synthesis of chalcone: a highly sensitive and selective fluorescent chemosensor for the detection of Fe3+ in aqueous media. J Fluoresc. 2024;34:723-728. https:// doi.org/10.1007/s10895-023-03317-w
    19. Diaconu D, Mangalagiu V, Dunca S, Mantu DA, Antou V, Roman T. Ultrasound assisted synthesis of hybrid quinoline anchored with 4-R-benzenesulfonamide moiety with potential antimicrobial activity. 2023;9(11):e21518. https://doi.org/10.1016/j.heliyon.2023.e21518
    20. Kumar PK, Venti SS. Ultrasound-assisted synthesis of defective MOF-801for the adsorptive removal of cationic dye. Iran J Chem Chem Eng. 2023;42(10):1-13.
    21. Kastic M, Najdanovic S, Velinov N, Vucic MR, Petrovic M. Ultrasound-assisted synthesis of a new material based on MgCoAl-LDH: Characterization and optimization of sorption for progressive treatment of water. Environ Technol Innov. 2022;26:102358. https://doi.org/10.1016/ j.eti.2022.102358.
    22. Kambale V, Jadhum J, Piste P. Ultrasound-assisted, green and efficient synthesis of ferrocene-appended azo-phenothiazines. Current Res Green Sustain Chem. 2021;4: 100125. https://doi.org/10.1016/j.crgsc.2021.100125.
    23. Lara-Ceron JA, Jimenezperez VM, Molina-Paredes AA, Ochoa ME, Sabio RM, Amaral AC, Silva RR, Ribeiro SJL, Barud HS, Munoz-Flores BM. Ultrasound-assisted synthesis of organotin compounds and their application as luminescent dye in silk fibroin scaffolds. Inorg Chim Actal. 2020;505(24):119490. https://doi.org/10.1016/j.ica. 2020. 119490.
    24. Saady A, Sudhakar P, Nassir M, Gedanken A. Ultrasonic assisted synthesis of styrylpyridinium dyes: Optical properties and DFT calculations. Ultrasonic Sonochem. 2020;67:105182. https://doi.org/10.1016/j.ultsonch. 2020. 105182.
    25. Abdullah HS, Kan Sy. Green Sustainable Process for Chemical and Environmental Engineering and Science. Chapter 10: Microwave- and ultrasound-assisted heterocyclics synthesis in aqueous media. Elsevier Pub. 2020,319-355. https://doi.org/10.1016/B978-0-12-819542-0.00010-5.
    26. Tierney JP, Lidstrom P. Microwave assisted organic synthesis. CRC Press, 2005, Australia, 18-20.
    27. Oladipa AA. Microwave-assisted synthesis of high-performance polymer-based nanoadsorbents for pollution control, New polymer nanocomposites for environmental remediation, Elsevier Pub. Chapter 10.2018;337-359. https://doi.org/10.1016/B978-0-12-811033-1.00014-7.
    28. Leyva E, Loredo-Carrillo SE. Lopez LI. Catalytic, ultrasonic, and microwave-assisted synthesis of naphthoquinone derivatives by intermolecular and intramolecular N-arylation reactions, Green Sustainable Process for Chemical and Environmental Engineering and Science, Elsevier Pub. Chapter 4.2021;231-264. https://doi.org/10.1016/B978-0-12-819848-3.00004-9.
    29. Vaitsis G, Sourkouni G, Argirusis. Sonochemical synthesis of MOFs, Metal-Organic Frameworks for Biomedical Applications, Chapter 11.2020;223-244. https://doi.org/ 10.1016/B978-0-12-816984-1.00013-5.
    30. Henary M, Kanada C, Rotolo L, Savino B, Owens EA, Cravotto G. Benefits and applications of microwave-assisted synthesis of nitrogen containing heterocycles in medicinal chemistry. RSC Adv. 2020;10(24):14170-14197. https://doi.org/10.1039/d0ra01378a.