A Review of the Application of Conductive Carbon Nano-structures in Flexible Printable Photovoltaic Cells

Document Type : Review paper

Authors

1 Department of Printing Science and Technology, Institute for Color Science and Technology, P. O. Box: 16765-654, Tehran, Iran.

2 Department of Color Physics, Institute for Color Science and Technology, P. O. Box: 16765-654, Tehran, Iran

10.30509/jscw.2024.167347.1198

Abstract

Flexible photovoltaic devices have attracted significant attention due to their lightweight nature, resilience to complex deformations, applicability on curved surfaces, compatibility with roll-to-roll manufacturing, and ease of storage and transportation. These devices hold promising applications in electronics, smart textiles, electric vehicles, and the aerospace industry. This article addresses the necessity of harnessing energy from sustainable resources, considering the limitations of fossil fuels related to both scarcity and environmental concerns. It then introduces various conductive carbon-based nanostructures, such as fullerenes, graphene nanosheets, and carbon nanotubes, followed by an overview of their applications in flexible photovoltaic devices, specifically in dye-sensitized solar cells (DSSC), organic solar cells (OSC), and perovskite solar cells (PSC). The discussion focuses primarily on the impacts of these nanostructures on power conversion efficiency (PCE), flexibility, and the commercialization potential of photovoltaics. Finally, various coating and printing techniques for preparing photovoltaic electrodes using carbon nanostructure-containing ink formulations are reviewed, along with a discussion of their advantages and disadvantages.

Keywords

Main Subjects


1.Debus C, Piraud M, Streit A, Theis F, Götz M. Reporting electricity consumption is essential for sustainable AI. Nat Mach Intell. 2023;5(11):1176–8. https://doi.org/10.1038/ s42256-023-00750-1.
2.  Zhou SL, Shah AA, Leung PK, Zhu X, Liao Q. A comprehensive review of the applications of machine learning for HVAC. DeCarbon. 2023;2:100023. 
3.  Moore K, Wei W. Applications of carbon nanomaterials in perovskite solar cells for solar energy conversion. Nano Mater Sci. 2021;3(3):276–90. 
4.  Mohammad raei Nayini M, Jalili M, Bastani S, Khamseh S. Printed solar cells, an inevitable remedy for the global energy crisis. J Stud Color World. 2023;13(4):377–406. https://dorl.net/dor/20.1001.1.22517278.1402.13.4.3.1.
5.  Mohammad Raei Nayini M, Jalili M, Ranjbar Z. Printed electronics, based on carbon nanotubes and graphene nanosheets. J Stud Color World. 2020;10(3):29–42. https://dorl.net/dor/20.1001.1.22517278.1399.10.3.3.8
6.  Nayini MMR, Ranjbar Z. Carbon nanotubes: dispersion challenge and how to overcome it bt- handbook of carbon nanotubes. In: Abraham J, Thomas S, Kalarikkal N, editors. Cham: Springer International Publishing; 2020. p. 1–52. https://doi.org/10.1007/978-3-319-70614-6_64-1.
7.  Li Y, Meng L, Yang Y (Michael), Xu G, Hong Z, Chen Q, et al. High-efficiency robust perovskite solar cells on ultrathin flexible substrates. Nat Commun. 2016;7(1):10214. https://doi.org/10.1038/ncomms10214.
8.  Chen J, Huang Y, Zhang N, Zou H, Liu R, Tao C, et al. Micro-cable structured textile for simultaneously harvesting solar and mechanical energy. Nat Energ. 2016;1(10):16138. https://doi.org/10.1038/nenergy.2016.138.
9.  Zhang K, Gao K, Xia R, Wu Z, Sun C, Cao J, et al. High-performance polymer tandem solar cells employing a new n-type conjugated polymer as an interconnecting layer. Adv Mater. 2016;28(24):4817–23. https:// doi.org/10.1002/ adma.201506270
10.  Jung S, Lee J, Seo J, Kim U, Choi Y, Park H. Development of annealing-free, solution-processable inverted organic solar cells with n-doped graphene electrodes using zinc oxide nanoparticles. Nano Lett. 2018;18(2):1337–43. https://doi.org/10.1021/acs.nanolett.7b05026
11.  Tan H, Jain A, Voznyy O, Lan X, García de Arquer FP, Fan JZ, et al. Efficient and stable solution-processed planar perovskite solar cells via contact passivation. Sci. 2017;355(6326):722–6. 
12.  Bi C, Chen B, Wei H, DeLuca S, Huang J. Efficient flexible solar cell based on composition-tailored hybrid perovskite. Adv Mater. 2017;29(30):1605900. https:// doi.org/10.1002/adma.201605900.
13.  Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE. C60: Buckminsterfullerene. Nature. 1985;318(6042):162–3. 
14.  Ganesamoorthy R, Sathiyan G, Sakthivel P. Review: Fullerene based acceptors for efficient bulk heterojunction organic solar cell applications. Sol Energy Mater Sol Cells. 2017;161:102–48. 
15.  Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ. Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions. Sci. 1995;270 (5243):1789–91. 
16.  Cui C, Li Y, Li Y. Fullerene Derivatives for the Applications as Acceptor and Cathode Buffer Layer Materials for Organic and Perovskite Solar Cells. Adv Energy Mater. 2017;7(10):1601251. 
17.  Wienk MM, Kroon JM, Verhees WJH, Knol J, Hummelen JC, van Hal PA, et al. Efficient Methano[70]fullerene/ MDMO-PPV Bulk Heterojunction Photovoltaic Cells. Angew Chemie Int Ed. 2003;42(29):3371–5. 
18.  Shao Y, Yuan Y, Huang J. Correlation of energy disorder and open-circuit voltage in hybrid perovskite solar cells. Nat Energy. 2016;1(1):15001. 
19.  Iijima S. Helical microtubules of graphitic carbon. Nature. 1991;354(6348):56–8. https://doi.org/10.1038/354056a0
20.  Yu L, Shearer C, Shapter J. Recent Development of Carbon Nanotube Transparent Conductive Films. Chem Rev. 2016;116(22):13413–53. https://doi.org/10.1021/acs.Chem rev.6b00179
21.  Mann D, Javey A, Kong J, Wang Q, Dai H. Ballistic Transport in Metallic Nanotubes with Reliable Pd Ohmic Contacts. Nano Lett. 2003;3(11):1541–4. https:// doi.org/ 10.1021/nl034700o
22.  Chen G, Futaba DN, Sakurai S, Yumura M, Hata K. Interplay of wall number and diameter on the electrical conductivity of carbon nanotube thin films. Carbon N Y. 2014;67:318–25. 
23.  Panhuis M. Carbon nanotubes: enhancing the polymer building blocks for intelligent materials. J Mater Chem. 2006;16(36):3598–605. http://dx.doi.org/10.1039/B6069 59B. 
24.  Zhou P, Yang X, He L, Hao Z, Luo W, Xiong B, et al. The Young’s modulus of high-aspect-ratio carbon/carbon nanotube composite microcantilevers by experimental and modeling validation. Appl Phys Lett. 2015;106(11): 111908. https://doi.org/10.1063/1.4915514.
25.  Cinke M, Li J, Chen B, Cassell A, Delzeit L, Han J, et al. Pore structure of raw and purified HiPco single-walled carbon nanotubes. Chem Phys Lett. 2002;365(1):69–74. 
26.  Kim P, Shi L, Majumdar A, McEuen PL. Thermal transport measurements of individual multiwalled nanotubes. Phys Rev Lett. 2001;87(21):215502. https://link.aps.org/doi/ 10.1103/PhysRevLett.87.215502
27.  Novoselov KS, Geim AK, Morozov S V, Jiang D, Zhang Y, Dubonos S V, et al. Electric Field Effect in Atomically Thin Carbon Films. Sci. 2004;306(5696):666–9. https://doi. org/10.1126/science.1102896
28.  Chen J-H, Jang C, Xiao S, Ishigami M, Fuhrer MS. Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat Nanotechnol. 2008;3(4):206–9. https://doi.org/10.1038/nnano.2008.58
29.  Afre RA, Pugliese D. Perovskite Solar Cells: A Review of the Latest Advances in Materials, Fabrication Techniques, and Stability Enhancement Strategies. Micromachines. 2024 Jan 27;15(2):192. 
30.  Selopal GS, Milan R, Ortolani L, Morandi V, Rizzoli R, Sberveglieri G, et al. Graphene as transparent front contact for dye sensitized solar cells. Sol Energy Mater Sol Cells . 2015;135:99–105. 
31.  Roy-Mayhew JD, Aksay IA. Graphene Materials and Their Use in Dye-Sensitized Solar Cells. Chem Rev . 2014 Jun 25;114(12):6323–48. https://doi.org/10.1021/cr400412a
32.  O’Regan B, Grätzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature. 1991;353(6346):737–40. https://doi.org/10.1038/353737a0
33.  Muchuweni E, Martincigh B, Nyamori V. Recent advances in graphene-based materials for dye-sensitized solar cell fabrication. RSC Adv. 2020;10:44453–69.
34.  Freitag M, Teuscher J, Saygili Y, Zhang X, Giordano F, Liska P, et al. Dye-sensitized solar cells for efficient power generation under ambient lighting. Nat Photonics. 2017;11(6):372–8. https://doi.org/10.1038/nphoton.2017. 60. 
35.  Zhang N, Chen J, Huang Y, Guo W, Yang J, Du J, et al. A Wearable All-Solid Photovoltaic Textile. Adv Mater . 2016 Jan 1;28(2):263–9. https://doi.org/10.1002/adma.20150 4137.
36.  Song L, Guan Y, Du P, Yang Y, Ko F, Xiong J. Enhanced efficiency in flexible dye-sensitized solar cells by a novel bilayer photoanode made of carbon nanotubes incorporated TiO2 nanorods and branched TiO2 nanotubes. Sol Energy Mater Sol Cells. 2016;147:134–43. 
37.  Bella F, Lamberti A, Bianco S, Tresso E, Gerbaldi C, Pirri CF. Floating, Flexible Polymeric Dye-Sensitized Solar-Cell Architecture: The Way of Near-Future Photovoltaics. Adv Mater Technol. 2016;1(2). https://doi.org/10.1002/admt.20 1600002.
38.  Mehmood U, Rahman S, Harrabi K, Hussein IA, Reddy BVS. Recent Advances in Dye Sensitized Solar Cells. Chow C-W, editor. Adv Mater Sci Eng. 2014; 2014:974782. https://doi.org/10.1155/2014/974782
39.  Fu X, Xu L, Li J, Sun X, Peng H. Flexible solar cells based on carbon nanomaterials. Carbon N Y . 2018;139:1063–73. 
40.  Gasparini N, Lucera L, Salvador M, Prosa M, Spyropoulos GD, Kubis P, et al. High-performance ternary organic solar cells with thick active layer exceeding 11% efficiency. Energy Environ Sci. 2017;10(4):885–92. http://dx.doi.org/ 10.1039/C6EE03599J
41.  Angmo D, Sweelssen J, Andriessen R, Galagan Y, Krebs FC. Inkjet Printing of Back Electrodes for Inverted Polymer Solar Cells. Adv Energy Mater. 20133(9):1230–7. https://doi.org/10.1002/aenm.201201050
42.  Li Y, Xu G, Cui C, Li Y. Flexible and Semitransparent Organic Solar Cells. Adv Energy Mater. 2018;8(7):1701791. https://doi.org/10.1002/aenm.2017 01791.
43.  Yang WS, Park B-W, Jung EH, Jeon NJ, Kim YC, Lee DU, et al. Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells. Sci. 2017;356(6345):1376–9. https://doi.org/10.1126/ science.aan2301.
44.  Roldán-Carmona C, Malinkiewicz O, Soriano A, Mínguez Espallargas G, Garcia A, Reinecke P, et al. Flexible high efficiency perovskite solar cells. Energy Environ Sci . 2014;7(3):994–7. http://dx.doi.org/10.1039/C3EE43619E
45.  Zhang H, Cheng J, Lin F, He H, Mao J, Wong KS, et al. Pinhole-Free and Surface-Nanostructured NiOx Film by Room-Temperature Solution Process for High-Performance Flexible Perovskite Solar Cells with Good Stability and Reproducibility. ACS Nano. 2016;10(1):1503–11. https://doi.org/10.1021/acsnano.5b07043
46.  Di Giacomo F, Fakharuddin A, Jose R, Brown TM. Progress, challenges and perspectives in flexible perovskite solar cells. Energy Environ Sci. 2016;9(10):3007–35. http://dx.doi.org/10.1039/C6EE01137C
47.  Wang D, Wright M, Elumalai NK, Uddin A. Stability of perovskite solar cells. Sol Energy Mater Sol Cells. 2016;147:255–75. 
48.  Rana K, Singh J, Ahn J-H. A graphene-based transparent electrode for use in flexible optoelectronic devices. J Mater Chem C. 2014;2(15):2646–56. http://dx.doi.org/10.1039/ C3TC32264E
49.  Yin X, Chen P, Que M, Xing Y, Que W, Niu C, et al. Highly Efficient Flexible Perovskite Solar Cells Using Solution-Derived NiOx Hole Contacts. ACS Nano. 2016 Mar 22;10(3):3630–6. https://doi.org/10.1021/acsnano. 5b08135.
50.  Jeon I, Chiba T, Delacou C, Guo Y, Kaskela A, Reynaud O, et al. Single-Walled Carbon Nanotube Film as Electrode in Indium-Free Planar Heterojunction Perovskite Solar Cells: Investigation of Electron-Blocking Layers and Dopants. Nano Lett. 2015 Oct 14;15(10):6665–71. https://doi.org/10.1021/acs.nanolett.5b02490
51.  Macak JM, Tsuchiya H, Ghicov A, Yasuda K, Hahn R, Bauer S, et al. TiO2 nanotubes: Self-organized electrochemical formation, properties and applications. Curr Opin Solid State Mater Sci.  2007;11(1):3–18. 
52.  Chen T, Qiu L, Cai Z, Gong F, Yang Z, Wang Z, et al. Intertwined aligned carbon nanotube fiber based dye-sensitized solar cells. Nano Lett. 2012;12(5):2568–72. https://doi.org/10.1021/nl300799d
53.  You J, Hong Z, Yang Y (Michael), Chen Q, Cai M, Song TB, et al. Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility. ACS Nano. 2014;8(2):1674–80. https://doi.org/10.1021/nn406020d
54.  Ali A, Shehzad K, Ur-Rahman F, Shah SM, Khurram M, Mumtaz M, et al. Flexible, low cost, and platinum-free counter electrode for efficient dye-sensitized solar cells. ACS Appl Mater Interfaces. 2016;8(38):25353–60. https://doi.org/10.1021/acsami.6b08826.
55. Pan S, Yang Z, Li H, Qiu L, Sun H, Peng H. Efficient dye-sensitized photovoltaic wires based on an organic redox electrolyte, J Am Chem Soc. 2013;135(29):10622-25.
56. Jiang Y, Sun H, Peng H. Synthesis and photovoltaic application of platinummodified conducting aligned nanotube fiber, Sci China Mater. 2015;58(4):289-93.
57.  Fu X, Sun H, Xie S, Zhang J, Pan Z, Liao M, et al. A fiber-shaped solar cell showing a record power conversion efficiency of 10%. J Mater Chem A. 2018;6(1):45–51. http://dx.doi.org/10.1039/C7TA08637G
58.  Lee J, Kang H, Hwang J-Y, Kim SW, Baik S. Flexible photoanodes of TiO2 particles and metallic single-walled carbon nanotubes for flexible dye-sensitized solar cells. Carbon N Y. 2014;79:337–45.
59. Chen T, Wang S, Yang Z, Feng Q, Sun X, Li L, et al. Flexible, light-weight, ultrastrong, and semiconductive carbon nanotube fibers for a highly efficient solar cell. Angew Chemie Int Ed. 2011;50(8):1815–9. https://doi. org/10.1002/anie.201003870
60.  Sahito IA, Sun KC, Arbab AA, Qadir MB, Choi YS, Jeong SH. Flexible and conductive cotton fabric counter electrode coated with graphene nanosheets for high efficiency dye sensitized solar cell. J Power Sources. 2016;319:90–8. 
61.  Peng Y, Zhong J, Wang K, Xue B, Cheng Y-B. A printable graphene enhanced composite counter electrode for flexible dye-sensitized solar cells. Nano Energy. 2013;2(2):235–40. 
62. J. Zhi, H. Cui, A. Chen, Y. Xie, F. Huang, Efficient highly flexible dye sensitized solar cells of three dimensional graphene decorated titanium dioxide nanoparticles on plastic substrate, J Power Sources. 2015;281:404-10
63.  Zhang Z, Yang Z, Wu Z, Guan G, Pan S, Zhang Y, et al. Weaving Efficient Polymer Solar Cell Wires into Flexible Power Textiles. Adv Energy Mater. 2014;4(11):1301750. https://doi.org/10.1002/aenm.201301750.
64.  Zhang Z, Yang Z, Deng J, Zhang Y, Guan G, Peng H. Stretchable polymer solar cell fibers. Small. 2015;11(6):675–80. https://doi.org/10.1002/smll.201400874.
65.  Park H, Chang S, Zhou X, Kong J, Palacios T, Gradečak S. Flexible graphene electrode-based organic photovoltaics with record-high efficiency. Nano Lett. 2014;14(9):5148–54. https://doi.org/10.1021/nl501981f
66.  Song Y, Chang S, Gradecak S, Kong J. Visibly-transparent organic solar cells on flexible substrates with all-graphene electrodes. Adv Energy Mater. 2016;6(20):1600847. https://doi.org/10.1002/aenm.20160 0847.
67.  Docampo P, Ball JM, Darwich M, Eperon GE, Snaith HJ. Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates. Nat Commun. 2013;4(1):2761. https://doi.org/10.1038/ ncomms3761.
68.  Heo JH, Jahandar M, Moon S-J, Song CE, Im SH. Inverted CH3NH3PbI3 perovskite hybrid solar cells with improved flexibility by introducing a polymeric electron conductor. J Mater Chem C. 2017;5(11):2883–91. http://dx.doi.org/ 10.1039/C6TC05081F.
69.  Lei H, Chen X, Xue L, Sun L, Chen J, Tan Z, et al. A solution-processed pillar[5]arene-based small molecule cathode buffer layer for efficient planar perovskite solar cells. Nanoscale. 2018;10(17):8088–98. http://dx.doi.org/ 10.1039/C8NR00898A.
70.  Ryu U, Jee S, Park J-S, Han IK, Lee JH, Park M, et al. Nanocrystalline titanium metal–organic frameworks for highly efficient and flexible perovskite solar cells. ACS Nano. 2018;12(5):4968–75. https://doi.org/10.1021/ acsnano.8b02079.
71.  Deng J, Qiu L, Lu X, Yang Z, Guan G, Zhang Z, et al. Elastic perovskite solar cells. J Mater Chem A. 2015;3(42):21070–6. http://dx.doi.org/10.1039/C5TA0615 6C.
72.  Qiu L, He S, Yang J, Jin F, Deng J, Sun H, et al. An all-solid-state fiber-type solar cell achieving 9.49% efficiency. J Mater Chem A. 2016;4(26):10105–9. http://dx.doi.org/ 10.1039/C6TA03263J.
73.  Liu Z, You P, Xie C, Tang G, Yan F. Ultrathin and flexible perovskite solar cells with graphene transparent electrodes. Nano Energy. 2016;28:151–7. 
74. Tyagi P, Lai CW, Johan MR Bin. Chapter 15 - Titanium dioxide/graphene composites for dye-sensitized solar cell applications. In: Altalhi T, Inamuddin BT-GSP for C and EE and S, editors. Elsevier; 2022. p. 313–39.
75. Yoon J, Sung H, Lee G, Cho W, Ahn N, Jung HS, et al. Superflexible, high-efficiency perovskite solar cells utilizing graphene electrodes: towards future foldable power sources. Energy Environ Sci. 2017;10(1):337–45. http://dx.doi.org/10.1039/C6EE02650H         
76.  Lee E, Ryu J, Jang J. Fabrication of graphene quantum dots via size-selective precipitation and their application in upconversion-based DSSCs. Chem Commun. 2013;49(85):9995–7. http://dx.doi.org/10.1039/C3CC45 588B
77.  Chen L-C, Hsu C-H, Chan P-S, Zhang X, Huang C-J. Improving the performance of dye-sensitized solar cells with TiO2/graphene/TiO2 sandwich structure. Nanoscale Res Lett. 2014;9(1):380. https://doi.org/10.1186/1556-276X-9-380
78. Tsai T-H, Chiou S-C, Chen S-M. Enhancement of Dye-Sensitized Solar Cells by using Graphene-TiO2 Composites as Photoelectrochemical Working Electrode. Int J Electrochem Sci. 2011;6(8):3333–43.      
79.  Zabihi F, Ahmadian-Yazdi M-R, Eslamian M. Photocatalytic Graphene-TiO2 Thin Films Fabricated by Low-Temperature Ultrasonic Vibration-Assisted Spin and Spray Coating in a Sol-Gel Process. Vol. 7, Catalysts. 2017. 
80. Fan J, Liu S, Yu J. Enhanced photovoltaic performance of dye-sensitized solar cells based on TiO2 nanosheets/graphene composite films. J Mater Chem. 2012;22(33):17027–36. http://dx.doi.org/10.1039/C2JM33 104G.
81.  Chen AR, Zhao W, Cui HL, Zhi J, Huang FQ. TiO2 nanowires infiltrated with graphene-decorated mesoporous TiO2 for enhanced dye-sensitized solar cell. Wuji Cailiao Xuebao/J Inorg Mater. 2015;30(8):891–6. 
82. Masood MT, Weinberger C, Sarfraz J, Rosqvist E, Sandén S, Sandberg OJ, et al. Impact of Film Thickness of Ultrathin Dip-Coated Compact TiO2 Layers on the Performance of Mesoscopic Perovskite Solar Cells. ACS Appl Mater Interfaces. 2017;9(21):17906–13. https:// doi.org/10.1021/acsami.7b02868
83. Howatt GN, Breckenridge RG, Brownlow JM. Fabrication of thin ceramic sheets for capacitors. J Am Ceram Soc. 1947;30(8):237–42. https://doi.org/10.1111/j.1151-2916.1947.tb18889.x
84.  Fang X, Li M, Guo K, Li J, Pan M, Bai L, et al. Graphene quantum dots optimization of dye-sensitized solar cells. Electrochim Acta. 2014;137:634–8.
85.  Eshaghi A, Aghaei A. Effect of TiO2–graphene nanocomposite photoanode on dye-sensitized solar cell performance. Bull Mater Sci. 2015;38(5):1177–82. https://doi.org/10.1007/s12034-015-0998-5
86. Howatt GN. Method of producing high dielectric high insulation ceramic plates. US Patent 2,582,993. 1952.
87.  Zhang H, Wang W, Liu H, Wang R, Chen Y, Wang Z. Effects of TiO2 film thickness on photovoltaic properties of dye-sensitized solar cell and its enhanced performance by graphene combination. Mater Res Bull. 2014;49:126–31.
88.  Salam Z, Vijayakumar E, Subramania A, Sivasankar N, Mallick S. Graphene quantum dots decorated electrospun TiO2 nanofibers as an effective photoanode for dye sensitized solar cells. Sol Energy Mater Sol Cells. 2015;143:250–9. 
89. Pishdar A, Samadpour M. TiO2/Graphene nanocomposites for enhancing the performance of dye sensitized solar cells. Current Nanoscie. 2017;13(1):84-91.
90.           Husain AAF, Hasan WZW. Transparent solar cell using spin coating and screen printing. Pertanika J Sci Technol. 2017;25(S):225–34.