CQDs-based Optical Sensors for the Detection of Metal ions: Preparation and Mechanism of Detection

Document Type : Review paper

Authors

Department of Environmental Research, Institute for Color Science and Technology, P. O. Box: 16765-654, Tehran, Iran

10.30509/jscw.2024.167400.1210

Abstract

One of the major challenges of the recent decades is environmental pollution, particularly in water and wastewater. Several solutions have been proposed for their treatment. Furthermore, an important issue is the identification of environmental contaminants and quantifying their levels to inform further actions. Therefore, monitoring pollutant concentrations is a key strategy for identifying and removing these contaminants. Heavy metals are among the pollutants that pose significant dangers to living organisms. Optical sensors, which can detect metal pollutants through colorimetry and fluorescence, are among the easily fabricated and employed sensors for this purpose. In recent decades, the unique optical properties of CQDs have led to considerable investigation into their use as sensors for detecting metals. Due to their stability, high water solubility, environmental compatibility, low toxicity, affordability, and availability, CQDs are a suitable choice for developing optical sensors. This review explores the synthesis methods for CQDs, focusing on both bottom-up and top-down approaches. Additionally, it will discuss the origins of CQDs preparation and detection mechanisms of metal ions.

Keywords

Main Subjects


1. Pandiyan J, Mahboob S, Govindarajan M, Al-Ghanim KA, Ahmed Z, Al-Mulhm N, et al. An assessment of level of heavy metals pollution in the water, sediment and aquatic organisms: A perspective of tackling environmental threats for food security. Saudi J Biol Sci. 2021;28(2):1218-25. https://doi.org/10.1016/j.sjbs.2020.11.072.
2.  Yue R, Niu J, Li Y, Ke G, Huang H, Pei J, et al. In vitro cytocompatibility, hemocompatibility and antibacterial properties of biodegradable Zn-Cu-Fe alloys for cardiovascular stents applications. Mater Sci Eng C. 2020;113:111007. https://doi.org/10.1016/j.msec.2020.111 007.
3.  Yousefi-Limaee N, Peik-Rayekan L, Seifpanahi-Shabani K. A review of ion-imprinted polymer for the removal and colorimetric detection of lead: preparation, mechanism and application. J stud color world. 2024; 14(3):253-264. https://dorl.net/dor/10.30509/JSCW.2024.167332.1195 [In Persian].
4.  Qin G, Niu Z, Yu J, Li Z, Ma J, Xiang P. Soil heavy metal pollution and food safety in China: Effects, sources and removing technology. Chemosphere. 2021;267:129205. https://doi.org/10.1016/j.chemosphere.2020.129205.
5.  Yousefi-Limaee N, Rouhani S. A review on the application of molecularly imprinted polymers in the detection of pollutants: A case study of optical sensors. J stud color world. 2021;10(4):53-68. https://dorl.net/dor/20.1001 .1.22517278.1399.10.4.5.2 [In Persian].
6.  Ullah N, Mansha M, Khan I, Qurashi A. Nanomaterial-based optical chemical sensors for the detection of heavy metals in water: Recent advances and challenges. TrAC, Trends Anal Chem. 2018;100:155-66. https://doi.org/10.1016/ j.trac. 2018.01.002.
7.  Shaker M, Riahifar R, Li Y. A review on the superb contribution of carbon and graphene quantum dots to electrochemical capacitors’ performance: synthesis and application. FlatChem. 2020;22:100171. https://doi.org/10. 1016/j.flatc.2020.100171.
8.  Kirkwood N, Monchen JO, Crisp RW, Grimaldi G, Bergstein HA, Du Fossé I, et al. Finding and fixing traps in II–VI and III–V colloidal quantum dots: the importance of Z-type ligand passivation. J Am Chem Soc.  2018;140(46):15712-23. https://doi.org/10.1021 /jacs. 8b 07783.
9.  Zhu C, Chen Z, Gao S, Goh BL, Samsudin IB, Lwe KW, et al. Recent advances in non-toxic quantum dots and their biomedical applications. Prog Nat Sci: Mater Int. 2019;29(6):628-40. https://doi.org/10.1016/j.pnsc. 2019. 11.007.
10.        Jain S, Bharti S, Bhullar GK, Tripathi S. I-III-VI core/shell QDs: Synthesis, characterizations and applications. J Lumin. 2020;219:116912. https://doi.org/ 10.1016/j.jlumin.2019.116912.
11. Wang X, Kong L, Zhou S, Ma C, Lin W, Sun X, et al. Development of QDs-based nanosensors for heavy metal detection: A review on transducer principles and in-situ detection. Talanta. 2022;239:122903. https://doi.org/ 10.1016/j.talanta.2021.122903.
12. Shabbir H, Csapó E, Wojnicki M. Carbon Quantum Dots: The Role of Surface Functional Groups and Proposed Mechanisms for Metal Ion Sensing. Inorganics. 2023;11:262. https://doi.org/10.3390/inorganics11060262.
13. Molaei MJ. Principles, mechanisms, and application of carbon quantum dots in sensors: a review. Anal Methods. 2020;12(10):1266-87. https://doi.org/10.1039/C9AY02696G.
14. Dhiman R, Kumar J, Singh M. Fluorescent carbon dots for sensing applications: a review. Anal Sci. 2024;40(8):1387-96. https://doi.org/10.1007/s44211-024-00609-4.
15. Zhou J, Sheng Z, Han H, Zou M, Li C. Facile synthesis of fluorescent carbon dots using watermelon peel as a carbon source. Mater Lett. 2012;66(1):222-4. https://doi.org/ 10.1016/j.matlet.2011.08.081.
16. Xu X, Ray R, Gu Y, Ploehn HJ, Gearheart L, Raker K, et al. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J Am Chem Soc. 2004;126(40):12736-7. https://doi.org/10.1021/ja040082h.
17. Chao-Mujica F, Garcia-Hernández L, Camacho-López S, Camacho-López M, Camacho-López M, Reyes Contreras D, et al. Carbon quantum dots by submerged arc discharge in water: Synthesis, characterization, and mechanism of formation. J Appl Phys. 2021;129(16). https://doi.org/ 10.1063/5.0040322.
18. Wang Y, Hu A. Carbon quantum dots: synthesis, properties and applications. J Mater Chem. C. 2014;2(34):6921-39. https://doi.org/10.1039/C4TC00988F.
19. Wu X, LING Y. Progress of quasi-one-dimension nanomaterials synthesized by laser ablation. Laser Technol. 2005;29(6):575-8.
20. Luo PG, Yang F, Yang S-T, Sonkar SK, Yang L, Broglie JJ, et al. Carbon-based quantum dots for fluorescence imaging of cells and tissues. Rsc Adv. 2014;4(21):10791-807. https://doi.org/10.1039/C3RA47683A.
21. Sun Y-P, Zhou B, Lin Y, Wang W, Fernando KS, Pathak P, et al. Quantum-sized carbon dots for bright and colorful photoluminescence. J Am Chem Soc. 2006;128(24):7756-7.
22. Niu F, Xu Y, Liu M, Sun J, Guo P, Liu J. Bottom-up electrochemical preparation of solid-state carbon nanodots directly from nitriles/ionic liquids using carbon-free electrodes and the applications in specific ferric ion detection and cell imaging. Nanoscale. 2016;8(10):5470-7. https://doi.org/10.1039/C6NR00023A.
23. Sun S, Sun Y, Yang F, Che S, Zhang X, Zhang G, et al. Electrochemical synthesis of Ni doped carbon quantum dots for simultaneous fluorometric determination of Fe3+ and Cu2+ ion facilely. Green Chem Eng. 2023;4(1):115-22. https://doi.org/10.1016/j.gce.2022.05.004.
24. Ge G, Li L, Wang D, Chen M, Zeng Z, Xiong W, et al. Carbon dots: Synthesis, properties and biomedical applications. J Mater Chem B. 2021;9(33):6553-75. https://doi.org/10.1039/D1TB01077H.
25. Peng H, Travas-Sejdic J. Simple aqueous solution route to luminescent carbogenic dots from carbohydrates. Chem Mat. 2009;21(23):5563-5. https://doi.org/10.1021/ cm90 1593y.
26. Wang C, Pan C, Wei X, Yang F, Wu W, Mao L. Emissive carbon dots derived from natural liquid fuels and its biological sensing for copper ions. Talanta. 2020;208:120375. https://doi.org/10.1016/j.talanta.2019. 120375.
27. Nazibudin NA, Zainuddin MF, Abdullah CAC. Hydrothermal Synthesis of Carbon Quantum Dots: An Updated Review. J Adv Res Fluid Mech Therm Sci. 2023;101(1):192-206. https://doi.org/10.37934/arfmts.101. 1.192206.
28. Zhang B, Liu Cy, Liu Y. A novel one‐step approach to synthesize fluorescent carbon nanoparticles. Wiley Online Library; 2010. https://doi.org/10.1002/ejic.201000622.
29. Zhang L, Li B, Zhou Y, Wu Y, Sun Q, Le T. Preparation of phosphorus‐doped cow milk‐derived carbon quantum dots and detection of Au3+. J Food Process Eng. 2023;46(7):e14349. https://doi.org/10.1111/jfpe.14349.
30. Choi Y, Thongsai N, Chae A, Jo S, Kang EB, Paoprasert P, et al. Microwave-assisted synthesis of luminescent and biocompatible lysine-based carbon quantum dots. J Ind Eng Chem. 2017;47:329-35. https://doi.org/10.1016/j.jiec. 2016.12.002.
31. Zhu H, Wang X, Li Y, Wang Z, Yang F, Yang X. Microwave synthesis of fluorescent carbon nanoparticles with electrochemiluminescence properties. Chem Commun. 2009(34):5118-20. https://doi.org/10.1039/B907612C.
32. Qian X, Wang Z, Chen Z, El-Bahy SM, Li D, Qin L, et al. Green-emitting carbon quantum dots as efficient fluorescent probes for Cu2+ and EDTA detection by “turn-on-off” strategy. Colloids Surf A: Physicochem Eng. 2024;693:134089. https://doi.org/10.1016/j.colsurfa. 2024. 134089.
33. Swathi R, Reddy GB, Rajkumar B, Ramakrishna D, Swamy PY. Jamun Seed-Derived Nitrogen-Doped Carbon Dots: A Novel Microwave-Assisted Synthesis for Ultra-Bright Fluorescence and Mn7+ Detection. J Fluoresc. 2024;34(5):2287-98. https://doi.org/10.1007/s10895-023-03438-2.
34. Drozd D, Zhang H, Goryacheva I, De Saeger S, Beloglazova NV. Silanization of quantum dots: challenges and perspectives. Talanta. 2019;205:120164. https://doi.org/10.1016/j.talanta.2019.120164.
35. Zhang D, Zhang F, Wang S, Hu S, Liao Y, Wang F, et al. Energy-efficient Preparation of Amino and Sulfhydryl Functionalized Biomass Carbon Dots via a Reverse Microemulsion for Specific Recognition of Fe3+ and L-cysteine. J Fluoresc. 2023;33(3):1111-23. https://doi.org/10 .1007/s10895-022-03054-6.
36. Zhao F, Li X, Zuo M, Liang Y, Qin P, Wang H, et al. Preparation of photocatalysts decorated by carbon quantum dots (CQDs) and their applications: A review. J Environ Chem Eng. 2023;11(2):109487. https://doi.org/10.1016 /j.jece.2023.109487.
37. Yan L, Yang Y, Ma C-Q, Liu X, Wang H, Xu B. Synthesis of carbon quantum dots by chemical vapor deposition approach for use in polymer solar cell as the electrode buffer layer. Carbon. 2016;109:598-607. https://doi.org/10.1016 /j.carbon.2016.08.058.
38. Wang H, Chen Q, Tang X, Peng X, Deng H. Facile synthesis of carbon quantum dot‑carbon nanotube composites on an eggshell-derived catalyst by one-step chemical vapor deposition. Diam Relat Mater. 2021;120:108657. https://doi.org/10.1016/j.diamond.2021.108657.
39. Zong J, Zhu Y, Yang X, Shen J, Li C. Synthesis of photoluminescent carbogenic dots using mesoporous silica spheres as nanoreactors. Chemical Comm. 2011;47(2):764-6. https://doi.org/10.1039/C0CC03092A.
40. Kong J, Wei Y, Zhou F, Shi L, Zhao S, Wan M, et al. Carbon Quantum Dots: Properties, Preparation, and Applications. Molecules. 2024;29(9):2002. https://doi.org/10.3390/ molecules29092002.
41. Mikhraliieva A, Zaitsev V, Aucélio RQ, da Motta HB, Nazarkovsky M. Benefit of porous silica nanoreactor in preparation of fluorescence carbon dots from citric acid. Nano Express. 2020;1(1):010011. https://doi.org/10.1088/ 2632-959X/ab7e0d.
42. Ullal N, Muthamma K, Sunil D. Carbon dots from eco-friendly precursors for optical sensing application: an up-to-date review. Chemical Papers. 2022;76(10):6097-127. https://doi.org/10.1007/s11696-022-02353-3.
43. Devi NR, Kumar TV, Sundramoorthy AK. Electrochemically exfoliated carbon quantum dots modified electrodes for detection of dopamine neurotransmitter. J Electrochem Soc. 2018;165(12):G3112. https://doi.org/10. 1149/2.0191812jes.
44. Ventrella A, Camisasca A, Fontana A, Giordani S. Synthesis of green fluorescent carbon dots from carbon nano-onions and graphene oxide. RSC Adv. 2020;10(60):36404-12. https://doi.org/10.1039/D0RA06172G.
45. Chen B, Li F, Li S, Weng W, Guo H, Guo T, et al. Large scale synthesis of photoluminescent carbon nanodots and their application for bioimaging. Nanoscale. 2013;5(5):1967-71. https://doi.org/10.1039/C2NR32675B.
46. Hinterberger V, Wang W, Damm C, Wawra S, Thoma M, Peukert W. Microwave-assisted one-step synthesis of white light-emitting carbon dot suspensions. Opt Mater. 2018;80:110-9. https://doi.org/10.1016/j.optmat.2018. 04. 039.
47. Zheng Y, Yang D, Wu X, Yan H, Zhao Y, Feng B, et al. A facile approach for the synthesis of highly luminescent carbon dots using vitamin-based small organic molecules with benzene ring structure as precursors. RSC adv. 2015;5(110):90245-54. https://doi.org/10.1039/C5RA147 20D.
48. Zhai X, Zhang P, Liu C, Bai T, Li W, Dai L, et al. Highly luminescent carbon nanodots by microwave-assisted pyrolysis. Chem Commun. 2012;48(64):7955-7. https://doi. org/10.1039/C2CC33869F.
49. Zhou J, Booker C, Li R, Zhou X, Sham T-K, Sun X, et al. An electrochemical avenue to blue luminescent nanocrystals from multiwalled carbon nanotubes (MWCNTs). J Am Chem Soc. 2007;129(4):744-5. https://doi.org/ 10.1021/ ja0669070.
50. Hou H, Banks CE, Jing M, Zhang Y, Ji X. Carbon quantum dots and their derivative 3D porous carbon frameworks for sodium‐ion batteries with ultralong cycle life. Adv. Mater. 2015;27(47):7861-6. https://doi.org/10.1002/adma.201503816.
51. Shahba H, Sabet M. Two-step and green synthesis of highly fluorescent carbon quantum dots and carbon nanofibers from pine fruit. J Fluoresc. 2020;30:927-38. https://doi.org/10.1007/s10895-020-02562-7.
52. Liu S, Tian J, Wang L, Zhang Y, Qin X, Luo Y, et al. Hydrothermal treatment of grass: a low‐cost, green route to nitrogen‐doped, carbon‐rich, photoluminescent polymer nanodots as an effective fluorescent sensing platform for label‐free detection of Cu (II) ions. Adv Mater. 2012;24(15):2037. https://doi.org/10.1002/adma.201200164.
53. Wang L, Zhou HS. Green synthesis of luminescent nitrogen-doped carbon dots from milk and its imaging application. Anal Chem. 2014;86(18):8902-5. https://doi.org/10.1021/ ac502646x.
54. Yang X, Zhuo Y, Zhu S, Luo Y, Feng Y, Dou Y. Novel and green synthesis of high-fluorescent carbon dots originated from honey for sensing and imaging. Biosens Bioelectron. 2014;60:292-8. https://doi.org/10.1016/j.bios.2014.04.046.
55. Wang L, Bi Y, Hou J, Li H, Xu Y, Wang B, et al. Facile, green and clean one-step synthesis of carbon dots from wool: application as a sensor for glyphosate detection based on the inner filter effect. Talanta. 2016;160:268-75. https://doi.org/10.1016/j.talanta.2016.07.020.
56. Shabbir H, Csapó E, Wojnicki M. Carbon quantum dots: the role of surface functional groups and proposed mechanisms for metal ion sensing. Inorganics. 2023;11(6):262. https://doi.org/10.3390/inorganics11060262.
57. Song Y, Zhu S, Xiang S, Zhao X, Zhang J, Zhang H, et al. Investigation into the fluorescence quenching behaviors and applications of carbon dots. nanoscale. 2014;6(9):4676-82. https://doi.org/10.1039/C4NR00029C.
58. Zhang Y, Goncalves H, da Silva JCE, Geddes CD. Metal-enhanced photoluminescence from carbon nanodots. Chem Commun. 2011;47(18):5313-5. https://doi.org/10.1039/ C0CC03832F.
59. Zu F, Yan F, Bai Z, Xu J, Wang Y, Huang Y, et al. The quenching of the fluorescence of carbon dots: a review on mechanisms and applications. Mikrochim Acta. 2017;184:1899-914. https://doi.org/10.1007/s00604-017-2318-9.
60. Jiang W, Zhao Y, Zhu X, Liu H, Sun B. Carbon dot‐based biosensors. Adv NanoBiomed Res. 2021;1(6):2000042. https://doi.org/10.1002/anbr.202000042.
61. Devi P, Rajput P, Thakur A, Kim K-H, Kumar P. Recent advances in carbon quantum dot-based sensing of heavy metals in water. TrAC, Trends Anal Chem. 2019;114:171-95. https://doi.org/10.1039/D3SU00375B.
62. Cui X, Zhu L, Wu J, Hou Y, Wang P, Wang Z, et al. A fluorescent biosensor based on carbon dots-labeled oligodeoxyribonucleotide and graphene oxide for mercury (II) detection. Biosens Bioelectron. 2015;63:506-12. https://doi.org/10.1016/j.bios.2014.07.085.
63. Wang T, Zeng L-H, Li D-L. A review on the methods for correcting the fluorescence inner-filter effect of fluorescence spectrum. Appl Spectrosc Rev. 2017;52(10):883-908. https://doi.org/10.1080/05704928. 2017.1345758.
64. Jin T, Uhlikova N, Xu Z, Zhu Y, Huang Y, Egap E, et al. Competition of Dexter, Förster, and charge transfer pathways for quantum dot sensitized triplet generation. J Chem Phys. 2020;152(21). https://doi.org/10.1063/ 5.0009833.