" Synthesis of ZIF-67 in Alcoholic Solvents: Morphology and Adsorption Properties for Methylene Blue"

Document Type : Research

Authors

1 Department of Chemical Engineering, South Tehran Branch, Islamic Azad University, P. O. Box: 15847-43311, Tehran, Iran

2 Department of Environmental Research, Institute for Color Science and Technology, P. O. Box: 167654-654, Tehran, Iran.

3 Department of Textile Engineering, SR.C., Islamic Azad University, P. O. Box: 14515-775, Tehran, Iran.

10.30509/jscw.2025.167461.1219

Abstract

This study explores the green synthesis of cobalt-based ZIF-67 using methanol, ethanol, and isopropanol as solvents. Alcoholic solvents enhance the morphology, particle size control, and stability of ZIF-67, making it suitable for moisture-sensitive applications. The synthesis was performed at room temperature via reflux, avoiding hazardous solvents. XRD, FTIR, and SEM analyses confirmed the solvent’s significant influence on particle size and uniformity. Isopropanol-synthesized ZIF-67 exhibited the highest methylene blue adsorption capacity (29.1 mg/g), followed by ethanol (22.94 mg/g) and methanol (19.37 mg/g). Adsorption studies (pH 7, 0.02 g adsorbent, 7 mg/L dye, 180 min) revealed that the process follows the Langmuir isotherm, indicating a spontaneous, endothermic, monolayer adsorption. This study highlights the critical role of solvent choice in optimizing ZIF-67 properties and suggests isopropanol as a promising solvent for enhanced adsorption applications in environmental and industrial fields.

Keywords

Main Subjects


Nazir MS, Mirza HH, Shaukat A, Liaqat A. Testing for temperature anomaly in capital markets of Pakistan and India. MEJM. 2020;7(1):1-16.https://doi.org/10.1504/ MEJM.2020.105223.
2.  Al-Qadri AA, Drmosh Q, Onaizi SA. Enhancement of bisphenol a removal from wastewater via the covalent functionalization of graphene oxide with short amine molecules. CSCEE. 2022;6:100233. https://doi.org/10.1016 /j.cscee.2022.100233.
3.  Nazir MA, Ullah S, Shahid MU, Hossain I, Najam T, Abdelmotaleb MA, et al. Zeolitic imidazolate frameworks (ZIF-8 & ZIF-67): synthesis and application for wastewater treatment. Sep Purif Technol. 2024:129828.https:// doi.org/10.1016/j.seppur.2024.129828.
4.  Al-Nowaiser WK, Vohra MS, Onaizi SA. Hybrid electrocoagulation/adsorption system using aluminum electrodes and novel GO@ ZIF-7 nanocomposite for the effective removal of Pb (II) from wastewater. Sep Purif Technol. 2024;350:127828. https://doi.org/10.1016/j. seppur.2024.127828.
5.  Hosseinian Naeini A, Kalaee MR, Moradi O, Mahmoodi NM. Investigating factors affecting the removal of dyestuff from wastewater using different nanocomposites: A review study. J Stud Color World. 2023;12(4),343-386. https://dor.isc.ac/dor/20. 1001.1.22517278.1401.12.4.4.5
6.  Kumar OP, Shahzad K, Nazir MA, Farooq N, Malik M, Shah SSA, et al. Photo-Fenton activated C3N4x/AgOy@ Co1-xBi0. 1-yO7 dual s-scheme heterojunction towards degradation of organic pollutants. Opt Mater. 2022;126:112199.https://doi.org/10.1016/j.optmat.2022.112199.
7.  Eleryan A, Hassaan M, Nazir MA, Shah SS, Ragab S, El Nemr A. Isothermal and kinetic screening of methyl red and methyl orange dyes adsorption from water by Delonix regia biochar-sulfur oxide (DRB-SO). Sci Rep. 2024;14(1):13585. https://doi.org/10.1038/s41598-024-63510-0.
8.  Abdi J, Mahmoodi NM, Vossoughi M, Alemzadeh I. Synthesis of magnetic metal-organic framework nanocomposite (ZIF-8@ SiO2@ MnFe2O4) as a novel adsorbent for selective dye removal from multicomponent systems. Microporous Mesoporous Mater. 2019;273:177-88. https://doi.org/10.1016/j.micromeso.2018.06.040.
9.  Alshabib M, Onaizi SA. A review on phenolic wastewater remediation using homogeneous and heterogeneous enzymatic processes: Current status and potential challenges. Sep Purif Technol. 2019;219:186-207. https://doi.org/10.1016/j.seppur.2019.03.028.
10. Shah SSA, Sohail M, Murtza G, Waseem A, ur Rehman A, Hussain I, et al. Recent trends in wastewater treatment by using metal-organic frameworks (MOFs) and their composites: a critical view-point. Chemosphere. 2024;349:140729. https://doi.org/10.1016/j.chemosphere. 2023.140729.
11. Li J, Wang X, Zhao G, Chen C, Chai Z, Alsaedi A, et al. Metal–organic framework-based materials: superior adsorbents for the capture of toxic and radioactive metal ions. Appl Surf Sci. 2018;47(7):2322-56. https://doi.org/ 10.1039/C7CS00543A.
12. Mahmoodi NM, Taghizadeh M, Taghizadeh A, Abdi J, Hayati B, Shekarchi AA. Bio-based magnetic metal-organic framework nanocomposite: Ultrasound-assisted synthesis and pollutant (heavy metal and dye) removal from aqueous media. Appl Surf Sci. 2019;480:288-99.https://doi.org/ 10.1016/j.apsusc.2019.02.211.
13. Ganiyu SA, Suleiman MA, Al-Amrani WA, Usman AK, Onaizi SA. Adsorptive removal of organic pollutants from contaminated waters using zeolitic imidazolate framework Composites: A comprehensive and Up-to-date review. Sep Purif Technol. 2023;318:123765.https://doi.org/ 10.1016 /j.seppur.2023.123765.
14. Zango ZU, Jumbri K, Sambudi NS, Ramli A, Abu Bakar NHH, Saad B, et al. A critical review on metal-organic frameworks and their composites as advanced materials for adsorption and photocatalytic degradation of emerging organic pollutants from wastewater. Polymers. 2020;12(11):2648. https://doi.org/10.3390/polym12112648
15. Silina A, El Achari A, Salaün F. Metal-organic framework electrospun nanofibers in application to dye removal from textile wastewaters: A review. J Environ Chem Eng. 2024:114819.https://doi.org/10.1016/j.jece.2024.114819
16. Ayar S, Tajik H, Mahmoodi NM. Fallah Moafi H, Rabeie B. Removal of malachite green dye from wastewater using metal-organic framework biocomposite (zif-67) and polymer (carboxymethyl cellulose). J Stud Color World. 14, 4(2024), 285-301. https://doi.org.10.30509/jscw. 2024.167336.1197
17. Andres-Garcia E, Oar-Arteta L, Gascon J, Kapteijn F. ZIF-67 as silver-bullet in adsorptive propane/propylene separation. Chem Eng J. 2019;360:10-4. https://doi.org/10.1016/j.cej.2018.11.118.
18. Dong Y, Duan C, Sheng Q, Zheng J. Preparation of Ag@ zeolitic imidazolate framework-67 at room temperature for electrochemical sensing of hydrogen peroxide. Analyst. 2019;144(2):521-9.https://doi.org/10.1039/C8AN01641K
19. Kumar OP, Ahmad M, Nazir MA, Anum A, Jamshaid M, Shah SSA, et al. Strategic combination of metal–organic frameworks and C3N4 for expeditious photocatalytic degradation of dye pollutants. ESPR. 2022;29(23):35300-13.https://doi.org/10.1007/s11356-021-17366-w.
20. Deng S, Zhang J, Yue X, Li P, Li A, Huang Z, et al. Preparation of electrospun ZIF-67/PVP/PVDF composite nanofiber membranes for efficient tetracycline removal from water. J Environ Chem Eng. 2025:115772. https:// doi.org/10.1016/j.jece.2025.115772
21. Xu S, Tang Q, Li S, Liao T, Cheng H, Lu T, et al. Preparation of underwater superoleophobic ZIF-67 composite membrane with high antibacterial activity and emulsion separation efficiency. J Environ Chem Eng. 2023;11(3):110078. https://doi.org/10.1016/j.jece.2023 .110078.
22. Abdellatif ABA, El-Bery HM, Abdelhamid HN, El-Gyar SA. ZIF-67 and Cobalt-based@ heteroatom–doped carbon nanomaterials for hydrogen production and dyes removal via adsorption and catalytic degradation. J Environ Chem Eng. 2022;10(6): 108848.https://doi.org/10.1016/j.jece. 2022.108848
23. Ahmadipouya S, Molavi H. Simultaneous removal of cationic and anionic dyes by highly efficient and recyclable ZIF‐67/expanded vermiculite (ZIF‐67/EV) composites. WER. 2025;97(2):e70027. https://doi.org/10.1002/ wer. 70027
24. Liu X, Xu B, Wang J. Facile sponge-like chitosan capsules as efficient adsorbent for anionic Congo red, Reactive brilliant blue KNR, and Methyl blue dyes: Performance and mechanism. J Environ Chem Eng. 2024;12(6):114367. https://doi.org/10.1016/j.jece.2024.114367.
25. Zou J, He L, Jin W, Mei F, Tang X, Cai G, et al. In-situ immobilization of ZIF-67/ZIF-8 on wood biomass for degradation of methylene blue and formaldehyde. Ind Crops Prod. 2024;221:119327. https://doi.org/10.1016/ j.indcrop. 2024.119327.
26. Nazir MA, Khan NA, Cheng C, Shah SSA, Najam T, Arshad M, et al. Surface induced growth of ZIF-67 at Co-layered double hydroxide: Removal of methylene blue and methyl orange from water. Appl Clay Sci. 2020;190:105564. https://doi.org/10.1016/j.clay.2020.105564.
27. Dicker MP, Duckworth PF, Baker AB, Francois G, Hazzard MK, Weaver PM. Green composites: A review of material attributes and complementary applications. COMPOS PART A APPL SCI MANUF. 2014;56:280-9.https://doi.org/10.1016/j.compositesa.2013.10.014.
28. Qian X, Ren Q, Wu X, Sun J, Wu H, Lei J. Enhanced water stability in Zn‐doped zeolitic imidazolate framework‐67 (ZIF‐67) for CO2 capture applications. ChemistrySelect. 2018;3(2):657-61. https://doi.org/10.1002/slct.201702114.
29. Nazir MA, Najam T, Shahzad K, Wattoo MA, Hussain T, Tufail MK, et al. Heterointerface engineering of water stable ZIF-8@ ZIF-67: Adsorption of rhodamine B from water. Surf Interfaces. 2022;34:102324. https://doi.org/ 10.1016/ j.surfin.2022.102324.
30. Varasteh M, Mazloom G, Ghani M, Bani Sharif Farhad. Adsorptive Removal of Azithromycin from Wastewater Using ZIF-67 Synthesized with Different Solvents: Solvent Optimization. 6th Conference on Applied Chemistry, Iranian Chemical Society, Malayer;2022. 
31. Li X, Li Z, Lu L, Huang L, Xiang L, Shen J, et al. The solvent induced inter‐dimensional phase transformations of cobalt zeolitic‐imidazolate frameworks. Chem Eur J. 2017;23(44):10638-43. https://doi.org/10.1002/chem. 201 701721.
32. Saghir S, Zhang S, Wang Y, Fu E, Xiao Z, Zahid AH, et al. Review, recent advancements in zeolitic imidazole frameworks-67 (ZIF-67) and its derivatives for the adsorption of antibiotics. J Environ Chem Eng. 2024;12(4):113166.https://doi.org/10.1016/j.jece.2024.113166.
33. Melgar VMA, Kim J, Othman MR. Zeolitic imidazolate framework membranes for gas separation: A review of synthesis methods and gas separation performance. J Ind Eng Chem. 2015;28:1-15. https://doi.org/10.1016 /j.jiec.2015.03.006.
34. Lewis A, Butt FS, Wei X, Mazlan NA, Chen Z, Yang Y, et al. Crystallization and phase selection of zeolitic imidazolate frameworks in aqueous cosolvent systems: The role and impacts of organic solvents. Rineng. 2023;17: 100751.https://doi.org/10.1016/j.rineng.2022.100751.
35. Chen J, Bao X, Meng T, Sun J, Yang X. Zeolitic imidazolate framework-67 accelerates infected diabetic chronic wound healing. Chem Eng J. 2022;430:133091.https://doi.org/ 10.1016/j.cej.2021.133091.
36. Deacon A, Briquet L, Malankowska M, Massingberd-Mundy F, Rudić S, Hyde TL, et al. Understanding the ZIF-L to ZIF-8 transformation from fundamentals to fully costed kilogram-scale production. Commun Chem. 2022;5(1):18. https://doi.org/10.1038/s42004-021-00613-z.
37. Pérez-Miana M, Reséndiz-Ordóñez JU, Coronas J. Solventless synthesis of ZIF-L and ZIF-8 with hydraulic press and high temperature. Microporous Mesoporous Mater. 2021;328:111487. https://doi.org/10.1016/j. micromeso.2021.111487.
38. Ahmadijokani F, Molavi H, Amini M, Bahi A, Wuttke S, Aminabhavi TM, et al. Waste organic dye removal using MOF-based electrospun nanofibers of high amine density. Chem Eng J. 2023;466:143119. https://doi.org/10.1016/ j.cej.2023.143119.
39. Su H, Qiu W, Deng T, Zheng X, Wang H, Wen P. Fabrication of physically multi-crosslinked sodium alginate/carboxylated-chitosan/montmorillonite-base aerogel modified by polyethyleneimine for the efficient adsorption of organic dye and Cu (II) contaminants. Sep Purif Technol. 2024;330:125321. https://doi.org/10.1016/ j.seppur.2023.125321.
40. Sadeghpour M, Homayoonfal M, Davar F. Synergistic effects of ZIF-8 and ZIF-67 in bilayer membranes on separation tuning of pH-sensitive antitumor drug. Colloids Surf A: Physicochem Eng Asp. 2023;678:132455. https://doi.org/10.1016/j.colsurfa.2023.132455.
41. Abbas MQ, Javeria H, Shuhuan C, Khan J, Nazir A, Ibrahim S, et al. High-performance novel ZIF-67 and ZIF-67@ MWNTs composite adsorbents for efficient removal of pharmaceutical contaminant from water: Exceptional capacity and excellent reusability. Sep Purif Technol. 2025;355:129645.https://doi.org/10.1016/j.seppur.2024.129645.
42. Wu Q, Yu W, Wu Y, Gan F, Zeng X, Fan L, et al. Magnetic porous cobalt-embedded nitrogen-doped biochar derived from natural loofah cellulose for efficient adsorption of tetracycline from water. Colloids Surf A: Physicochem Eng Asp. 2025;706:135772. https://doi.org/10.1016/j.colsurfa. 2024.135772
43. Wang J, Guo X. Adsorption kinetic models: Physical meanings, applications, and solving methods. J Hazard Mater. 2020;390:122156. https://doi.org/10.1016/j.jhazmat. 2020.122156
44. Wang J, Guo X. Adsorption kinetics and isotherm models of heavy metals by various adsorbents: An overview. Critical Reviews in Environmental Science and Technology. 2023;53(21):1837-65
45. Mussa ZH, Al-Ameer LR, Al-Qaim FF, Deyab IF, Kamyab H, Chelliapan S. A comprehensive review on adsorption of methylene blue dye using leaf waste as a bio-sorbent: isotherm adsorption, kinetics, and thermodynamics studies. Environ Monit Assess. 2023;195(8):940. https://doi.org/ 10.1007/s10661-023-11432-1.
46. Chen W, Liu Z, Xie Y, Guo X, Xie H, Chen J, et al. Synthesis of ZIF-67 composite lignin hydrogel and its catalytic degradation of naphthalene by PMS in wastewater. Int J Biol Macromol. 2025:139700. https://doi.org/10.1016 /j.ijbiomac.2025.139700.
47. Bustamante EL, Fernández JL, Zamaro JM. Influence of the solvent in the synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals at room temperature. JCIS. 2014;424:37-43.https://doi.org/10.1016/j.jcis.2014.03.014.
48. Zhou F, Chen Y, Zhang Z, Gu Z, Sun Y, Tong M, et al. The effect of different solvents on the formation of large‐area MOF membranes. AIChE J. 2024;70(8):e18455. https://doi.org/10.1002/aic.18455.
49. Sarker T, Tahmid I, Sarker RK, Dey SC, Islam MT, Sarker M. ZIF-67-based materials as adsorbent for liquid phase adsorption-a review. Polyhedron. 2024:117069. https://doi.org/10.1016/j.poly.2024.117069.
50. Saeed S, Bashir R, Rehman SU, Nazir MT, ALOthman ZA, Muteb Aljuwayid A, et al. Synthesis and characterization of ZIF-67 mixed matrix nanobiocatalysis for CO2 adsorption performance. Front bioeng biotechnol. 2022;10:891549. https://doi.org/10.3389/fbioe.2022.891549.
51. Zhong G, Liu D, Zhang J. The application of ZIF-67 and its derivatives: adsorption, separation, electrochemistry and catalysts. Journal of Materials Chemistry A. 2018;6(5):1887-99.
52. Mokhtari-Shourijeh Z, Ardjmand M, Mahmoodi NM, Gholipour-Kanani A, Nosratinia F. Seed-assisted two-step ZIF-67 growth on CS/PVA nanofibers for high-efficiency cadmium and tetracycline adsorption. J Mol Struct. 2025;1321:139835. https://doi.org/10.1016/j.molstruc. 2024.139835
53. Gupta N, Murthy Z. Synthesis and application of ZIF-67 on the performance of polysulfone blend membranes. Mater Today Chem. 2022;23:100685.https://doi.org/10.1016/j. mtchem.2021.100685
54. Misran H, Mahadi N, Othman SZ, Lockman Z, Amin N, Matsumoto A, editors. Room temperature synthesis and characterizations of ZIF-8 formation at water-fatty alcohols interface. J Phys Conf Ser; 2018: IOP Publishing.
55. Wang T, Liu L-a, Wu H, Zhang J, Feng Z, Yan X, et al. Fabrication of a ZIF-on-lamella-zeolite architecture as a highly efficient catalyst for aldol condensation. Dalton Trans. 2024;53(11):5212-21.DOI: 10.1039/D4DT00288A
56. Duan C, Yu Y, Hu H. Recent progress on synthesis of ZIF-67-based materials and their application to heterogeneous catalysis. GEE. 2022;7(1):3-15.https://doi.org/10.1016/j. gee.2020.12.023
57. Li Y, Zhao X, Fan L, Zhu X, Cui Z. Morphology control of polylactic acid/ZIF-8 composite fiber membranes and adsorption performances for dye and antibiotic. Mater Sci. 2024;59(4):1621-34.https://doi.org/10.1007/s10853-023-09307-4.
58. Das S, Paul SR, Debnath A. Enhanced performance of Lagerstroemia speciosa seed biochar and polypyrrole composite for the sequestration of emerging contaminant from wastewater sample: case study of ofloxacin drug. JWPE. 2024;64:105699. https://doi.org/10.1016/ j.jwpe. 2024.105699.
59. Mahmoodi NM, Mokhtari-Shourijeh Z. Preparation of PVA-chitosan blend nanofiber and its dye removal ability from colored wastewater. Fibers Polym. 2015;16:1861-9.https://doi.org/10.1007/s12221-015-5371-1.
60. Mahmoodi NM, Mokhtari-Shourijeh Z, Langari S, Naeimi A, Hayati B, Jalili M, et al. Silica aerogel/polyacrylonitrile/polyvinylidene fluoride nanofiber and its ability for treatment of colored wastewater. J Mol Struct. 2021;1227:129418. https://doi.org/10.1016/ j.molstruc.2020.129418
61. Dai W, Dai Y, Fang C, Xu L, Wang Y, Zhou H, et al. Electrospun gelatin nanofibers in situ composite with ZIF-67 for eco-friendly and efficient uranium removal. J Radioanal Nucl Chem. 2024:1-15.https://doi.org/10.1007/ s10967-024-09516-4.
62. Jiang S, Liang S, Hu C, Fan Y, Su Z, Geng Z, et al. High performance bimetallic ZIF-CoZn@ PVDF-HFP composite nanofiber membrane for membrane distillation based on coaxial electrospinning technology. Sep Purif Technol. 2024;344:127280.https://doi.org/10.1016/j.seppur.2024.127280.
63. Awang Chee D, Kamaludin N, Soffian M, Abdul Halim F, Mohamed Amin M. Revolutionizing dye adsorption: amino functionalized Zeolitic Imidazole Framework-8 for effective methyl blue removal. IJEST. 2025:1-18.https://doi.org/ 10.1007/s13762-024-06250-y.
64. Cai F, Li C, Yang C, Wang Y, Zhou H, Yang S, et al. Preparation of nitrogen-doped bagasse-derived biochar with outstanding methylene blue adsorption performance. Ind Crops Prod. 2025;224:120415. https://doi.org/10.1016/ j.indcrop.2024.120415
65. Zhang T, Jin X, Owens G, Chen Z. Remediation of malachite green in wastewater by ZIF-8@ Fe/Ni nanoparticles based on adsorption and reduction. JCIS. 2021;594:398-408. https://doi.org/10.1016/j.jcis.2021. 03.065.
66. Liu Y, Li W, Gao Y, Wang J, Cheng G, Chen J, et al. Highly efficient and rapid removal of non-steroidal anti-inflammatory drugs from environmental samples based on an eco-friendly ZIF-67-molecularly imprinted composite. Chem Eng J. 2022;443:136396. https://doi.org/ 10.101 6/j.cej.2022.136396.
67. Begum J, Hussain Z, Noor T. Adsorption and kinetic study of Cr (VI) on ZIF-8 based composites. Mater Res Express. 2020;7(1):015083. https://iopscience.iop.org/ article/10. 1088/2053-1591/ab6b66.
68. Zhao Y, Pan Y, Liu W, Zhang L. Removal of heavy metal ions from aqueous solutions by adsorption onto ZIF-8 nanocrystals. Chemistry Letters. 2015;44(6):758-60.
69. Li Y, Pan T, Feng J, Yu B, Xiong W, Yuan G. Facile preparation of UiO-66-Lys/PAN nanofiber membrane by electrospinning for the removal of Co (II) from simulated radioactive wastewater. Sci Total Environ. 2024 ;914:169725. https://doi.org/10.1016/j.scitotenv.2023. 169 725.
70. Le Q, Cheng Z. Microwave-assisted rapid growth of corncob-like nano-Ag2O/ZIF-8 on PAN electrospinning nanofibers enabled highly efficient selective adsorption desulfurization. Appl Surf Sci. 2023;623:157109. https://doi.org/10.1016/j.apsusc.2023.157109.
71. Yang X, Zhou Y, Sun Z, Yang C, Tang D. Effective strategy to fabricate ZIF-8@ ZIF-8/polyacrylonitrile nanofibers with high loading efficiency and improved removing of Cr (VI). Colloids Surf A: Physicochem Eng Asp. 2020;603:125292. https://doi.org/10.1016/j.colsurfa.2020.125292
72. Rabeie B, Mahmoodi NM, Dargahi A, Hayati B, Moghaddam HR, Magnetic COF/MOF hybrid: An efficient Z-scheme photocatalyst for the visible light-assisted degradation of tetracycline and malachite green. J. Mol. Liq. 2025;421:126869. https://doi.org/10.1016/j.molliq.2025. 126869.
73. Mazarji M, Mahmoodi NM, Bidhendi GN, Li A, Li M, James A, Mahmoodi B, Pan J, Synthesis, Characterization, and Enhanced Photocatalytic Dye Degradation: Optimizing Graphene-Based ZnO-CdSe Nanocomposites via Response Surface Methodology. J. Alloys Compd. 2025;1010:177999. https://doi.org/10.1016/j.jallcom.2024.177999.
74. Ayar S, Tajik H, Mahmoodi NM, Fallah Moafi H, Rabeie B. Removal of malachite green dye from wastewater using metal-organic mold biocomposite (ZIF-67) and polymer (carboxymethyl cellulose). J Stud Color World. 2024;14(4):285-301. ttps://doi.org/10.30509/jscw.2024. 167336.1197 [In Persian].
75. Hosseinabadi-Farahani Z, Hosseini-Monfared H, Mahmoodi NM, Graphene oxide nanosheet: preparation and dye removal from binary system colored wastewater. Desalin Water Treat. 2015;56: 2382-2394. https://doi.org/ 10.1080/19443994.2014.960462
76. Mahmoodi NM, Mokhtari-Shourijeh Z, Modified poly (vinyl alcohol)-triethylenetetramine nanofiber by glutaraldehyde: preparation and dye removal ability from wastewater. Desalin Water Treat. 2016;57:20076-20083.  https://doi.org/ 10.1080/19443994.2015.1109562
77. Bagheri A, Hoseinzadeh H, Hayati B, Mahmoodi NM, Mehraeen E, Post-synthetic functionalization of the metal-organic framework: Clean synthesis, pollutant removal, and antibacterial activity. J Environ Chem Eng 2021;9:104590. https://doi.org/10.1016/j.jece.2020.104590.
78. Rabeie B, Mahmoodi NM. Heterogeneous MIL-88A on MIL-88B hybrid: A promising eco-friendly hybrid from green synthesis to dual application (Adsorption and photocatalysis) in tetracycline and dyes removal. J Colloid Interface Sci. 2024;654:495–522. https://doi.org/ 10.1016/j.jcis.2023.10.060.
79. Mahmoodi NM, Hosseinabadi‐Farahani Z, Chamani H, Dye adsorption from single and binary systems using NiO‐MnO2 nanocomposite and artificial neural network modeling. Environ Prog Sustain. 2017;36:111-119. https://doi.org/ 10.1002/ep.12452
80. Mahmoodi NM, Ghadirli MM, Hayati B, Mahmoodi B, Rabeie B, Synthesis of ZIF-8 composite (g-C3N4@ ZIF-8/Ag3PO4) as a catalyst for the malachite green and tetracycline degradation. Inorg Chem Commun. 2025;177:114345. https://doi.org/10.1016/j.inoche. 2025.1 14345.
81. Dousti S, Mahmoodi B, Bijari M, Shahbazi A,Investigating the Effect of Various Precursors in the Synthesis and Improvement of the Photocatalytic Performance of Graphite Carbon Nitride in the Degradation of Rhodamine B Dye Under Visible Light. J Color Sci Tech. 2024;18(2):135-150. https://doi.org/10.30509/JCST.2024.167291.1224. [In Persian].
82. Rabeie B, MXenes: From introduction of structure and synthesis to photocatalytic ability to degrade dyes and organic pollutants in water. J Stud Color World. 2025;15(1):91-114. https://doi.org. 10.30509/jscw. 2025. 16 7478.1222 [In Persian].
83. Mahmoodi NM, Maghsoodi A, Kinetics and isotherm of cationic dye removal from multicomponent system using the synthesized silica nanoparticle. Desalin Water Treat. 2015;54:562-571. https://doi.org/10.1080/19443994.2014. 880158.
84. Oshani F, Kargari A, Norouzbeigi R, Mahmoodi NM, Role of Fabrication Parameters on Microstructure and Permeability of Geopolymer Microfilters. Chem Eng Res Des. 2024;210;190-201. https://doi.org/10.1016/j.cherd. 2024.08.009.
85. Mahmoodi NM, Mokhtari-Shourijeh Z, Preparation of aminated nanoporous nanofiber by solvent casting/porogen leaching technique and dye adsorption modeling. J Taiwan Inst Chem Eng. 2016;65:378-389. https://doi.org/10.1016/j. jtice.2016.05.042.
86. Foroughifar N, Mobinikhaledi A, Rabeie B, Jalili L, DABCO as a mild and efficient catalyst for the synthesis of tetrahydropyrimidines. Rev Roum Chim 2013;58:491-495.
87. Mahmoodi NM, Bakhtiari M, Oveisi M, Mahmoodi B, Hayati B, Green synthesis of eco-friendly magnetic metal-organic framework nanocomposites (AlFum-graphene oxide) and pollutants (dye and pharmaceuticals) removal capacity from water. Mater Chem Phys. 2023; 302:127720.https://doi.org/10.1016/j.matchemphys.2023.127720.
88. Shokrgozar A, Seifpanahi-Shabani K, Mahmoodi B, Mahmoodi NM, Khorasheh F, Baghalha M, Synthesis of Ni-Co-CNT nanocomposite and evaluation of its photocatalytic dye (Reactive Red 120) degradation ability using response surface methodology. Desalin Water Treat 2021;216:389-400. https://doi.org/10.5004/dwt.2021.26804.
89. Ahmadi S, Mahmoodi B, Kazemini M, Mahmoodi NM, Photocatalytic degradation of dye (Reactive Red 198) and pharmaceutical (tetracycline) using MIL-53 (Fe) and MIL-100 (Fe): catalyst synthesis and pollutant degradation. Pigm Resin Technol. 2023;52:357-368. https://doi.org/10.1108 /PRT-05-2022-0067.