1. Amari A, Yadav VK, Pathan SK, Singh B, Osman H, Choudhary N, et al. Remediation of methyl red dye from aqueous solutions by using biosorbents developed from floral waste. Adsorpt Sci Technol. 2023; 2023:1532660. https://doi.org/10.1155/ 2023/1532660
2. Ikram M, Naeem M, Zahoor M, Rahim A, Hanafiah MM, Oyekanmi AA, Shah AB, Mahnashi MH, Al Ali A, Jalal NA, Bantun F. Biodegradation of Azo Dye Methyl Red by Pseudomonas aeruginosa: Optimization of Process Conditions. Int J Environ Res Public Health. 2022;19(16):9962. https://doi.org/10.3390/ijerph19169962
3. Ashraf SS, Rauf MA, Alhadrami S. Degradation of Methyl Red using Fenton's reagent and the effect of various salts. Dyes Pigm. 2006;69(1-2):74-8. https://doi.org/10.1016 /j.dyepig.2005.02.009
4. Sharma K, Pandit S, Mathuriya AS, Gupta PK, Pant K, Jadhav DA. Microbial electrochemical treatment of methyl red dye degradation using co-culture method. Water. 2022;15(1):56. https://doi.org/ 10.3390/w15010056
5. Hu S, Yuan D, Liu Y, Zhao L, Guo H, Niu Q, Zong W, Liu R. The toxic effects of alizarin red S on catalase at the molecular level. RSC Adv. 2019;9(57):33368-77. https://doi.org/10.1039 /C9RA02986A.
6. Ullah MA, Alhar MS, Khan AU, Tahir K, Zaki ME, Alabbad EA, Saleh EA, Hassan HM, El-Zahhar AA, Munshi AM. Photocatalytic removal of alizarin red and photoinhibition of microbes in the presence of surfactant and Bio-template mediated Ag/SnO2/Nb2O5-SiO2 nanocomposite. J Mol Liquid. 2023;370:121042. https://doi.org/10.1016 /j.molliq. 2022.121042
7. Rehman R, Raza A, Noor W, Batool A, Maryem H. Photocatalytic Degradation of Alizarin Red S, Amaranth, Congo Red, and Rhodamine B dyes using UV light modified reactor and ZnO, TiO2, and SnO2 as catalyst. J Chem. 2021;2021(1):6655070. https://doi.org/10.1155/2021/6655 070.
8. Zhang X, Shi P, Zhao W, Lu W, Li F, Min Y, Xu Q. Research on methylene blue degradation based on multineedle-to-plane liquid dielectric barrier discharge mode. Sep Purif Technol. 2022;286:120476. https://doi.org/10.1016/ j.seppur.2022.120476.
9. Teixeira YN, de Paula Filho FJ, Bacurau VP, Menezes JM, Fan AZ, Melo RP. Removal of Methylene Blue from a synthetic effluent by ionic flocculation. Heliyon. 2022;8(10). https://doi. org/10.1016/j.heliyon.2022.e10868.
10. Zhu C, Feng Q, Ma H, Wu M, Wang D, Wang Z. Effect of methylene blue on the properties and microbial community of anaerobic granular sludge. Bioresour. 2018;13(3):6033-46.
11. Ardila-Leal LD, Poutou-Piñales RA, Pedroza-Rodríguez AM, Quevedo-Hidalgo BE. A brief history of colour, the environmental impact of synthetic dyes and removal by using laccases. Mol. 2021;26(13):3813. https://doi.org/ 10.3390/molecules26133813.
12. Ali AE, Chowdhury ZZ, Devnath R, Ahmed MM, Rahman MM, Khalid K, Wahab YA, Badruddin IA, Kamangar S, Hussien M, Pallan KH. Removal of azo dyes from aqueous effluent using bio-based activated carbons: toxicity aspects and environmental impact. Sep. 2023;10(9):506. https://doi .org/10.3390/separations10090506.
13. Ayele A, Getachew D, Kamaraj M, Suresh A. Phycoremediation of synthetic dyes: An effective and eco‐friendly algal technology for the dye abatement. J Chem. 2021;2021(1):9923643. https://doi.org/10.1155/2021/992 3643.
14. Sirirerkratana K, Kemacheevakul P, Chuangchote S. Color removal from wastewater by photocatalytic process using titanium dioxide-coated glass, ceramic tile, and stainless steel sheets. J Clean Prod. 2019;215:123-30. https://doi.org/10.1016 /j.jclepro. 2019.01.037.
15. Jaybhaye S, Shinde N, Jaybhaye S, Narayan H. Photocatalytic degradation of organic dyes using Titanium Dioxide (TiO2) and Mg-TiO2 nanoparticles. J Nanotechnol. 2022;3(2):67-76. https://doi.org/10.33696 /Nanotechnol. 3.032.
16. Meksi M, Turki A, Kochkar H, Bousselmi L, Guillard C, Berhault G. The role of lanthanum in the enhancement of photocatalytic properties of TiO2 nanomaterials obtained by calcination of hydrogenotitanate nanotubes. Appl Catal B: Env. 2016; 181:651-660. https://doi.org/10.1016/ j.apcatb.2015.08.037
17. Rajesh C, Rajashekara R, Nagaraju P. Response Surface Methodology (RSM) modelling for the photocatalytic optimization study of benzophenone removal using CuWO4/NiO nanocomposite. J Env Health Sci Eng. 2023;21(1):187-199. https://doi.org/10.1007/s40201-023-00852-3.
18. Parsafard N, Shoorgashti Z. The effect of transition metal oxides in the La/TiO2 structure for the photocatalytic degradation of malachite green under UV and visible light irradiation. Appl Water Sci. 2024;14(10):220. https://doi.org/10.1007/s13201-024-0228 5-1.
19. Parsafard N, Abedi R, Moodi H. Ternary tin-doped titanium dioxide/calcium oxide (Sn-TiO2/CaO) composite as a photocatalyst for efficient removal of toxic dyes. RSC Adv. 2024;14(28):19984-95. https://doi.org/10.1039/D4RA03 641G.
20. Suliman ZA, Mecha AC, Mwasiagi JI. Effect of TiO2/Fe2O3 nanopowder synthesis method on visible light photocatalytic degradation of reactive blue dye. Heliyon. 2024;10(8). https://doi.org/10.1016/j.heliyon.2024.e29648.
21. Kumar A, Pandey G. A review on the factors affecting the photocatalytic degradation of hazardous materials. Mater Sci Eng Int J. 2017;1(3):1-0. https://doi.org/ 10.15406 /mseij.2017.01.00018.
22. Jagodić I, Guth I, Lukić-Petrović S, Tamindžija D, Šojić Merkulov D, Finčur N, Putnik P, Banić N. Reusable Fe2O3/TiO2/PVC Photocatalysts for the Removal of Methylene Blue in the Presence of Simulated Solar Radiation. Nanomater. 2023;13(3):460. https://doi.org/ 10.3390/ nano13030460.
23. Liu H, Zhang ZG, Wang XX, Nie GD, Zhang J, Zhang SX, Long YZ. Highly flexible Fe2O3/TiO2 composite nanofibers for photocatalysis and utraviolet detection. J Phys Chem Solid. 2018;121:236-246. https://doi.org/10.1016/j.jpcs. 2018.05.019.