Zhou Y, Lu J, Zhou Y, Liu Y. Recent advances for dyes removal using novel adsorbents: a review. Environ Pollut. 2019;252:352-65. https://doi.org/10.1016/j.envpol.2019.05.072.
2. Crini G, Lichtfouse E. Advantages and disadvantages of techniques used for wastewater treatment. Environ Chem Lett. 2019;17(1):145-55. https://doi.org/10.1007/s10311-018-0785-9.
3. Berradi M, Hsissou R, Khudhair M, Assouag M, Cherkaoui O, El Bachiri A, et al. Textile finishing dyes and their impact on aquatic environs. Heliyon. 2019;5(11):e02711. https://doi.org/10.1016/j.heliyon.2019.e02711.
4. Rabeie B, Mahmoodi NM. Heterogeneous MIL-88A on MIL-88B hybrid: a promising eco-friendly hybrid from green synthesis to dual application (adsorption and photocatalysis) in tetracycline and dyes removal. J Colloid Interface Sci. 2024;654:495-522. https://doi.org/10.1016/ j.jcis.2023.10.060.
5. Rabeie B, Mahmoodi NM. Hierarchical ternary titanium dioxide decorated with graphene quantum dot/ZIF-8 nanocomposite for the photocatalytic degradation of doxycycline and dye using visible light. J Water Process Eng. 2023;54:103976. https://doi.org/10.1016/ j.jwpe. 2023.103976.
6. Rabeie B, Mahmoodi NM. Green and environmentally friendly architecture of starch-based ternary magnetic biocomposite (Starch/MIL100/CoFe2O4): synthesis and photocatalytic degradation of tetracycline and dye. Int J Biol Macromol. 2024;274:133318. https://doi.org/10.1016 /j.ijbiomac.2024.133318.
7. Pi Y, Li X, Xia Q, Wu J, Li Y, Xiao J, et al. Adsorptive and photocatalytic removal of persistent organic pollutants (POPs) in water by metal-organic frameworks (MOFs). Chem Eng J. 2018;337:351-71. https://doi.org/ 10.1016/j.cej.2017.12.092.
8. Lv SW, Liu JM, Wang ZH, Ma H, Li CY, Zhao N, et al. Recent advances on porous organic frameworks for the adsorptive removal of hazardous materials. J Environ Sci (China). 2019;80:169-85. https://doi.org/10.1016/j.jes. 2018.12.010.
9. Holkar CR, Jadhav AJ, Pinjari DV, Mahamuni NM, Pandit AB. A critical review on textile wastewater treatments: possible approaches. J Environ Manage. 2016;182:351-66. https://doi.org/10.1016/j.jenvman.2016.07.090.
10. Rabeie B, Mahmoodi NM, Dargahi A, Hayati B, Moghaddam HR. Magnetic COF/MOF hybrid: an efficient Z-scheme photocatalyst for the visible light-assisted degradation of tetracycline and malachite green. J Mol Liq. 2025;421:126869. https://doi.org/10.1016/j.molliq.2025. 126869.
11. Yagub MT, Sen TK, Afroze S, Ang HM. Dye and its removal from aqueous solution by adsorption: a review. Adv Colloid Interface Sci. 2014;209:172-84. https://doi.org/ 10.1016/j.cis.2014.04.002.
12. Ortúzar M, Esterhuizen M, Olicón-Hernández DR, González-López J, Aranda E. Pharmaceutical pollution in aquatic environments: a concise review of environmental impacts and bioremediation systems. Front Microbiol. 2022;13:869332. https://doi.org/10.3389/fmicb.2022.869 332.
13. Zainab SM, Junaid M, Xu N, Malik RN. Antibiotics and antibiotic resistant genes (ARGs) in groundwater: a global review on dissemination, sources, interactions, environmental and human health risks. Water Res. 2020;187:116455. https://doi.org/10.1016/j.watres.2020. 116455.
14. Dos Santos AB, Cervantes FJ, Van Lier JB. Review paper on current technologies for decolorization of textile wastewaters: perspectives for anaerobic biotechnology. Bioresour Technol. 2007;98(12):2369-85. https://doi.org/ 10.1016/j.biortech.2006.11.013.
15. Katheresan V, Kansedo J, Lau SY. Efficiency of various recent wastewater dye removal methods: a review. J Environ Chem Eng. 2018;6(4):4676-97. https://doi.org/ 10.1016/j.jece.2018.06.060.
16. Mishra S, Sundaram B. A review of the photocatalysis process used for wastewater treatment. Mater Today Proc. 2023. https://doi.org/10.1016/j.matpr.2023.07.147.
17. Yuan Y, Guo RT, Hong LF, Ji XY, Lin ZD, Li ZS, et al. A review of metal oxide-based Z-scheme heterojunction photocatalysts: actualities and developments. Mater Today Energy. 2021;21:100829. https://doi.org/10.1016/j.mtener. 2021.100829.
18. Fernández-Catalá J, Greco R, Navlani-García M, Cao W, Berenguer-Murcia Á. g-C3N4-based direct Z-scheme photocatalysts for environmental applications. Catalysts. 2022;12(10):1137. https://doi.org/10.3390/catal12101137.
19. Balapure A, Ray Dutta J, Ganesan R. Recent advances in semiconductor heterojunctions: a detailed review of the fundamentals of photocatalysis, charge transfer mechanism and materials. RSC Appl Interfaces. 2024;1(1):43-69. https://doi.org/10.1039/d3lf00126a.
20. Rabeie B, Mahmoodi NM, Hayati B, Dargahi A, Rezakhani Moghaddam H. Chitosan adorned with ZIF-67 on ZIF-8 biocomposite: A potential LED visible light-assisted photocatalyst for wastewater decontamination. Int J Biol Macromol. 2024;282. https://doi.org/10.1016/j.ijbiomac. 2024.137405
21. Mahmoodi NM, Karimi B, Mazarji M, Moghtaderi H. Cadmium selenide quantum dot-zinc oxide composite: synthesis, characterization, dye removal ability with UV irradiation, and antibacterial activity as a safe and high-performance photocatalyst. J Photochem Photobiol B. 2018;188:19-27. https://doi.org/10.1016/j.jphotobiol.2018. 08.023.
22. Popli S, Patel UD. Destruction of azo dyes by anaerobic-aerobic sequential biological treatment: a review. Int J Environ Sci Technol. 2015;12(1):405-20. https://doi.org/ 10.1007/s13762-014-0499-x.
23. Saleh IA, Zouari N, Al-Ghouti MA. Removal of pesticides from water and wastewater: chemical, physical and biological treatment approaches. Environ Technol Innov. 2020;19:101026. https://doi.org/10.1016/j.eti.2020.101026.
24. Hasan Z, Jhung SH. Removal of hazardous organics from water using metal-organic frameworks (MOFs): plausible mechanisms for selective adsorptions. J Hazard Mater. 2015;283:329-39. https://doi.org/10.1016/j.jhazmat.2014. 09.046.
25. Dutta S, Gupta B, Srivastava SK, Gupta AK. Recent advances on the removal of dyes from wastewater using various adsorbents: a critical review. Mater Adv. 2021;2(14):4497-531. https://doi.org/10.1039/d1ma00354b.
26. Arora R. Adsorption of heavy metals-a review. Mater Today Proc. 2019;18:4745-50. https://doi.org/10.1016/j.matpr. 2019.07.462.
27. Rudi NN, Muhamad MS, Te Chuan L, Alipal J, Omar S, Hamidon N, et al. Evolution of adsorption process for manganese removal in water via agricultural waste adsorbents. Heliyon. 2020;6(9):e05049. https://doi.org/ 10.1016/j.heliyon.2020.e05049.
28. Dhaka S, Kumar R, Deep A, Kurade MB, Ji SW, Jeon BH. Metal-organic frameworks (MOFs) for the removal of emerging contaminants from aquatic environments. Coord Chem Rev. 2019;380:330-52. https://doi.org/10.1016/ j.ccr.2018.10.003.
29. Mahmoodi NM. Synthesis of amine-functionalized magnetic ferrite nanoparticle and its dye removal ability. J Environ Eng. 2013;139(11):1382-90. https://doi.org/ 10.1061/(ASCE)EE.1943-7870.0000763.
30. Abdi J, Vossoughi M, Mahmoodi NM, Alemzadeh I. Synthesis of metal-organic framework hybrid nanocomposites based on GO and CNT with high adsorption capacity for dye removal. Chem Eng J. 2017;326:1145-58. https://doi.org/10.1016/j.cej.2017.06.054.
31. Ho YS, McKay G. Kinetic models for the sorption of dye from aqueous solution by wood. Process Saf Environ Prot. 1998;76(2):183-91. https://doi.org/10.1205/095758298529 326.
32. Sarma GK, Sen Gupta S, Bhattacharyya KG. Removal of hazardous basic dyes from aqueous solution by adsorption onto kaolinite and acid-treated kaolinite: kinetics, isotherm and mechanistic study. SN Appl Sci. 2019;1(2):216. https://doi.org/10.1007/s42452-019-0216-y.
33. Mahmoodi NM, Oveisi M, Bakhtiari M, Hayati B, Shekarchi AA, Bagheri A, et al. Environmentally friendly ultrasound-assisted synthesis of magnetic zeolitic imidazolate framework - graphene oxide nanocomposites and pollutant removal from water. J Mol Liq. 2019;282:115-30. https://doi.org/10.1016/j.molliq.2019.02.139.
34. Abdi J, Vossoughi M, Mahmoodi NM, Alemzadeh I. Synthesis of amine-modified zeolitic imidazolate framework-8, ultrasound-assisted dye removal and modeling. Ultrason Sonochem. 2017;39:550-64. https:// doi.org/10.1016/j.ultsonch.2017.04.030.
35. Kalam S, Abu-Khamsin SA, Kamal MS, Patil S. Surfactant Adsorption Isotherms: A Review. ACS Omega. 2021;6(48):32342–8. https://doi.org/10.1021/acsomega.1c0 466136.
36. Rabeie B, Mahmoodi NM, Mahkam M. MIL88A(Fe) composites on dye and pharmaceuticals (tetracycline and doxycycline) removal. J Environ Chem Eng. 2022;10(3):108321. https://doi.org/10.1016/j.jece.2022. 108 321.
37. Oveisi M, Asli MA, Mahmoodi NM. MIL-Ti metal-organicframeworks (MOFs) nanomaterials as superior adsorbents:Synthesis and ultrasound-aided dye adsorption from multicomponent wastewater systems. J Hazard Mater.2018;347:123-140. https://doi.org/ 10.1016/j.jhazmat .2017.12.057
38. Lee YR, Kim J, Ahn WS. Synthesis of metal-organic frameworks: a mini review. Korean J Chem Eng. 2013;30(9):1667-80. https://doi.org/10.1007/s11814-013-0140-6
39. Corona A, López J, Rangel Segura R, Garcia MMM, Flores E, Gattorno RG. Microwave-assisted synthesis of CdS-MOF MIL-101(Fe) composite: characterization and photocatalytic performance. Sustainability. 2019;11(1):1-14. https://doi.org/10.1021/acs.inorgchem.4c02104.
40. Stock N, Biswas S. Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chem Rev. 2012;112(2):933-69. https://doi.org/10.1021/cr200304e.
41. Amaro-Gahete J, Klee R, Esquivel D, Ruiz JR, Jiménez-Sanchidrián C, Romero-Salguero FJ. Fast ultrasound-assisted synthesis of highly crystalline MIL-88A particles and their application as ethylene adsorbents. Ultrason Sonochem. 2019;50:59-66. https://doi.org/10.1016 /j.ultsonch.2018.08.027.
42. Van Tran T, Nguyen H, Le PHA, Nguyen DTC, Nguyen TT, Van Nguyen C, et al. Microwave-assisted solvothermal fabrication of hybrid zeolitic-imidazolate framework (ZIF-8) for optimizing dyes adsorption efficiency using response surface methodology. J Environ Chem Eng. 2020;8(5):104189. https://doi.org/10.1016/j.jece.2020.104 189.
43. Rabeie B, Mahkam M, Mahmoodi NM, Lan CQ. Graphene quantum dot incorporation in the zeolitic imidazolate framework with sodalite (SOD) topology: synthesis and improving the adsorption ability in liquid phase. J Environ Chem Eng. 2021;9(5):106303. https://doi.org/10.1016/j.jece.2021.106303.
44. Ahankar H, Ramazani A, Ślepokura K, Lis T, Kinzhybalo V. Magnetic cobalt ferrite nanoparticles functionalized with citric acid as a green nanocatalyst for one-pot three-component sonochemical synthesis of substituted 3-pyrrolin-2-ones. Res Chem Intermed. 2019;45(10):5007-25. https://doi.org/10.1007/s11164-019-03878-1.
45. Fozyia Yusuf V, Malek NI, Kailasa SK. Review on metal-organic framework classification, synthetic approaches, and influencing factors. ACS Omega. 2022;7(49):44507-31. https://doi.org/10.1021/acsomega.2c05310.
46. Khan NA, Jung BK, Hasan Z, Jhung SH. Adsorption and removal of phthalic acid and diethyl phthalate from water with zeolitic imidazolate and metal-organic frameworks. J Hazard Mater. 2015;282:194-200. https://doi.org/10.1016/j.jhazmat.2014.03.047..
47. Chen L, Xu Q. Metal-organic framework composites for catalysis. Matter. 2019;1(1):57-89. https://doi.org/10.1016/j.matt.2019.05.018.
48. Sadjadi S, Koohestani F, Mahmoodi NM, Rabeie B. Composite of MOF and chitin as an efficient catalyst for photodegradation of organic dyes. Int J Biol Macromol. 2021;182:524-33. https://doi.org/10.1016/j.ijbiomac.2021.04.034.
49. Wang J, Wan J, Ma Y, Wang Y, Pu M, Guan Z. Metal-organic frameworks MIL-88A with suitable synthesis conditions and optimal dosage for effective catalytic degradation of Orange G through persulfate activation. RSC Adv. 2016;6(113):112502-11. https://doi.org/10.1039/C6RA24429G.
50. Wang CC, Wang X, Liu W. The synthesis strategies and photocatalytic performances of TiO2/MOFs composites: a state-of-the-art review. Chem Eng J. 2020;391:123601. https://doi.org/10.1016/j.cej.2019.123601.
51. Yang Q, Ren SS, Zhao Q, Lu R, Hang C, Chen Z, et al. Selective separation of methyl orange from water using magnetic ZIF-67 composites. Chem Eng J. 2018;333:49-57. https://doi.org/10.1016/j.cej.2017.09.099.
52. Nordin NAHM, Ismail AF, Yahya N. Zeolitic imidazole framework 8 decorated graphene oxide (ZIF-8/GO) mixed matrix membrane (MMM) for CO2/CH4 separation. J Teknol. 2017;79(2):59-63. https://doi.org/10.11113/jt.v79.10438.
53. Samarasinghe SAS, Chuah CY, Li W, Sethunga GSMDP, Wang R, Bae TH. Incorporation of CoIII acetylacetonate and SNW-1 nanoparticles to tailor O2/N2 separation performance of mixed-matrix membrane. Sep Purif Technol. 2019;223:133-41. https://doi.org/10.1016/j.seppur. 2019.04.075.
54. Lin R, Xiang S, Zhou W, Chen B. Microporous metal-organic framework materials for gas separation. Chem. 2020;6(2):337-63. https://doi.org/10.1016/j.chempr.2019. 10.012.
55. Mahmoodi NM, Taghizadeh M, Taghizadeh A. Ultrasound-assisted green synthesis and application of recyclable nanoporous chromium-based metal-organic framework. Korean J Chem Eng. 2019;36(2):287-98. https://doi.org/10.1007/s11814-018-0162-1.
56. Song J, Huang M, Lin X, Li SFY, Jiang N, Liu Y, et al. Novel Fe-based metal-organic framework (MOF) modified carbon nanofiber as a highly selective and sensitive electrochemical sensor for tetracycline detection. Chem Eng J. 2021;427:130913. https://doi.org/10.1016/j.cej.2021.130 913.
57. Zhang L, Li XM, Chen S, Feng F, Bai JQ, Li JR. Ammoniated MOF-74(Zn) derivatives as luminescent sensor for highly selective detection of tetrabromobisphenol A. Ecotoxicol Environ Saf. 2020;187:109821. https://doi.org/10.1016/j.ecoenv.2019.109821.
58. Duan S, Huang Y. Electrochemical sensor using NH2-MIL-88(Fe)-rGO composite for trace Cd2+, Pb2+, and Cu2+ detection. J Electroanal Chem. 2017;807:253-60. https://doi.org/10.1016/j.jelechem.2017.11.051.
59. Cychosz KA, Thommes M. Progress in the physisorption characterization of nanoporous gas storage materials. Engineering. 2018;4(4):559-66. https://doi.org/10.1016 /j.eng.2018.06.001.
60. Qiu T, Liang Z, Guo W, Tabassum H, Gao S, Zou R. Metal-organic framework-based materials for energy conversion and storage. ACS Energy Lett. 2020;5(2):520-32. https://doi.org/10.1021/acsenergylett.9b02625.
61. Bai J, Peng C, Guo L, Zhou M. Metal-organic framework-integrated enzymes as bioreactor for enhanced therapy against solid tumor via a cascade catalytic reaction. ACS Biomater Sci Eng. 2019;5(11):6207-15. https://doi.org/ 10.1021/acsbiomaterials.9b01200.
62. Pinna A, Ricco R, Migheli R, Rocchitta G, Serra PA, Falcaro P, et al. A MOF-based carrier for in situ dopamine delivery. RSC Adv. 2018;8(45):25664–72. https://doi.org/10.1021/acsbiomaterials.9b01200
63. Schnabel J, Ettlinger R, Bunzen H. Zn-MOF-74 as pH-Responsive Drug-Delivery System of Arsenic Trioxide. ChemNanoMat. 2020;6(8):1229–36. https://doi.org/ 10.1002/cnma.202000221
64. Sharabati M Al, Sabouni R, Husseini GA. Biomedical Applications of Metal−Organic Frameworks for Disease Diagnosis and Drug Delivery: A Review. Nanomaterials. 2022;12(2). https://doi.org/10.3390/ nano12020277
65. Russo V, Hmoudah M, Broccoli F, Iesce MR. Applications of metal-organic frameworks in wastewater treatment: a review on adsorption and photodegradation. Front Chem Eng. 2020;2:581487. https://doi.org/10.3389/fceng.2020 .581487.
66. Mahmoodi NM, Ghadirli MM, Hayati B, Mahmoodi B, Rabeie B. Synthesis of ZIF-8 composite (g-C3N4@ZIF-8/Ag3PO4) as a catalyst for the malachite green and tetracycline degradation. Inorg Chem Commun. 2025;177:114345. https://doi.org/10.1016/j.inoche.2025. 114345.
67. Hoseinzadeh H, Bakhtiari M, Seifpanahi-Shabani K, Oveisi M, Hayati B, Rabeie B, et al. Synthesis of the metal-organic framework-copper oxide nanocomposite and LED visible light organic contaminants (dye and pharmaceutical) destruction ability in the water. Mater Sci Eng B. 2021;274:115495. https://doi.org/10.1016/j.mseb.2021.115495
66. Hamedi A, Zarandi MB, Nateghi MR. Highly efficient removal of dye pollutants by MIL-101(Fe) metal-organic framework loaded magnetic particles mediated by poly L-Dopa. J Environ Chem Eng. 2019;7(1):102882. https://doi.org/10.1016/j.jece.2019.102882.
67. Eltaweil AS, Abd El-Monaem EM, El-Subruiti GM, Abd El-Latif MM, Omer AM. Fabrication of UiO-66/MIL-101(Fe) binary MOF/carboxylated-GO composite for adsorptive removal of methylene blue dye from aqueous solutions. RSC Adv. 2020;10(32):19008-19. https://doi.org/10.1039/D0R A02424D.
68. Allahbakhshi M, Mohammad N, Mosaferi M. Synthesis of functionalized metal-organic framework (MIL-53)/chitosan for removing dye and pharmaceuticals. Surf Interfaces. 2022;35:102471. https://doi.org/10.1016/j.surfin.2022.1024 71.
69. Crini G, Badot PM. Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: a review of recent literature. Prog Polym Sci. 2008;33(4):399-447. https://doi.org/10.1016/j.progpolymsci.2007.11.001.
70. Zhao R, Ma T, Zhao S, Rong H, Tian Y, Zhu G. Uniform and stable immobilization of metal-organic frameworks into chitosan matrix for enhanced tetracycline removal from water. Chem Eng J. 2020;382:122893. https://doi.org/10.1016/j.cej.2019.122893.
71. Zheng S, Kong Z, Meng L, Song J, Jiang N, Gao Y, et al. MIL-88A grown in-situ on graphitic carbon nitride (g-C3N4) as a novel sorbent: synthesis, characterization, and high-performance of tetracycline removal and mechanism. Adv Powder Technol. 2020;31(10):4344-53. https://doi.org/10.1016/j.apt.2020.09.011.
72. Gholizadeh Khasevani S, Mohaghegh N, Gholami MR. Kinetic study of navy blue photocatalytic degradation over Ag3PO4/BiPO4@MIL-88B(Fe)@g-C3N4 core@shell nanocomposite under visible light irradiation. New J Chem. 2017;41(19):10390-6. https://doi.org/10.1039/c7nj01968h.
73. Mahmoodi NM, Karimi B, Mazarji M, Moghtaderi H. Cadmium selenide quantum dot-zinc oxide composite: synthesis, characterization, dye removal ability with UV irradiation, and antibacterial activity as a safe and high-performance photocatalyst. J Photochem Photobiol B. 2018;188:19-27. https://doi.org/10.1016/j.jphotobiol.2018. 08.023.
74. Ren G, Zhao K, Zhao L. A Fenton-like method using ZnO doped MIL-88A for degradation
75. Wee LH, Janssens N, Sree SP, Wiktor C, Gobechiya E, Fischer RA, et al. Local transformation of ZIF-8 powders and coatings into ZnO nanorods for photocatalytic application. Nanoscale. 2014;6(4):2056-60. https://doi.org/ 10.1039/c3nr05289c.
76. Xiao H, Zhang W, Yao Q, Huang L, Chen L, Boury B, et al. Zn-free MOFs like MIL-53(Al) and MIL-125(Ti) for the preparation of defect-rich, ultrafine ZnO nanosheets with high photocatalytic performance. Appl Catal B. 2019;244:719-31. https://doi.org/10.1016/j.apcatb.2018.11.026.
77. Pastrana-Martínez Á, Pérez-Poyatos LM, Morales-Torres LT, Maldonado-Hódar S. One-pot thermal synthesis of g-C3N4/ZnO composites for the degradation of 5-fluoruracil cytostatic drug under UV-LED irradiation. Nanomaterials. 2022;12(3):340. https://doi.org/10.3390/nano12030340.
78. Vardhan Patel R, Yadav A. Photocatalytic MIL101(Fe)/ZnO chitosan composites for adsorptive removal of tetracycline antibiotics from the aqueous stream. J Mol Struct. 2022;1252:132128. https://doi.org/10.1016/j.molstruc.20 21.132128.
79. Mahmoodi NM. Surface modification of magnetic nanoparticle and dye removal from ternary systems. J Ind Eng Chem. 2015;27:251-9. https://doi.org/10.1016 /j.jiec.2014.12.042.
80. Liu X, Shan Y, Zhang S, Kong Q, Pang H. Application of metal organic framework in wastewater treatment. Green Energy Environ. 2023;8(3):698–721. https://doi.org/ 10.1016/j.gee.2022.03.005
82. Shahnawaz Khan M, Khalid M, Shahid M. What triggers dye adsorption by metal organic frameworks? The current perspectives. Mater Adv. 2020;1(6):1575–601. https://doi.org/10.1039/d0ma00291g
83. Peng H, Cao J, Xiong W, Yang Z, Jia M, Sun S, et al. Two-dimension N-doped nanoporous carbon from KCl thermal exfoliation of Zn-ZIF-L: efficient adsorption for tetracycline and optimizing of response surface model. J Hazard Mater. 2021;402:123498. https://doi.org/10.1016/j.jhazmat.2020. 123498.
84. Liu Z, He W, Zhang Q, Shapour H, Bakhtari MF. Preparation of a GO/MIL-101(Fe) composite for the removal of methyl orange from aqueous solution. ACS Omega. 2021;6(7):4594-603. https://doi.org/10.1021/acsomega. 0c05091.
85. Hamedi A, Trotta F, Zarandi MB, Zanetti M. In situ synthesis of MIL-100(Fe) at the surface of Fe3O4@AC as highly efficient dye adsorbing nanocomposite. Int J Mol Sci. 2019;20(22):5612. https://doi.org/10.3390/ijms20225612.
86. Guo H. Effective removal of 2,4,6-trinitrophenol over hexagonal metal-organic framework NH2-MIL-88B(Fe). Appl Organomet Chem. 2018;32(12):e4580. https://doi.org/ 10.1002/aoc.4580.
87. Aslam S, Zeng J, Subhan F, Li M, Lyu F, Li Y, et al. In situ one-step synthesis of Fe3O4@MIL-100(Fe) core-shells for adsorption of methylene blue from water. J Colloid Interface Sci. 2017;505:186-95. https://doi.org/10.1016/j.jcis.2017. 05.090.
88. Zango ZU, Jumbri K, Sambudi NS, Hanif Abu Bakar NH, Fathihah NA, Abdullah C, et al. Removal of anthracene in water by MIL-88(Fe), NH2-MIL-88(Fe), and mixed-MIL-88(Fe) metal-organic frameworks. RSC Adv. 2019;9(71):41490-501. https://doi.org/10.1039/c9ra08660a.
89. Soni S, Bajpai PK, Mittal J, Arora C. Utilisation of cobalt doped iron based MOF for enhanced removal and recovery of methylene blue dye from waste water. J Mol Liq. 2020;314:113642. https://doi.org/10.1016/j.molliq.2020. 113642.
90. Liu Y, Huang Y, Xiao A, Qiu H, Liu L. Preparation of magnetic Fe3O4/MIL-88A nanocomposite and its adsorption properties for bromophenol blue dye in aqueous solution. Nanomaterials. 2019;9(1):51. https://doi.org/ 10.3390/nano9010051
91. Zhang W, Zhang YZ, Yang JM. MIL-100(Fe)@GO composites with superior adsorptive removal of cationic and anionic dyes from aqueous solutions. J Mol Struct. 2022;1265:133365. https://doi.org/10.1016/j.molstruc. 2022.133365.
92. Luo Y, Su R. Preparation of NH2-MIL-101(Fe) metal organic framework and its performance in adsorbing and removing tetracycline. Int J Mol Sci. 2024;25(18):9855. https://doi.org/10.3390/ijms25189855..
93. Soroush S, Mahmoodi NM, Mohammadnezhad B, Karimi A. Activated carbon (AC)-metal-organic framework (MOF) composite: synthesis, characterization and dye removal. Korean J Chem Eng. 2022;39(9):2394-404. https://doi.org/ 10.1007/s11814-022-1100-9.
94. Zhao S, Li Y, Wang M, Chen B, Zhang Y, Sun Y, et al. Preparation of MIL-88A micro/nanocrystals with different morphologies in different solvents for efficient removal of Congo red from water: synthesis, characterization, and adsorption mechanisms. Microporous Mesoporous Mater. 2022;345:112241. https://doi.org/10.1016/j.micromeso. 2022.112241.
95. Vardhan Patel R, Yadav A. Photocatalytic MIL101(Fe)/ZnO chitosan composites for adsorptive removal of tetracycline antibiotics from the aqueous stream. J Mol Struct. 2022;1252:132128. https://doi.org/10.1016/j.molstruc. 2021.132128.
96. Rabeie B, Mahmoodi NM. Environmentally friendly novel covalent organic framework composites as porous photocatalysts and adsorbents for Tetracycline and dyes (Congo Red and Methylene Blue ) removal : Green synthesis , kinetics , regeneration , and removal mechanisms. Appl Mater Today. 2025;46(June):102884. https://doi.org/ 10.1016/j.apmt.2025.102884
97. Wang Q, Gao Q, Al-Enizi AM, Nafady A, Ma S. Recent advances in MOF-based photocatalysis: environmental remediation under visible light. Inorg Chem Front. 2020;7(2):300-39. https://doi.org/10.1039/c9qi01120j.
98. Rabeie B, Mahmoodi NM. Fish scales-like magnetic covalent organic framework (COF) composite: Synthesis and photocatalytic tetracycline and dye degradation using LED visible light in water. Surfaces and Interfaces .2025;72(July):107251. https://doi.org/10.1016/j.surfin. 2025.107251.
99. Liu N, Huang W, Zhang X, Tang L, Wang L, Wang Y, et al. Ultrathin graphene oxide encapsulated in uniform MIL-88A(Fe) for enhanced visible light-driven photodegradation of RhB. Appl Catal B. 2018;221:119-28. https://doi.org/10.1016/j.apcatb.2017.09.020.
100. Bagherzadeh SB, Kazemeini M, Mahmoodi NM. A study of the DR23 dye photocatalytic degradation utilizing a magnetic hybrid nanocomposite of MIL-53(Fe)/CoFe2O4: facile synthesis and kinetic investigations. J Mol Liq. 2020;301:112427. https://doi.org/10.1016/j.molliq.2019. 112427.101.
101. Rasheed HU, Lv X, Zhang S, Wei W, Ullah N, Xie J. Ternary MIL-100(Fe)@Fe3O4/CA magnetic nanophotocatalysts (MNPCs): magnetically separable and Fenton-like degradation of tetracycline hydrochloride. Adv Powder Technol. 2018;29(12):3305-14. https://doi.org/ 10.1016/j.apt.2018.09.011.
102. He Y, Dong W, Li X, Wang D, Yang Q, Deng P, et al. Modified MIL-100(Fe) for enhanced photocatalytic degradation of tetracycline under visible-light irradiation. J Colloid Interface Sci. 2020;574:364-76. https://doi.org/ 10.1016/j.jcis.2020.04.075.
103. Du C, Zhang Z, Yu G, Wu H, Chen H, Zhou L, et al. A review of metal organic framework (MOFs)-based materials for antibiotics removal via adsorption and photocatalysis. Chemosphere. 2021;272:129501. https://doi.org/10.1016/j. chemosphere.2020.129501.
104. Rabeie B, Nasrolahi F. Exploring the Photocatalytic Efficacy of GQD/MIL101 Nanocomposites for the Degradation of Malachite Green under Visible Light Irradiation: J Stud Color World. 2025;15(2):191-209. https://doi.org/10.30509/jscw.2025.167482.1223.
105. Begherzade SB, Kazemeini M, Mohammad N. Preparation of novel and highly active magnetic ternary structures (metal-organic framework/cobalt ferrite/graphene oxide) for effective visible-light-driven photocatalytic and photo-Fenton-like degradation. J Colloid Interface Sci. 2021;602:73-94. https://doi.org/10.1016/j.jcis.2021.05.181.
106. Guo X, Yin D, Khaing KK, Wang J, Luo Z, Zhang Y. Construction of MOF/COF hybrids for boosting sunlight-induced Fenton-like photocatalytic removal of organic pollutants. Inorg Chem. 2021;60(20):15557-68. https://doi.org/10.1021/acs.inorgchem.1c02198.
107. Xiang D, Wang Z, Xu J, Shen H, Zhang X. Characterization and augmented photocatalytic efficiency. Catalysts. 2024;14(8):528. https://doi.org/10.3390/catal14080528.
108. Khodayari J, Zare K, Moradi O, Kalaee M, Mahmoodi NM. Synthesis of eco-friendly carboxymethyl cellulose/metal-organic framework biocomposite and its photocatalytic activity. J Photochem Photobiol A Chem. 2024;446:115097. https://doi.org/10.1016/j.jphotochem.2023.115097.
109. Zeng C, Ai L, Hao Z, Jiang J. Boosting visible light photoreactivity of photoactive metal-organic framework: designed plasmonic Z-scheme Ag/AgCl@MIL-53-Fe. Appl Catal B. 2018;227:174-84. https://doi.org/10.1016/ j.apcatb.2017.10.029
110. Kamandi R, Mahmoodi NM, Kazemeini M. Graphitic carbon nitride nanosheet/metal-organic framework heterostructure: synthesis and pollutant degradation using visible light. Mater Chem Phys. 2021;269:124726. https://doi.org/10.1016/j.matchemphys.2021.124726.8/Ag3PO4) as a catalyst for the malachite green and tetracycline degradation.