A Review on the Synthesis and Performance of Fe-Based Metal-Organic Framework Composites for the Removal of Dyes and Pharmaceuticals from Wastewater via Adsorption and Photocatalysis Processes

Document Type : Review paper

Author

Department of Environmental Research, Institute for Color Science and Technology, P. O. Box: 167654-654, Tehran, Iran.

10.30509/jscw.2025.167496.1226

Abstract

Water pollution by pharmaceutical and dye pollutants poses significant environmental challenges and increases the need for efficient and cost-effective treatment technologies. This review examines water purification methods with a focus on adsorption and photocatalysis as highly effective and economical techniques. Iron-based metal-organic frameworks and their composites are then introduced as efficient materials with detailed insights into their synthesis, activation, and functionalization methods. Examples of the synthesis of iron-based metal-organic framework composites and their applications in the removal of pharmaceutical and dye pollutants are also presented, and the performance and kinetics of MOF composites in the adsorption and photocatalytic degradation of dyes and pharmaceutical pollutants are reviewed. This work highlights the potential of iron-based metal-organic framework composites as sustainable, non-toxic, and efficient materials for water purification and paves the way for further innovations.
 
 

Keywords

Main Subjects


Zhou Y, Lu J, Zhou Y, Liu Y. Recent advances for dyes removal using novel adsorbents: a review. Environ Pollut. 2019;252:352-65. https://doi.org/10.1016/j.envpol.2019.05.072.
2.  Crini G, Lichtfouse E. Advantages and disadvantages of techniques used for wastewater treatment. Environ Chem Lett. 2019;17(1):145-55. https://doi.org/10.1007/s10311-018-0785-9.
3.  Berradi M, Hsissou R, Khudhair M, Assouag M, Cherkaoui O, El Bachiri A, et al. Textile finishing dyes and their impact on aquatic environs. Heliyon. 2019;5(11):e02711. https://doi.org/10.1016/j.heliyon.2019.e02711.
4.  Rabeie B, Mahmoodi NM. Heterogeneous MIL-88A on MIL-88B hybrid: a promising eco-friendly hybrid from green synthesis to dual application (adsorption and photocatalysis) in tetracycline and dyes removal. J Colloid Interface Sci. 2024;654:495-522. https://doi.org/10.1016/ j.jcis.2023.10.060.
5.  Rabeie B, Mahmoodi NM. Hierarchical ternary titanium dioxide decorated with graphene quantum dot/ZIF-8 nanocomposite for the photocatalytic degradation of doxycycline and dye using visible light. J Water Process Eng. 2023;54:103976. https://doi.org/10.1016/ j.jwpe. 2023.103976.
6.  Rabeie B, Mahmoodi NM. Green and environmentally friendly architecture of starch-based ternary magnetic biocomposite (Starch/MIL100/CoFe2O4): synthesis and photocatalytic degradation of tetracycline and dye. Int J Biol Macromol. 2024;274:133318. https://doi.org/10.1016 /j.ijbiomac.2024.133318.
7.  Pi Y, Li X, Xia Q, Wu J, Li Y, Xiao J, et al. Adsorptive and photocatalytic removal of persistent organic pollutants (POPs) in water by metal-organic frameworks (MOFs). Chem Eng J. 2018;337:351-71. https://doi.org/ 10.1016/j.cej.2017.12.092.
8.  Lv SW, Liu JM, Wang ZH, Ma H, Li CY, Zhao N, et al. Recent advances on porous organic frameworks for the adsorptive removal of hazardous materials. J Environ Sci (China). 2019;80:169-85. https://doi.org/10.1016/j.jes. 2018.12.010.
9.  Holkar CR, Jadhav AJ, Pinjari DV, Mahamuni NM, Pandit AB. A critical review on textile wastewater treatments: possible approaches. J Environ Manage. 2016;182:351-66. https://doi.org/10.1016/j.jenvman.2016.07.090.
10. Rabeie B, Mahmoodi NM, Dargahi A, Hayati B, Moghaddam HR. Magnetic COF/MOF hybrid: an efficient Z-scheme photocatalyst for the visible light-assisted degradation of tetracycline and malachite green. J Mol Liq. 2025;421:126869. https://doi.org/10.1016/j.molliq.2025. 126869.
11. Yagub MT, Sen TK, Afroze S, Ang HM. Dye and its removal from aqueous solution by adsorption: a review. Adv Colloid Interface Sci. 2014;209:172-84. https://doi.org/ 10.1016/j.cis.2014.04.002.
12. Ortúzar M, Esterhuizen M, Olicón-Hernández DR, González-López J, Aranda E. Pharmaceutical pollution in aquatic environments: a concise review of environmental impacts and bioremediation systems. Front Microbiol. 2022;13:869332. https://doi.org/10.3389/fmicb.2022.869 332.
13. Zainab SM, Junaid M, Xu N, Malik RN. Antibiotics and antibiotic resistant genes (ARGs) in groundwater: a global review on dissemination, sources, interactions, environmental and human health risks. Water Res. 2020;187:116455. https://doi.org/10.1016/j.watres.2020. 116455.
14. Dos Santos AB, Cervantes FJ, Van Lier JB. Review paper on current technologies for decolorization of textile wastewaters: perspectives for anaerobic biotechnology. Bioresour Technol. 2007;98(12):2369-85. https://doi.org/ 10.1016/j.biortech.2006.11.013.
15. Katheresan V, Kansedo J, Lau SY. Efficiency of various recent wastewater dye removal methods: a review. J Environ Chem Eng. 2018;6(4):4676-97. https://doi.org/ 10.1016/j.jece.2018.06.060.
16. Mishra S, Sundaram B. A review of the photocatalysis process used for wastewater treatment. Mater Today Proc. 2023. https://doi.org/10.1016/j.matpr.2023.07.147.
17. Yuan Y, Guo RT, Hong LF, Ji XY, Lin ZD, Li ZS, et al. A review of metal oxide-based Z-scheme heterojunction photocatalysts: actualities and developments. Mater Today Energy. 2021;21:100829. https://doi.org/10.1016/j.mtener. 2021.100829.
18. Fernández-Catalá J, Greco R, Navlani-García M, Cao W, Berenguer-Murcia Á. g-C3N4-based direct Z-scheme photocatalysts for environmental applications. Catalysts. 2022;12(10):1137. https://doi.org/10.3390/catal12101137.
19. Balapure A, Ray Dutta J, Ganesan R. Recent advances in semiconductor heterojunctions: a detailed review of the fundamentals of photocatalysis, charge transfer mechanism and materials. RSC Appl Interfaces. 2024;1(1):43-69. https://doi.org/10.1039/d3lf00126a.
20. Rabeie B, Mahmoodi NM, Hayati B, Dargahi A, Rezakhani Moghaddam H. Chitosan adorned with ZIF-67 on ZIF-8 biocomposite: A potential LED visible light-assisted photocatalyst for wastewater decontamination. Int J Biol Macromol. 2024;282. https://doi.org/10.1016/j.ijbiomac. 2024.137405
21. Mahmoodi NM, Karimi B, Mazarji M, Moghtaderi H. Cadmium selenide quantum dot-zinc oxide composite: synthesis, characterization, dye removal ability with UV irradiation, and antibacterial activity as a safe and high-performance photocatalyst. J Photochem Photobiol B. 2018;188:19-27. https://doi.org/10.1016/j.jphotobiol.2018. 08.023.
22. Popli S, Patel UD. Destruction of azo dyes by anaerobic-aerobic sequential biological treatment: a review. Int J Environ Sci Technol. 2015;12(1):405-20. https://doi.org/ 10.1007/s13762-014-0499-x.
23. Saleh IA, Zouari N, Al-Ghouti MA. Removal of pesticides from water and wastewater: chemical, physical and biological treatment approaches. Environ Technol Innov. 2020;19:101026. https://doi.org/10.1016/j.eti.2020.101026.
24. Hasan Z, Jhung SH. Removal of hazardous organics from water using metal-organic frameworks (MOFs): plausible mechanisms for selective adsorptions. J Hazard Mater. 2015;283:329-39. https://doi.org/10.1016/j.jhazmat.2014. 09.046.
25. Dutta S, Gupta B, Srivastava SK, Gupta AK. Recent advances on the removal of dyes from wastewater using various adsorbents: a critical review. Mater Adv. 2021;2(14):4497-531. https://doi.org/10.1039/d1ma00354b.
26. Arora R. Adsorption of heavy metals-a review. Mater Today Proc. 2019;18:4745-50. https://doi.org/10.1016/j.matpr. 2019.07.462.
27. Rudi NN, Muhamad MS, Te Chuan L, Alipal J, Omar S, Hamidon N, et al. Evolution of adsorption process for manganese removal in water via agricultural waste adsorbents. Heliyon. 2020;6(9):e05049. https://doi.org/ 10.1016/j.heliyon.2020.e05049.
28. Dhaka S, Kumar R, Deep A, Kurade MB, Ji SW, Jeon BH. Metal-organic frameworks (MOFs) for the removal of emerging contaminants from aquatic environments. Coord Chem Rev. 2019;380:330-52. https://doi.org/10.1016/ j.ccr.2018.10.003.
29. Mahmoodi NM. Synthesis of amine-functionalized magnetic ferrite nanoparticle and its dye removal ability. J Environ Eng. 2013;139(11):1382-90. https://doi.org/ 10.1061/(ASCE)EE.1943-7870.0000763.
30. Abdi J, Vossoughi M, Mahmoodi NM, Alemzadeh I. Synthesis of metal-organic framework hybrid nanocomposites based on GO and CNT with high adsorption capacity for dye removal. Chem Eng J. 2017;326:1145-58. https://doi.org/10.1016/j.cej.2017.06.054.
31. Ho YS, McKay G. Kinetic models for the sorption of dye from aqueous solution by wood. Process Saf Environ Prot. 1998;76(2):183-91. https://doi.org/10.1205/095758298529 326.
32. Sarma GK, Sen Gupta S, Bhattacharyya KG. Removal of hazardous basic dyes from aqueous solution by adsorption onto kaolinite and acid-treated kaolinite: kinetics, isotherm and mechanistic study. SN Appl Sci. 2019;1(2):216. https://doi.org/10.1007/s42452-019-0216-y.
33. Mahmoodi NM, Oveisi M, Bakhtiari M, Hayati B, Shekarchi AA, Bagheri A, et al. Environmentally friendly ultrasound-assisted synthesis of magnetic zeolitic imidazolate framework - graphene oxide nanocomposites and pollutant removal from water. J Mol Liq. 2019;282:115-30. https://doi.org/10.1016/j.molliq.2019.02.139.
34. Abdi J, Vossoughi M, Mahmoodi NM, Alemzadeh I. Synthesis of amine-modified zeolitic imidazolate framework-8, ultrasound-assisted dye removal and modeling. Ultrason Sonochem. 2017;39:550-64. https:// doi.org/10.1016/j.ultsonch.2017.04.030.
35. Kalam S, Abu-Khamsin SA, Kamal MS, Patil S. Surfactant Adsorption Isotherms: A Review. ACS Omega. 2021;6(48):32342–8. https://doi.org/10.1021/acsomega.1c0 466136.
36.  Rabeie B, Mahmoodi NM, Mahkam M. MIL88A(Fe) composites on dye and pharmaceuticals (tetracycline and doxycycline) removal. J Environ Chem Eng. 2022;10(3):108321. https://doi.org/10.1016/j.jece.2022. 108 321.
37.  Oveisi M, Asli MA, Mahmoodi NM. MIL-Ti metal-organicframeworks (MOFs) nanomaterials as superior adsorbents:Synthesis and ultrasound-aided dye adsorption from multicomponent wastewater systems. J Hazard Mater.2018;347:123-140. https://doi.org/ 10.1016/j.jhazmat .2017.12.057
38.  Lee YR, Kim J, Ahn WS. Synthesis of metal-organic frameworks: a mini review. Korean J Chem Eng. 2013;30(9):1667-80. https://doi.org/10.1007/s11814-013-0140-6
39.  Corona A, López J, Rangel Segura R, Garcia MMM, Flores E, Gattorno RG. Microwave-assisted synthesis of CdS-MOF MIL-101(Fe) composite: characterization and photocatalytic performance. Sustainability. 2019;11(1):1-14. https://doi.org/10.1021/acs.inorgchem.4c02104.
40.  Stock N, Biswas S. Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chem Rev. 2012;112(2):933-69. https://doi.org/10.1021/cr200304e.
41. Amaro-Gahete J, Klee R, Esquivel D, Ruiz JR, Jiménez-Sanchidrián C, Romero-Salguero FJ. Fast ultrasound-assisted synthesis of highly crystalline MIL-88A particles and their application as ethylene adsorbents. Ultrason Sonochem. 2019;50:59-66. https://doi.org/10.1016 /j.ultsonch.2018.08.027.
42. Van Tran T, Nguyen H, Le PHA, Nguyen DTC, Nguyen TT, Van Nguyen C, et al. Microwave-assisted solvothermal fabrication of hybrid zeolitic-imidazolate framework (ZIF-8) for optimizing dyes adsorption efficiency using response surface methodology. J Environ Chem Eng. 2020;8(5):104189. https://doi.org/10.1016/j.jece.2020.104 189.
43. Rabeie B, Mahkam M, Mahmoodi NM, Lan CQ. Graphene quantum dot incorporation in the zeolitic imidazolate framework with sodalite (SOD) topology: synthesis and improving the adsorption ability in liquid phase. J Environ Chem Eng. 2021;9(5):106303. https://doi.org/10.1016/j.jece.2021.106303.
44. Ahankar H, Ramazani A, Ślepokura K, Lis T, Kinzhybalo V. Magnetic cobalt ferrite nanoparticles functionalized with citric acid as a green nanocatalyst for one-pot three-component sonochemical synthesis of substituted 3-pyrrolin-2-ones. Res Chem Intermed. 2019;45(10):5007-25. https://doi.org/10.1007/s11164-019-03878-1.
45. Fozyia Yusuf V, Malek NI, Kailasa SK. Review on metal-organic framework classification, synthetic approaches, and influencing factors. ACS Omega. 2022;7(49):44507-31. https://doi.org/10.1021/acsomega.2c05310.
46. Khan NA, Jung BK, Hasan Z, Jhung SH. Adsorption and removal of phthalic acid and diethyl phthalate from water with zeolitic imidazolate and metal-organic frameworks. J Hazard Mater. 2015;282:194-200. https://doi.org/10.1016/j.jhazmat.2014.03.047..
47. Chen L, Xu Q. Metal-organic framework composites for catalysis. Matter. 2019;1(1):57-89. https://doi.org/10.1016/j.matt.2019.05.018.
48. Sadjadi S, Koohestani F, Mahmoodi NM, Rabeie B. Composite of MOF and chitin as an efficient catalyst for photodegradation of organic dyes. Int J Biol Macromol. 2021;182:524-33. https://doi.org/10.1016/j.ijbiomac.2021.04.034.
49. Wang J, Wan J, Ma Y, Wang Y, Pu M, Guan Z. Metal-organic frameworks MIL-88A with suitable synthesis conditions and optimal dosage for effective catalytic degradation of Orange G through persulfate activation. RSC Adv. 2016;6(113):112502-11. https://doi.org/10.1039/C6RA24429G.
50. Wang CC, Wang X, Liu W. The synthesis strategies and photocatalytic performances of TiO2/MOFs composites: a state-of-the-art review. Chem Eng J. 2020;391:123601. https://doi.org/10.1016/j.cej.2019.123601.
51. Yang Q, Ren SS, Zhao Q, Lu R, Hang C, Chen Z, et al. Selective separation of methyl orange from water using magnetic ZIF-67 composites. Chem Eng J. 2018;333:49-57. https://doi.org/10.1016/j.cej.2017.09.099.
52. Nordin NAHM, Ismail AF, Yahya N. Zeolitic imidazole framework 8 decorated graphene oxide (ZIF-8/GO) mixed matrix membrane (MMM) for CO2/CH4 separation. J Teknol. 2017;79(2):59-63. https://doi.org/10.11113/jt.v79.10438.
53. Samarasinghe SAS, Chuah CY, Li W, Sethunga GSMDP, Wang R, Bae TH. Incorporation of CoIII acetylacetonate and SNW-1 nanoparticles to tailor O2/N2 separation performance of mixed-matrix membrane. Sep Purif Technol. 2019;223:133-41. https://doi.org/10.1016/j.seppur. 2019.04.075.
54. Lin R, Xiang S, Zhou W, Chen B. Microporous metal-organic framework materials for gas separation. Chem. 2020;6(2):337-63. https://doi.org/10.1016/j.chempr.2019. 10.012. 
55. Mahmoodi NM, Taghizadeh M, Taghizadeh A. Ultrasound-assisted green synthesis and application of recyclable nanoporous chromium-based metal-organic framework. Korean J Chem Eng. 2019;36(2):287-98. https://doi.org/10.1007/s11814-018-0162-1.
56. Song J, Huang M, Lin X, Li SFY, Jiang N, Liu Y, et al. Novel Fe-based metal-organic framework (MOF) modified carbon nanofiber as a highly selective and sensitive electrochemical sensor for tetracycline detection. Chem Eng J. 2021;427:130913. https://doi.org/10.1016/j.cej.2021.130 913.
57. Zhang L, Li XM, Chen S, Feng F, Bai JQ, Li JR. Ammoniated MOF-74(Zn) derivatives as luminescent sensor for highly selective detection of tetrabromobisphenol A. Ecotoxicol Environ Saf. 2020;187:109821. https://doi.org/10.1016/j.ecoenv.2019.109821.
58. Duan S, Huang Y. Electrochemical sensor using NH2-MIL-88(Fe)-rGO composite for trace Cd2+, Pb2+, and Cu2+ detection. J Electroanal Chem. 2017;807:253-60. https://doi.org/10.1016/j.jelechem.2017.11.051.
59. Cychosz KA, Thommes M. Progress in the physisorption characterization of nanoporous gas storage materials. Engineering. 2018;4(4):559-66. https://doi.org/10.1016 /j.eng.2018.06.001.
60. Qiu T, Liang Z, Guo W, Tabassum H, Gao S, Zou R. Metal-organic framework-based materials for energy conversion and storage. ACS Energy Lett. 2020;5(2):520-32. https://doi.org/10.1021/acsenergylett.9b02625.
61. Bai J, Peng C, Guo L, Zhou M. Metal-organic framework-integrated enzymes as bioreactor for enhanced therapy against solid tumor via a cascade catalytic reaction. ACS Biomater Sci Eng. 2019;5(11):6207-15. https://doi.org/ 10.1021/acsbiomaterials.9b01200.
62. Pinna A, Ricco R, Migheli R, Rocchitta G, Serra PA, Falcaro P, et al. A MOF-based carrier for in situ dopamine delivery. RSC Adv. 2018;8(45):25664–72. https://doi.org/10.1021/acsbiomaterials.9b01200
63. Schnabel J, Ettlinger R, Bunzen H. Zn-MOF-74 as pH-Responsive Drug-Delivery System of Arsenic Trioxide. ChemNanoMat. 2020;6(8):1229–36. https://doi.org/ 10.1002/cnma.202000221
64. Sharabati M Al, Sabouni R, Husseini GA. Biomedical Applications of Metal−Organic Frameworks for Disease Diagnosis and Drug Delivery: A Review. Nanomaterials. 2022;12(2). https://doi.org/10.3390/ nano12020277 
65. Russo V, Hmoudah M, Broccoli F, Iesce MR. Applications of metal-organic frameworks in wastewater treatment: a review on adsorption and photodegradation. Front Chem Eng. 2020;2:581487. https://doi.org/10.3389/fceng.2020 .581487.
66.  Mahmoodi NM, Ghadirli MM, Hayati B, Mahmoodi B, Rabeie B. Synthesis of ZIF-8 composite (g-C3N4@ZIF-8/Ag3PO4) as a catalyst for the malachite green and tetracycline degradation. Inorg Chem Commun. 2025;177:114345. https://doi.org/10.1016/j.inoche.2025. 114345.
67. Hoseinzadeh H, Bakhtiari M, Seifpanahi-Shabani K, Oveisi M, Hayati B, Rabeie B, et al. Synthesis of the metal-organic framework-copper oxide nanocomposite and LED visible light organic contaminants (dye and pharmaceutical) destruction ability in the water. Mater Sci Eng B. 2021;274:115495. https://doi.org/10.1016/j.mseb.2021.115495
66. Hamedi A, Zarandi MB, Nateghi MR. Highly efficient removal of dye pollutants by MIL-101(Fe) metal-organic framework loaded magnetic particles mediated by poly L-Dopa. J Environ Chem Eng. 2019;7(1):102882. https://doi.org/10.1016/j.jece.2019.102882.
67. Eltaweil AS, Abd El-Monaem EM, El-Subruiti GM, Abd El-Latif MM, Omer AM. Fabrication of UiO-66/MIL-101(Fe) binary MOF/carboxylated-GO composite for adsorptive removal of methylene blue dye from aqueous solutions. RSC Adv. 2020;10(32):19008-19. https://doi.org/10.1039/D0R A02424D.
68. Allahbakhshi M, Mohammad N, Mosaferi M. Synthesis of functionalized metal-organic framework (MIL-53)/chitosan for removing dye and pharmaceuticals. Surf Interfaces. 2022;35:102471. https://doi.org/10.1016/j.surfin.2022.1024 71.
69. Crini G, Badot PM. Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: a review of recent literature. Prog Polym Sci. 2008;33(4):399-447. https://doi.org/10.1016/j.progpolymsci.2007.11.001.
70. Zhao R, Ma T, Zhao S, Rong H, Tian Y, Zhu G. Uniform and stable immobilization of metal-organic frameworks into chitosan matrix for enhanced tetracycline removal from water. Chem Eng J. 2020;382:122893. https://doi.org/10.1016/j.cej.2019.122893.
71. Zheng S, Kong Z, Meng L, Song J, Jiang N, Gao Y, et al. MIL-88A grown in-situ on graphitic carbon nitride (g-C3N4) as a novel sorbent: synthesis, characterization, and high-performance of tetracycline removal and mechanism. Adv Powder Technol. 2020;31(10):4344-53. https://doi.org/10.1016/j.apt.2020.09.011.
72. Gholizadeh Khasevani S, Mohaghegh N, Gholami MR. Kinetic study of navy blue photocatalytic degradation over Ag3PO4/BiPO4@MIL-88B(Fe)@g-C3N4 core@shell nanocomposite under visible light irradiation. New J Chem. 2017;41(19):10390-6. https://doi.org/10.1039/c7nj01968h.
73. Mahmoodi NM, Karimi B, Mazarji M, Moghtaderi H. Cadmium selenide quantum dot-zinc oxide composite: synthesis, characterization, dye removal ability with UV irradiation, and antibacterial activity as a safe and high-performance photocatalyst. J Photochem Photobiol B. 2018;188:19-27. https://doi.org/10.1016/j.jphotobiol.2018. 08.023.
74. Ren G, Zhao K, Zhao L. A Fenton-like method using ZnO doped MIL-88A for degradation 
75. Wee LH, Janssens N, Sree SP, Wiktor C, Gobechiya E, Fischer RA, et al. Local transformation of ZIF-8 powders and coatings into ZnO nanorods for photocatalytic application. Nanoscale. 2014;6(4):2056-60. https://doi.org/ 10.1039/c3nr05289c.
76. Xiao H, Zhang W, Yao Q, Huang L, Chen L, Boury B, et al. Zn-free MOFs like MIL-53(Al) and MIL-125(Ti) for the preparation of defect-rich, ultrafine ZnO nanosheets with high photocatalytic performance. Appl Catal B. 2019;244:719-31. https://doi.org/10.1016/j.apcatb.2018.11.026.
77. Pastrana-Martínez Á, Pérez-Poyatos LM, Morales-Torres LT, Maldonado-Hódar S. One-pot thermal synthesis of g-C3N4/ZnO composites for the degradation of 5-fluoruracil cytostatic drug under UV-LED irradiation. Nanomaterials. 2022;12(3):340. https://doi.org/10.3390/nano12030340.
78. Vardhan Patel R, Yadav A. Photocatalytic MIL101(Fe)/ZnO chitosan composites for adsorptive removal of tetracycline antibiotics from the aqueous stream. J Mol Struct. 2022;1252:132128. https://doi.org/10.1016/j.molstruc.20 21.132128.
79. Mahmoodi NM. Surface modification of magnetic nanoparticle and dye removal from ternary systems. J Ind Eng Chem. 2015;27:251-9. https://doi.org/10.1016 /j.jiec.2014.12.042.
80. Liu X, Shan Y, Zhang S, Kong Q, Pang H. Application of metal organic framework in wastewater treatment. Green Energy Environ. 2023;8(3):698–721. https://doi.org/ 10.1016/j.gee.2022.03.005
82. Shahnawaz Khan M, Khalid M, Shahid M. What triggers dye adsorption by metal organic frameworks? The current perspectives. Mater Adv. 2020;1(6):1575–601. https://doi.org/10.1039/d0ma00291g
83. Peng H, Cao J, Xiong W, Yang Z, Jia M, Sun S, et al. Two-dimension N-doped nanoporous carbon from KCl thermal exfoliation of Zn-ZIF-L: efficient adsorption for tetracycline and optimizing of response surface model. J Hazard Mater. 2021;402:123498. https://doi.org/10.1016/j.jhazmat.2020. 123498.
84. Liu Z, He W, Zhang Q, Shapour H, Bakhtari MF. Preparation of a GO/MIL-101(Fe) composite for the removal of methyl orange from aqueous solution. ACS Omega. 2021;6(7):4594-603. https://doi.org/10.1021/acsomega. 0c05091.
85. Hamedi A, Trotta F, Zarandi MB, Zanetti M. In situ synthesis of MIL-100(Fe) at the surface of Fe3O4@AC as highly efficient dye adsorbing nanocomposite. Int J Mol Sci. 2019;20(22):5612. https://doi.org/10.3390/ijms20225612.
86. Guo H. Effective removal of 2,4,6-trinitrophenol over hexagonal metal-organic framework NH2-MIL-88B(Fe). Appl Organomet Chem. 2018;32(12):e4580. https://doi.org/ 10.1002/aoc.4580.
87. Aslam S, Zeng J, Subhan F, Li M, Lyu F, Li Y, et al. In situ one-step synthesis of Fe3O4@MIL-100(Fe) core-shells for adsorption of methylene blue from water. J Colloid Interface Sci. 2017;505:186-95. https://doi.org/10.1016/j.jcis.2017. 05.090.
88. Zango ZU, Jumbri K, Sambudi NS, Hanif Abu Bakar NH, Fathihah NA, Abdullah C, et al. Removal of anthracene in water by MIL-88(Fe), NH2-MIL-88(Fe), and mixed-MIL-88(Fe) metal-organic frameworks. RSC Adv. 2019;9(71):41490-501. https://doi.org/10.1039/c9ra08660a.
89. Soni S, Bajpai PK, Mittal J, Arora C. Utilisation of cobalt doped iron based MOF for enhanced removal and recovery of methylene blue dye from waste water. J Mol Liq. 2020;314:113642. https://doi.org/10.1016/j.molliq.2020. 113642.
90. Liu Y, Huang Y, Xiao A, Qiu H, Liu L. Preparation of magnetic Fe3O4/MIL-88A nanocomposite and its adsorption properties for bromophenol blue dye in aqueous solution. Nanomaterials. 2019;9(1):51. https://doi.org/ 10.3390/nano9010051
91. Zhang W, Zhang YZ, Yang JM. MIL-100(Fe)@GO composites with superior adsorptive removal of cationic and anionic dyes from aqueous solutions. J Mol Struct. 2022;1265:133365. https://doi.org/10.1016/j.molstruc. 2022.133365.
92. Luo Y, Su R. Preparation of NH2-MIL-101(Fe) metal organic framework and its performance in adsorbing and removing tetracycline. Int J Mol Sci. 2024;25(18):9855. https://doi.org/10.3390/ijms25189855..
93. Soroush S, Mahmoodi NM, Mohammadnezhad B, Karimi A. Activated carbon (AC)-metal-organic framework (MOF) composite: synthesis, characterization and dye removal. Korean J Chem Eng. 2022;39(9):2394-404. https://doi.org/ 10.1007/s11814-022-1100-9.
94. Zhao S, Li Y, Wang M, Chen B, Zhang Y, Sun Y, et al. Preparation of MIL-88A micro/nanocrystals with different morphologies in different solvents for efficient removal of Congo red from water: synthesis, characterization, and adsorption mechanisms. Microporous Mesoporous Mater. 2022;345:112241. https://doi.org/10.1016/j.micromeso. 2022.112241.
95. Vardhan Patel R, Yadav A. Photocatalytic MIL101(Fe)/ZnO chitosan composites for adsorptive removal of tetracycline antibiotics from the aqueous stream. J Mol Struct. 2022;1252:132128. https://doi.org/10.1016/j.molstruc. 2021.132128.
96. Rabeie B, Mahmoodi NM. Environmentally friendly novel covalent organic framework composites as porous photocatalysts and adsorbents for Tetracycline and dyes (Congo Red and Methylene Blue ) removal : Green synthesis , kinetics , regeneration , and removal mechanisms. Appl Mater Today. 2025;46(June):102884. https://doi.org/ 10.1016/j.apmt.2025.102884
97. Wang Q, Gao Q, Al-Enizi AM, Nafady A, Ma S. Recent advances in MOF-based photocatalysis: environmental remediation under visible light. Inorg Chem Front. 2020;7(2):300-39. https://doi.org/10.1039/c9qi01120j.
98. Rabeie B, Mahmoodi NM. Fish scales-like magnetic covalent organic framework (COF) composite: Synthesis and photocatalytic tetracycline and dye degradation using LED visible light in water. Surfaces and Interfaces .2025;72(July):107251. https://doi.org/10.1016/j.surfin. 2025.107251.
99. Liu N, Huang W, Zhang X, Tang L, Wang L, Wang Y, et al. Ultrathin graphene oxide encapsulated in uniform MIL-88A(Fe) for enhanced visible light-driven photodegradation of RhB. Appl Catal B. 2018;221:119-28. https://doi.org/10.1016/j.apcatb.2017.09.020.
100. Bagherzadeh SB, Kazemeini M, Mahmoodi NM. A study of the DR23 dye photocatalytic degradation utilizing a magnetic hybrid nanocomposite of MIL-53(Fe)/CoFe2O4: facile synthesis and kinetic investigations. J Mol Liq. 2020;301:112427. https://doi.org/10.1016/j.molliq.2019. 112427.101.
101. Rasheed HU, Lv X, Zhang S, Wei W, Ullah N, Xie J. Ternary MIL-100(Fe)@Fe3O4/CA magnetic nanophotocatalysts (MNPCs): magnetically separable and Fenton-like degradation of tetracycline hydrochloride. Adv Powder Technol. 2018;29(12):3305-14. https://doi.org/ 10.1016/j.apt.2018.09.011.
102. He Y, Dong W, Li X, Wang D, Yang Q, Deng P, et al. Modified MIL-100(Fe) for enhanced photocatalytic degradation of tetracycline under visible-light irradiation. J Colloid Interface Sci. 2020;574:364-76. https://doi.org/ 10.1016/j.jcis.2020.04.075.
103. Du C, Zhang Z, Yu G, Wu H, Chen H, Zhou L, et al. A review of metal organic framework (MOFs)-based materials for antibiotics removal via adsorption and photocatalysis. Chemosphere. 2021;272:129501. https://doi.org/10.1016/j. chemosphere.2020.129501.
104. Rabeie B, Nasrolahi F. Exploring the Photocatalytic Efficacy of GQD/MIL101 Nanocomposites for the Degradation of Malachite Green under Visible Light Irradiation: J Stud Color World. 2025;15(2):191-209. https://doi.org/10.30509/jscw.2025.167482.1223.
105. Begherzade SB, Kazemeini M, Mohammad N. Preparation of novel and highly active magnetic ternary structures (metal-organic framework/cobalt ferrite/graphene oxide) for effective visible-light-driven photocatalytic and photo-Fenton-like degradation. J Colloid Interface Sci. 2021;602:73-94. https://doi.org/10.1016/j.jcis.2021.05.181.
106. Guo X, Yin D, Khaing KK, Wang J, Luo Z, Zhang Y. Construction of MOF/COF hybrids for boosting sunlight-induced Fenton-like photocatalytic removal of organic pollutants. Inorg Chem. 2021;60(20):15557-68. https://doi.org/10.1021/acs.inorgchem.1c02198.
107. Xiang D, Wang Z, Xu J, Shen H, Zhang X. Characterization and augmented photocatalytic efficiency. Catalysts. 2024;14(8):528. https://doi.org/10.3390/catal14080528.
108. Khodayari J, Zare K, Moradi O, Kalaee M, Mahmoodi NM. Synthesis of eco-friendly carboxymethyl cellulose/metal-organic framework biocomposite and its photocatalytic activity. J Photochem Photobiol A Chem. 2024;446:115097. https://doi.org/10.1016/j.jphotochem.2023.115097.
109. Zeng C, Ai L, Hao Z, Jiang J. Boosting visible light photoreactivity of photoactive metal-organic framework: designed plasmonic Z-scheme Ag/AgCl@MIL-53-Fe. Appl Catal B. 2018;227:174-84. https://doi.org/10.1016/ j.apcatb.2017.10.029
110. Kamandi R, Mahmoodi NM, Kazemeini M. Graphitic carbon nitride nanosheet/metal-organic framework heterostructure: synthesis and pollutant degradation using visible light. Mater Chem Phys. 2021;269:124726. https://doi.org/10.1016/j.matchemphys.2021.124726.8/Ag3PO4) as a catalyst for the malachite green and tetracycline degradation.