Exploring the Photocatalytic Efficacy of GQD/MIL101 Nanocomposites for the Degradation of Malachite Green under Visible Light Irradiation

Document Type : Research

Authors

Department of Environmental Research, Institute for Color Science and Technology, P. O. Box: 167654-654, Tehran, Iran.

10.30509/jscw.2025.167482.1223

Abstract

This study presents the green synthesis of the metal-organic framework/graphene quantum dot composite GQD/MIL101 using a simple method with water solvent. Composites were synthesized in different molar ratios of graphene quantum dots to MIL101, labeled as GQD/MIL101-5, GQD/MIL101-10, and GQD/MIL101-15, and assessed for photocatalytic activity. For the most effective composite (GQD/MIL101-15), key parameters such as pollutant concentration, initial pH of the solution, and photocatalyst dosage were optimized. The photocatalytic activity was assessed through the Photo-Fenton reaction using malachite green as the target pollutant, achieving an impressive degradation rate of approximately 99%. Scavenging experiments identified hydroxyl radicals as the most active and effective species participating. After six operational cycles, the photocatalyst showed remarkable recovery and stability, which emphasizes its potential for practical applications in wastewater treatment.
 
 

Keywords

Main Subjects


  1. Sreeramareddygari M, Mannekote Shivanna J, Somasundrum M, Soontarapa K, Surareungchai W. Polythiocyanuric acid-functionalized MoS2 nanosheet-based high flux membranes for removal of toxic heavy metal ions and congo red. Chem Eng J. 2021;425:130592. https://doi.org/10.1016/j.cej.2021.130592

    1. Chang J, Shen Z, Hu X, Schulman E, Cui C, Guo Q, et al. Adsorption of Tetracycline by Shrimp Shell Waste from Aqueous Solutions: Adsorption isotherm, kinetics modeling, and mechanism. ACS Omega. 2020;5:3467–77. https://doi.org/10.1021/acsomega.9b03781.
    2. Miao XS, Bishay F, Chen M, Metcalfe CD. Occurrence of antimicrobials in the final effluents of wastewater treatment plants in Canada. Environ Sci Technol. 2004;38:3533–41. https://doi.org/10.1021/es030653q.
    3. Chang PH, Li Z, Yu TL, Munkhbayer S, Kuo TH, Hung YC, et al. Sorptive removal of tetracycline from water by palygorskite. J Hazard Mater. 2009;165:148–55. https:// doi.org/10.1016/j.jhazmat.2008.09.113.
    4. Guida S, Rubertelli G, Jefferson B, Soares A. Demonstration of ion exchange technology for phosphorus removal and recovery from municipal wastewater. Chem Eng J. 2021;420:129913. https://doi.org/10.1016/ j.cej. 2021.129913
    5. Akonkwa Mulungulungu G, Mao T, Han K. Two-dimensional graphitic carbon nitride-based membranes for filtration process: Progresses and challenges. Chem Eng J. 2022;427:130955. https://doi.org/10.1016/j.cej.2021. 130 955.
    6. Ge Q, Liu H. Tunable amine-functionalized silsesquioxane-based hybrid networks for efficient removal of heavy metal ions and selective adsorption of anionic dyes. Chem Eng J. 2022;428:131370. https://doi.org/10.1016/j.cej.2021. 131 370.
    7. Kilic MY, Abdelraheem WH, He X, Kestioglu K, Dionysiou DD. Photochemical treatment of tyrosol, a model phenolic compound present in olive mill wastewater, by hydroxyl and sulfate radical-based advanced oxidation processes (AOPs). J Hazard Mater . 2018;367:734-742. https://doi.org/10.1016/j.jhazmat.2018.06.062.
    8. Wu S, Qi Y, Fan C, Dai B, Huang J, Zhou W, et al. Improvement of anaerobic biological treatment effect by catalytic micro-electrolysis for monensin production wastewater. Chem Eng J. 2016;296:260–267. http://dx.doi. org/10.1016/j.cej.2016.03.140.
    9. Huang C, Peng F, Guo HJ, Wang C, Luo MT, Zhao C, et al. Efficient COD degradation of turpentine processing wastewater by combination of Fe-C micro-electrolysis and Fenton treatment: Long-term study and scale up. Chem Eng J. 2018;351:697–707. https://doi.org/10.1016/j.cej. 2018 .06.139.
    10. Li J, Jiang J, Pang SY, Cao Y, Zhou Y, Guan C. Oxidation of iodide and hypoiodous acid by non-chlorinated water treatment oxidants and formation of iodinated organic compounds: A review. Chem Eng J. 2020;386:123822. https://doi.org/10.1016/j.cej.2019.123822.
    11. Zhang T, Hu Y, Jiang L, Yao S, Lin K, Zhou Y, et al. Removal of antibiotic resistance genes and control of horizontal transfer risk by UV, chlorination and UV/chlorination treatments of drinking water. Chem Eng J. 2019;358:589–97. https://doi.org/10.1016/ j.cej.2018. 09.218.
    12. Lee KC, Choo KH. Hybridization of TiO2 photocatalysis with coagulation and flocculation for 1,4-dioxane removal in drinking water treatment. Chem Eng J. 2013;231:227–35. http://dx.doi.org/10.1016/j.cej.2013.07.023.
    13. Chen Y, Wu Y, Zhang Y, Huang S, Lv H, Chen J, et al. Cu-based heterostructure photocatalysts derived from Cu sludge and municipal sewage sludge for efficient degradation of 2,4-dichlorophenol. Chem Eng J. 2022;429:132140. https://doi.org/10.1016/j.cej.2021. 1321 40.
    14. Niu C, Cai T, Lu X, Zhen G, Pan Y, Ren X, et al. Nano zero-valent iron regulates the enrichment of organics-degrading and hydrogenotrophic microbes to stimulate methane bioconversion of waste activated sludge. Chem Eng J. 2021;418:129511. https://doi.org/10.1016 /j.cej. 2021.129511.
    15. Ng KK, Shi X, Ong SL, Lin CF, Ng HY. An innovative of aerobic bio-entrapped salt marsh sediment membrane reactor for the treatment of high-saline pharmaceutical wastewater. Chem Eng J. 2016;295:317–25. http://dx. doi.org/10.1016/j.cej.2016.03.046.
    16. Li Y, Cheng C, Bai S, Jing L, Zhao Z, Liu L. The performance of Pd-rGO electro-deposited PVDF/carbon fiber cloth composite membrane in MBR/MFC coupled system. Chem Eng J. 2019;365:317–324. https://doi.org/ 10.1016/j.cej.2019.02.048.
    17. Xie B, Tang X, Ng HY, Deng S, Shi X, Song W, et al. Biological sulfamethoxazole degradation along with anaerobically digested centrate treatment by immobilized microalgal-bacterial consortium: performance, mechanism and shifts in bacterial and microalgal communities. Chem Eng J. 2020;388:124217. https://doi.org/10.1016/ j.cej. 2020.124217
    18. Zhou Y, Min Y, Qiao H, Huang Q, Wang E, Ma T. Improved removal of malachite green from aqueous solution using chemically modified cellulose by anhydride. Int J Biol Macromol. 2015;74:271–7. http://dx.doi.org/ 10.1016/j.ijbiomac.2014.12.020
    19. Hasan I, Bassi A, Alharbi KH, Binsharfan II, Khan RA, Alslame A. Sonophotocatalytic degradation of malachite green by nanocrystalline chitosan-ascorbic acid@nife2 o4 spinel ferrite. Coatings. 2020;10:1–19. https://doi.org/ 10.3390/coatings10121200.
    20. Raval NP, Shah PU, Shah NK. Malachite green “a cationic dye” and its removal from aqueous solution by adsorption. Appl Water Sci. 2017;7:3407–45. https://doi.org/ 10. 1007/s13201-016-0512-2.
    21. Hami HK, Abbas RF, Waheb AA, Abdul abass DA, Abed MA, Maryoosh AA. Isotherm and pH Effect Studies of Tetracycline Drug Removal from Aqueous Solution Using Cobalt Oxide Surface. Al-Nahrain J Sci. 2019;22:12–8. https://doi.org/10.22401/anjs.22.2.02.
    22. Rasheed T, Bilal M, Hassan AA, Nabeel F, Bharagava RN, Romanholo Ferreira LF, et al. Environmental threatening concern and efficient removal of pharmaceutically active compounds using metal-organic frameworks as adsorbents. Environ Res. 2020;185:109436. https://doi.org/ 10. 1016/j.envres.2020.109436
    23. Chen X, Peng X, Jiang L, Yuan X, Fei J, Zhang W. Photocatalytic removal of antibiotics by MOF-derived Ti3+- and oxygen vacancy-doped anatase/rutile TiO2 distributed in a carbon matrix. Chem Eng J. 2022;427:130945. https://doi.org/10.1016/j.cej.2021.130945
    24. Yang C, Zhu Y, Wang J, Sun W, Yang L, Lin H, et al. A novel granular MOF composite with dense and ordered MIL-100(Fe) nanoparticles grown on porous alumina: Green synthesis and enhanced adsorption of tetracycline hydrochloride. Chem Eng J. 2021;426:131724. https:// doi.org/10.1016/j.cej.2021.131724
    25. Zhang X, Yuan N, Li Y, Han L, Wang Q. Fabrication of new MIL-53(Fe)@TiO2 visible-light responsive adsorptive photocatalysts for efficient elimination of tetracycline. Chem Eng J. 2022;428: 131077 https://doi.org/ 10. 1016/j.cej.2021.131077.
    26. Zhao R, Ma T, Zhao S, Rong H, Tian Y, Zhu G. Uniform and stable immobilization of metal-organic frameworks into chitosan matrix for enhanced tetracycline removal from water. Chem Eng J. 2020;382:122893. https:// doi.org/10.1016/j.cej.2019.122893.
    27. Wang X, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson JM, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat Mater . 2009;8:76–80. http://dx.doi.org/10.1038/nmat2317.
    28. Bagherzadeh SB, Kazemeini M, Mahmoodi NM. Preparation of novel and highly active magnetic ternary structures ( metal-organic framework / cobalt ferrite / graphene oxide ) for effective visible-light-driven photocatalytic and photo-Fenton-like degradation of organic contaminants. J Colloid Interface Sci. 2021; 602:73–94. https://doi.org/10.1016/j.jcis.2021.05.181.
    29. Rabeie B, Mahmoodi NM. Heterogeneous MIL-88A on MIL-88B hybrid: A promising eco-friendly hybrid from green synthesis to dual application (Adsorption and photocatalysis) in tetracycline and dyes removal. J Colloid Interface Sci. 2024;654:495–522. https://doi.org/ 10.1016 /j.jcis.2023.10.060.
    30. Li Y, Karimi M, Gong YN, Dai N, Safarifard V, Jiang HL. Integration of metal-organic frameworks and covalent organic frameworks: Design, synthesis, and applications. Matter. 2021;4:2230–65. https://doi.org/10.1016/j.matt. 2021.03.022.
    31. Chen L, Xu Q. Metal-Organic Framework Composites for Catalysis. Matter. 2019;1:57–89. https://doi.org/10.1016/ j.matt.2019.05.018.
    32. Ke F, Luo G, Chen P, Jiang J, Yuan Q, Cai H, et al. Porous metal–organic frameworks adsorbents as a potential platform for defluoridation of water. J Porous Mater. 2016;23:1065–73. https://doi.org/10.1007/s10934-016-01 64-5.
    33. Lu S, Liu L, Demissie H, An G, Wang D. Design and application of metal-organic frameworks and derivatives as heterogeneous Fenton-like catalysts for organic wastewater treatment: A review. Environ Int. 2021;146:106273. https://doi.org/10.1016/j.envint.2020.106273.
    34. Pan D, Wang L, Li Z, Geng B, Zhang C, Zhan J, et al. Synthesis of graphene quantum dot/metal-organic framework nanocomposites as yellow phosphors for white light-emitting diodes. New J Chem. 2018;42:5083–9. http://dx.doi.org/10.1039/c7nj04909a.
    35. Zhang B, Zhang T, Zhang Z, Xie M. Hydrothermal synthesis of a graphene/magnetite/montmorillonite nanocomposite and its ultrasonically assisted methylene blue adsorption. J Mater Sci. 2019;54:11037–55. https://doi.org/10.1007/s10853-019-03659-6
    36. Chu X, Dai P, Liang S, Bhattacharya A, Dong Y, Epifani M. The acetone sensing properties of ZnFe2O4-graphene quantum dots (GQDs) nanocomposites at room temperature. Phys E Low-Dimensional Syst Nanostructures. 2019;106:326–33. https://doi.org/ 10.1016/ j.physe.2018.08.003.
    37. Biswal BP, Shinde DB, Pillai VK, Banerjee R. Stabilization of graphene quantum dots (GQDs) by encapsulation inside zeolitic imidazolate framework nanocrystals for photoluminescence tuning. Nanoscale. 2013;5:10556–61. https://doi.org/10.1039/c3nr03511e.
    38. Sammi H, Kukkar D, Singh J, Kukkar P, Kaur R, Kaur H, et al. Serendipity in solution–GQDs zeolitic imidazole frameworks nanocomposites for highly sensitive detection of sulfide ions. Sensors Actuators, B Chem. 2018;255:3047–56. https://doi.org/10.1016/j.snb.2017.09. 129.
    39. Wang X, Sun G, Li N, Chen P. Quantum dots derived from two-dimensional materials and their applications for catalysis and energy. Chem Soc Rev. 2016;45:2239–62. http://dx.doi.org/10.1039/c5cs00811e.
    40. Wei D, Tang W, Gan Y, Xu X. Graphene quantum dot-sensitized Zn-MOFs for efficient visible-light-driven carbon dioxide reduction. Catal Sci Technol. 2020;10:5666–76. https://doi.org/10.1039/d0cy00842g.
    41. Meng L, Xiao K, Zhang X, Du C, Chen J. A novel signal-off photoelectrochemical biosensor for M.SssI MTase activity assay based on GQDs@ZIF-8 polyhedra as signal quencher. Biosens Bioelectron. 2019;150:111861. https:// doi.org/10.1016/j.bios.2019.111861.
    42. Sharma V, Som NN, Pillai SB, Jha PK. Utilization of doped GQDs for ultrasensitive detection of catastrophic melamine: A new SERS platform. Spectrochim Acta - Part A Mol Biomol Spectrosc. 2020;224:117352. https:// doi.org/10.1016/j.saa.2019.117352
    43. Hassan H, Shoaib M, khan K, Ghanem MA, Osman M, Graphene quantum dots decorated on chromium oxide and zirconium metal-organic framework composite (GQDs@Zr-MOF/Cr2O3) for asymmetric supercapacitors and hydrogen production. Mater Chem Phys. 2025; 332:130225. https://doi.org/10.1016/j.matchemphys. 2024. 130225
    44. Rabeie B, Mahmoodi NM, Mahkam M. Morphological diversity effect of graphene quantum dot/MIL88A ( Fe ) composites on dye and pharmaceuticals ( tetracycline and doxycycline ) removal. J Environ Chem Eng 2022;10:108321. https://doi.org/10.1016/j.jece.2022. 1083 21.
    45. Rabeie B, Mahkam M, Mahmoodi NM, Lan CQ. Graphene quantum dot incorporation in the zeolitic imidazolate framework with sodalite (SOD) topology: Synthesis and improving the adsorption ability in liquid phase. J Environ Chem Eng. 2021;9:106303. https://doi.org/ 10.10 16/j.jece.2021.106303
    46. Zhao H, Li Q, Wang Z, Wu T, Zhang M. Synthesis of MIL-101(Cr) and its water adsorption performance. Microporous Mesoporous Mater. 2020;297:110044. https://doi.org/ 10.1016/j.micromeso.2020.110044
    47. Gross AF, Sherman E, Vajo JJ. Aqueous room temperature synthesis of cobalt and zinc sodalite zeolitic imidizolate frameworks. Dalt Trans. 2012;41:5458–60. https://doi.org/ 10.1039/c2dt30174a
    48. Wang C, Jin J, Sun Y, Yao J, Zhao G, Liu Y. In-situ synthesis and ultrasound enhanced adsorption properties of MoS 2 / graphene quantum dot nanocomposite. Chem Eng J. 2017;327:774–82. http://dx.doi.org/10.1016/ j.cej. 2017.06.163
    49. Xu D, Cheng B, Cao S, Yu J. Enhanced photocatalytic activity and stability of Z-scheme Ag2CrO4-GO composite photocatalysts for organic pollutant degradation. Appl Catal B Environ. 2015;164:380–388. http://dx.doi.org/ 10.1016/j.apcatb.2014.09.051
    50. Lee H, Lee H, Ahn S, Kim J. MIL-100(Fe)-Hybridized Nanofibers for Adsorption and Visible Light Photocatalytic Degradation of Water Pollutants: Experimental and DFT Approach. ACS Omega. 2022;7:21145–55. https://doi. org/10.1021/acsomega.2c01953
    51. Celebi N, Aydin MY, Soysal F, Ylldlz N, Salimi K. Core/Shell PDA@UiO-66 Metal-Organic Framework Nanoparticles for Efficient Visible-Light Photodegradation of Organic Dyes. ACS Appl Nano Mater. 2020;3:11543–11554. https://doi.org/10.1021/acsanm.0c02636.
    52. Bagherzadeh SB, Kazemeini M, Mahmoodi NM. A study of the DR23 dye photocatalytic degradation utilizing a magnetic hybrid nanocomposite of MIL-53(Fe)/CoFe2O4: Facile synthesis and kinetic investigations. J Mol Liq . 2020;301:112427. https://doi.org/10.1016/j.molliq. 2019. 112427
    53. Rajamanickam D, Shanthi M. Photocatalytic degradation of an organic pollutant by zinc oxide – solar process. Arab J Chem. 2016;9:S1858–68. http://dx.doi.org/ 10.1016/j. arabjc.2012.05.006
    54. Rabeie B, Mahmoodi NM, Hayati B, Dargahi A, Moghaddam H R. Chitosan adorned with ZIF-67 on ZIF-8 biocomposite: A potential LED visible light-assisted photocatalyst for wastewater decontamination. Int J Biol Macromol. 2024;282:137405. https://doi.org/ 10.1016/j .ijbiomac. 2024.137405.
    55. Rabeie B, Mahmoodi NM. Green and environmentally friendly architecture of starch-based ternary magnetic biocomposite (Starch/MIL100/CoFe2O4): Synthesis and photocatalytic degradation of tetracycline and dye. Int J Biol Macromol. 2024;274:133318. https://doi.org/ 10.1016/j.ijbiomac.2024.133318
    56. Rabeie B, Mahmoodi NM, Dargahi A, Hayati B, Moghaddam HR. Magnetic COF/MOF hybrid: An efficient Z-scheme photocatalyst for the visible light-assisted degradation of tetracycline and malachite green. J Mol Liq 2025;421:126869. https://doi.org/10.1016/j.molliq.2025.126869
    57. Yan D, Hu H, Gao N, Ye J, Ou H. Fabrication of carbon nanotube functionalized MIL-101(Fe) for enhanced visible-light photocatalysis of ciprofloxacin in aqueous solution. Appl Surf Sci. 2019;498:143836. https://doi.org/ 10.1016 /j.apsusc.2019.143836
    58. Rancaño L, Rivero MJ, Mueses MÁ, Ortiz I. Comprehensive kinetics of the photocatalytic degradation of emerging pollutants in a led-assisted photoreactor. S-metolachlor as case study. Catalysts. 2021;11:1–13. https://doi.org/10.3390/catal11010048.
    59. Tran HD, Nguyen DQ, Do PT, Tran UNP. Kinetics of photocatalytic degradation of organic compounds: a mini-review and new approach. RSC Adv. 2023;13:16915–25. https://doi.org/10.1039/d3ra01970e.
    60. Mukonza SS, Chaukura N, Mishra AK. Photocatalytic Activity and Reusability of F, Sm3+ Co-Doped TiO2/MWCNTs Hybrid Heterostructure for Efficient Photocatalytic Degradation of Brilliant Black Bis-Azo Dye. Catalysts. 2023;13:1–18. https://doi.org/10.3390/ catal 13010086.
    61. Mashkoor F, Nasar A, Inamuddin, Asiri AM. Exploring the reusability of synthetically contaminated wastewater containing crystal violet dye using tectona grandis sawdust as a very low-cost adsorbent. Sci Rep. 2018;8:1–16. http://dx.doi.org/10.1038/s41598-018-26655-3.
    62. Hoseinzadeh H, Bakhtiari M, Seifpanahi-Shabani K, Oveisi M, Hayati B, Rabeie B, et al. Synthesis of the metal-organic framework – Copper oxide nanocomposite and LED visible light organic contaminants (dye and pharmaceutical) destruction ability in the water. Mater Sci Eng B Solid-State Mater Adv Technol. 2021;274:115495. https://doi. org/10.1016/j.mseb.2021.115495.
    63. Rabeie B, Mahmoodi NM. Hierarchical ternary titanium dioxide decorated with graphene quantum dot/ZIF-8 nanocomposite for the photocatalytic degradation of doxycycline and dye using visible light. J Water Process Eng. 2023;54:103976. https://doi.org/10.1016/j.jwpe. 2023.103976.
    64. Fattahi M, Niazi Z, Esmaeili F, Mohammadi AA, Shams M, Nguyen Le B. Boosting the adsorptive and photocatalytic performance of MIL-101(Fe) against methylene blue dye through a thermal post-synthesis modification. Sci Rep. 2023;13:1–13. https://doi.org/10.1038/s41598-023-41451-4.
    65. Ghoochani S H, Heshmati A, Hosseini H A, Darroudi M. Sonochemical Assisted Removal and Photocatalytic Degradation of Methylene Blue Dye by MIL-101(Cr) from Aqueous Solutions. Inorg Chem Res. 2021;5:230–237. 10.22036/icr.2021.288175.1105.
    66. Du PD, Thanh HTM, To TC, Thang HS, Tinh MX, Tuyen TN, et al. Metal-organic framework MIL-101: Synthesis and photocatalytic degradation of remazol black B dye. J Nanomater. 2019;2019:6061275 https://doi.org/10.1155/ 2019/6061275.
    67. Yin.Y, Zhang.X, Jiang.B, et al., Catalytic degradation of rhodamine B by α-DMACoPc/TiO2/MIL-101 (Fe) enhanced catalytic system. J Nanoparticle Res. 2024;26 :217. https://doi.org/10.1007/s11051-024-06123-y.
    68. Pattappan.D, Kavya.K.V , Vargheese.S,  Rajendra Kumar .R.T, Haldorai.Y. MIL-101(Cr)/g-C₃N₄ composite for enhanced photocatalytic degradation of methylene blue under visible light. Appl Surf Sci. 2022;577:151892. https://doi.org/10.1016/j.apsusc.2021.151892.
    69. Mazarji M, Mahmoodi NM, Bidhendi GN, Li A, Li M, James A, Mahmoodi B, Pan J, Synthesis, Characterization, and Enhanced Photocatalytic Dye Degradation: Optimizing Graphene-Based ZnO-CdSe Nanocomposites via Response Surface Methodology. J Alloys Compd. 2025; 1010:177999. https://doi.org/10.1016/j.jallcom.2024. 177 999.
    70. Rabeie B, MXenes: From introduction of structure and synthesis to photocatalytic ability to degrade dyes and organic pollutants in water. J Stud Color World. 2025;15(1):91-114. https://doi.org. 10.30509/jscw.2025. 167478.1222 [In Persian].
    71. Mahmoodi NM, Maghsoodi A, Kinetics and isotherm of cationic dye removal from multicomponent system using the synthesized silica nanoparticle. Desalin Water Treat. 2015;54:562-571. https://doi.org/10.1080/19443994 .2014. 880158.
    72. Oshani F, Kargari A, Norouzbeigi R, Mahmoodi NM, Role of Fabrication Parameters on Microstructure and Permeability of Geopolymer Microfilters. Chem Eng Res Des. 2024;210;190-201. https://doi.org/10.1016/ j.cherd. 2024.08.009.
    73. Mahmoodi NM, Mokhtari-Shourijeh Z, Preparation of aminated nanoporous nanofiber by solvent casting/porogen leaching technique and dye adsorption modeling. J Taiwan Inst Chem Eng. 2016;65:378-389. https://doi.org/10.1016/ j.jtice.2016.05.042.
    74. Ayar S, Tajik H, Mahmoodi NM, Fallah Moafi H, Rabeie B. Removal of malachite green dye from wastewater using metal-organic mold biocomposite (ZIF-67) and polymer (carboxymethyl cellulose). J Stud Color World. 2024;14(4):285-301. https://doi.org/10.30509/jscw.2024. 167336.1197 [In Persian].
    75. Hosseinabadi-Farahani Z, Hosseini-Monfared H, Mahmoodi NM, Graphene oxide nanosheet: preparation and dye removal from binary system colored wastewater. Desalin Water Treat. 2015;56: 2382-2394.
    76. Mahmoodi NM, Mokhtari-Shourijeh Z, Modified poly (vinyl alcohol)-triethylenetetramine nanofiber by glutaraldehyde: preparation and dye removal ability from wastewater. Desalin Water Treat. 2016;57:20076-20083. https://doi.org/10.1080/19443994.2015.1109562.
    77. Bagheri A, Hoseinzadeh H, Hayati B, Mahmoodi NM, Mehraeen E, Post-synthetic functionalization of the metal-organic framework: Clean synthesis, pollutant removal, and antibacterial activity. J Environ Chem Eng 2021;9:104590. https://doi.org/10.1016/j.jece.2020.104590.
    78. Foroughifar N, Mobinikhaledi A, Rabeie B, Jalili L, DABCO as a mild and efficient catalyst for the synthesis of tetrahydropyrimidines. Rev Roum Chim 2013;58:491-495.
    79. Mahmoodi NM, Bakhtiari M, Oveisi M, Mahmoodi B, Hayati B, Green synthesis of eco-friendly magnetic metal-organic framework nanocomposites (AlFum-graphene oxide) and pollutants (dye and pharmaceuticals) removal capacity from water. Mater Chem Phys. 2023;302:127720.https://doi.org/10.1016/j.matchemphys.2023.127720.
    80. Shokrgozar A, Seifpanahi-Shabani K, Mahmoodi B, Mahmoodi NM, Khorasheh F, Baghalha M, Synthesis of Ni-Co-CNT nanocomposite and evaluation of its photocatalytic dye (Reactive Red 120) degradation ability using response surface methodology. Desalin Water Treat 2021;216:389-400. https://doi.org/10.5004/dwt. 2021.26 804.
    81. Ahmadi S, Mahmoodi B, Kazemini M, Mahmoodi NM, Photocatalytic degradation of dye (Reactive Red 198) and pharmaceutical (tetracycline) using MIL-53 (Fe) and MIL-100 (Fe): catalyst synthesis and pollutant degradation. Pigm Resin Technol. 2023;52:357-368. https://doi.org/10.1108/ PRT-05-2022-0067.
    82. Mahmoodi NM, Hosseinabadi‐Farahani Z, Chamani H, Dye adsorption from single and binary systems using NiO‐MnO2 nanocomposite and artificial neural network modeling. Environ Prog Sustain. 2017;36:111-119. https://doi.org/10.1002/ep.12452.
    83. Mahmoodi NM, Ghadirli MM, Hayati B, Mahmoodi B, Rabeie B, Synthesis of ZIF-8 composite (g-C3N4@ ZIF-8/Ag3PO4) as a catalyst for the malachite green and tetracycline degradation. Inorg Chem Commun. 2025; 177:114345. https://doi.org/10.1016/j.inoche. 2025. 114345.

    85. Dousti S, Mahmoodi B, Bijari M, Shahbazi A,Investigating the Effect of Various Precursors in the Synthesis and Improvement of the Photocatalytic Performance of Graphite Carbon Nitride in the Degradation of Rhodamine B Dye Under Visible Light. J Color Sci Tech. 2024;18(2):135-150. https://doi.org/10.30509/JCST.2024. 167291.1224 [In Persian].