A Review of Photocatalytic Membrane Reactors and Their Application in the Treatment of Dye-containing Wastewater
Seyed Behnam Bagherzadeh
Photocatalytic Membrane Reactors
Photocatalytic Membranes
Membrane Separation
Photocatalysis Process
Dye Wastewater Treatment
1. Wöltinger J, Karau A, Leuchtenberger W, Drauz K. Membrane reactors at degussa. in: kragl u, editor. technology transfer in biotechnology: from lab to industry to production. Berlin, Heidelberg: Springer Berlin Heidelberg; 2005. p. 289-316. https://doi.org/10.1007/ b98909.
2. Ibrahim MH, El-Naas MH, Zhang Z, Van der Bruggen B. CO2 capture using hollow fiber membranes: a review of membrane wetting. Energy & Fuels. 2018;32(2):963-78.
https://doi.org/10.1021/acs.energyfuels.7b03493.
3. Le-Clech P, Chen V, Fane TAG. Fouling in membrane bioreactors used in wastewater treatment. J Membr Sci. 2006;284(1):17-53. https://doi.org/10.1016/j.memsci.2006.08.019.
4. Ashley A, Thrope B, Choudhury MR, Pinto AH. Emerging investigator series: photocatalytic membrane reactors: fundamentals and advances in preparation and application in wastewater treatment. Environ Sci Water Res Technol. 2022;8(1):22-46. https://doi.org/10.1039/D1EW00513H.
5. Phan DD, Babick F, Trịnh THT, Nguyen MT, Samhaber W, Stintz M. Investigation of fixed-bed photocatalytic membrane reactors based on submerged ceramic membranes. Chem Eng Sci. 2018;191:332-42. https://doi.org/10.1016/j.ces.2018.06.062.
6. Charpentier J-C. Modern Chemical Engineering in the Framework of Globalization, Sustainability, and Technical Innovation. Ind. Eng. Chem. Res. 2007;46(11):3465-85. https://doi.org/10.1021/ie061290g.
7. Stankiewicz A. Reactive separations for process intensification: an industrial perspective. Chem EngProcess. Process Intensif. 2003;42(3):137-44. https://doi.org/10.1016/S0255-2701(02)00084-3.
8. Drioli E, Stankiewicz AI, Macedonio F. Membrane engineering in process intensification—An overview. JMembr Sci 2011;380(1):1-8. https://doi.org/10.1016/j.memsci. 2011.06.043.
9. Sirkar KK, Shanbhag PV, Kovvali AS. Membrane in a reactor: a functional perspective. Ind Eng Chem Res. 1999;38(10):3715-37. https://doi.org/10.1021/ie990069j.
10. Argurio P, Fontananova E, Molinari R, Drioli E. Photocatalytic membranes in photocatalytic membrane reactors. processes. 2018;6(9). https:// doi. org/10.3390/pr6090162.
11. Mozia S. Photocatalytic membrane reactors (PMRs) in water and wastewater treatment. A review. Sep Purif Technol. 2010;73(2):71-91. https://doi.org/10.1016/j.seppur.2010.
03.021.
12. Molinari R, Marino T, Argurio P. Photocatalytic membrane reactors for hydrogen production from water. Int J Hydrogen Energy. 2014;39(14):7247-61. https://doi.org/
10.1016/j.ijhydene.2014.02.174.
13. Zheng X, Shen ZP, Shi L, Cheng R, Yuan DH. Photocatalytic membrane reactors (pmrs) in water treatment: configurations and influencing factors. Catal. 2017;7(8):224. https://doi.org/10.3390/catal7 080224.
14. Molinari R, Lavorato C, Argurio P. Recent progress of photocatalytic membrane reactors in water treatment and in synthesis of organic compounds. A review. Catal Today. 2017;281:144-64. https://doi.org/10.1016/j.cattod.2016.06.
047.
15. Vankelecom IFJ. Polymeric Membranes in catalytic reactors. Chem Rev. 2002;102(10):3779-810. https://doi.
org/10.1021/cr0103468.
16. Dioos BML, Vankelecom IFJ, Jacobs PA. Aspects of immobilisation of catalysts on polymeric supports. Adv Synth Catal. 2006;348(12-13):1413-46. https://
doi.org/10.1002/adsc.200606202.
17. Molinari R, Mungari M, Drioli E, Di Paola A, Loddo V, Palmisano L, et al. Study on a photocatalytic membrane reactor for water purification. Catal Today. 2000;55(1):71-8. https://doi.org/10.1016/S0920-5861(99)00227-8.
18. Molinari R, Lavorato C, Argurio P. Photocatalytic reduction of acetophenone in membrane reactors under UV and visible light using TiO2 and Pd/TiO2 catalysts. Chem Eng J. 2015;274:307-16. https://doi.org/10.1016/j.cej.2015.03.12
0.
19. Zakria HS, Othman MHD, Kamaludin R, Sheikh Abdul Kadir SH, Kurniawan TA, Jilani A. Immobilization techniques of a photocatalyst into and onto a polymer membrane for photocatalytic activity. RSC Adv. 2021;11(12):6985-7014. https://10.1039/D0RA10964A.
20. Sclafani A, Palmisano L, Schiavello M. Phenol and nitrophenol photodegradation using aqueous TiO2 dispersions. Aquatic and surface photochemistry: CRC Press; 2018. p. 419-26.
21. Hairom NHH, Mohammad AW, Kadhum AAH. Effect of various zinc oxide nanoparticles in membrane photocatalytic reactor for Congo red dye treatment. Sep Purif Technol. 2014;137:74-81. https://doi.org/10.1016/j.
seppur.2014.09.027.
22. Molinari R, Carsuo A, Argurio P, Poerio T, Degradation of the drugs Gemfibrozil and Tamoxifen in pressurized and de-pressurized membrane photoreactors using suspended polycrystalline TiO2 as catalyst. J Membr Sci. 2008;319(1):54-63. https://doi.org/10.1016/j.memsci.2008.03.033.
23. Lavorato C, Argurio P ,Mastropietro TF, Pirri G, Poerio T, Molinari R. Pd/TiO2 doped faujasite photocatalysts for acetophenone transfer hydrogenation in a photocatalytic membrane reactor. J Catal. 2017;353:152-61. https://
doi.org/10.1016/j.jcat.2017.07.015.
24. Espíndola JC, Cristóvão RO, Mendes A, Boaventura RAR, Vilar VJP. Photocatalytic membrane reactor performance towards oxytetracycline removal from synthetic and real matrices: Suspended vs immobilized TiO2-P25. Chem Eng J. 2019;378:122114. https://doi.org/10.1016 /j.cej.2019.12211 4.
25. Samuel O, Othman MHD, Kamaludin R, Kurniawan TA, Li T, Dzinun H, et al. Treatment of oily wastewater using photocatalytic membrane reactors: A critical review. J Environ Chem Eng. 2022;10(6):108539. https://doi.org/10.1016/j.jece.2022.108539.
26. Zhang W, Ding L, Luo J, Jaffrin MY, Tang B. Membrane fouling in photocatalytic membrane reactors (PMRs) for water and wastewater treatment: A critical review. Chem Eng J. 2016;302:446-58. https://doi.org/10.1016/
j.cej.2016.05.071.
27. Liu S, Véron E, Lotfi S, Fischer K, Schulze A, Schäfer AI. Poly(vinylidene fluoride) membrane with immobilized TiO2 for degradation of steroid hormone micropollutants in a photocatalytic membrane reactor. J Hazard Mater. 2023;447:130832. https://doi.org/10.1016/j.jhazmat.2023.
130832.
28. Samsami S, Mohamadizaniani M, Sarrafzadeh M-H, Rene ER, Firoozbahr M. Recent advances in the treatment of dye-containing wastewater from textile industries: Overview and perspectives. Process Saf Environ Prot. 2020;143:138-63.
https://doi.org/10.1016/j.psep.2020.05.034.
29. Sharma J, Sharma S, Soni V. Classification and impact of synthetic textile dyes on Aquatic Flora: A review. Reg Stud Mar Sci. 2021;45:101802. https://doi.org/
10.1016/j.rsma.2021.101802.
30. Behera M, Nayak J, Banerjee S, Chakrabortty S, Tripathy SK. A review on the treatment of textile industry waste effluents towards the development of efficient mitigation strategy: An integrated system design approach. J Environ Chem Eng. 2021;9(4):105277. https://doi.org/ 10.1016/j.jece.2021.105 277.
31. Al-Tohamy R, Ali SS, Li F, Okasha KM, Mahmoud YAG, Elsamahy T, et al. A critical review on the treatment of dye-containing wastewater: Ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety. Ecotoxicol Environ Saf. 2022;231:113160. https://doi org/10.1016 /j.ecoenv .2021.113160.
32. Mudhoo A, Ramasamy DL, Bhatnagar A, Usman M, Sillanpää M. An analysis of the versatility and effectiveness of composts for sequestering heavy metal ions, dyes and xenobiotics from soils and aqueous milieus. Ecotoxicol
Environ Saf. 2020;197:110587. https://doi.org/10.1016/j.ecoenv.2020.110587.
33. Titchou FE, Zazou H, Afanga H, El Gaayda J, Ait Akbour R, Nidheesh PV, et al. Removal of organic pollutants from wastewater by advanced oxidation processes and its combination with membrane processes. Chem Eng Process.: Process Intensif. 2021;169:108631. https://doi.org/10.1016/j.cep.2021.108631.
34. Oyeniran DO, Sogbanmu TO, Adesalu TA. Antibiotics, algal evaluations and subacute effects of abattoir wastewater on liver function enzymes, genetic and haematologic biomarkers in the freshwater fish, Clariasgariepinus. Ecotoxicol Environ Saf. 2021;212:111982. https://doi.org/10.1016/j.ecoenv. 2021.111982.
35. Solayman HM, Hossen MA, Abd Aziz A, Yahya NY ,Leong KH, Sim LC, et al. Performance evaluation of dye wastewater treatment technologies: A review. J Environ Chem Eng. 2023;11(3):109610. https://doi.org/10.1016/j.jece.2023.109610.
36. Thangaraj S, Bankole PO, Sadasivam SK. Microbial degradation of azo dyes by textile effluent adapted, Enterobacter hormaechei under microaerophilic condition.
Microbiol Res. 2021;250:126805. https://doi.org/10.1016/j.micres.2021.126805.
37. Katheresan V, Kansedo J, Lau SY. Efficiency of various recent wastewater dye removal methods: A review. J Environ Chem Eng. 2018;6(4):4676-97. https://doi.org/10.1016/j.jece.2018.06.060.
38. Dutta S, Gupta B, Srivastava SK, Gupta AK. Recent advances on the removal of dyes from wastewater using various adsorbents: a critical review. Mater Adv 2021;2(14):4497-531. https://doi.org/10.1039/D1MA003 54B.
39. Akira F, Xintong Z. Titanium dioxide photocatalysis: present situation and future approaches. C R Chim. 2006;9(5-6):750-60. https://doi.org/10.1016/j.crci.2005.02. 055.
40. Alfano OM, Bahnemann D, Cassano AE, Dillert R, Goslich R. Photocatalysis in water environments using artificial and solar light. Catal Today. 2000;58(2):199-230. https://doi.org/10.1016/S0920-5861(00)00252-2.
41. Bagherzadeh SB, Kazemeini M, Mahmoodi NM. A study of the DR23 dye photocatalytic degradation utilizing a magnetic hybrid nanocomposite of MIL-53(Fe)/CoFe2O4: Facile synthesis and kinetic investigations. J Mol Liq. 2020;301:112427. https://doi.org/10.1016/j.molliq.2019.112427.
42. Bagherzadeh SB, Kazemeini M, Mahmoodi NM. Preparation of novel and highly active magnetic ternary structures (metal-organic framework/cobalt ferrite/graphene oxide) for effective visible-light-driven photocatalytic and photo-Fenton-like degradation of organic contaminants. J. Colloid Interface Sci. 2021;602:73-94. https://doi.org/10.1016/j.jcis.2021.05.181.
43. Bahnemann D. Photocatalytic water treatment: solar energy applications. Sol Energy. 2004;77(5):445-59. https://doi.
org/10.1016/j.solener.2004.03.031.
44. Fujishima A, Rao TN, Tryk DA. Titanium dioxide photocatalysis. J Photochem Photobiol C: Photochem Rev. 2000;1(1):1-21. https://doi.org/10.1016/S1389-5567(00)00002-2
45. Gaya UI, Abdullah AH. Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems. J Photochem Photobiol C: Photochem Rev. 2008;9(1):1-12.
https://doi.org/10.1016/j.jphotochemrev.2007.12.003.
46. Gogate PR, Pandit AB. A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions. Adv Environ Res. 2004;8(3):501-51. https://doi.org/10.1016/S1093-0191(03)00032-7.
47. Herrmann JM. Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants. Catal Today. 1999;53(1):115-29. https://doi.org/10.1016/S0920-5861(99)00107-8.
48. Herrmann JM. Heterogeneous photocatalysis: state of the art and present applications in honor of Pr. R. L. Burwell Jr. (1912-2003), Former head of Ipatieff laboratories, Northwestern University, Evanston (III). Top Catal. 2003;34(1):49-65. https://doi.org/10.1007/s11244-005-3788-2.
49. Hoffmann MR, Martin ST, Choi W, Bahnemann DW. Environmental Applications of Semiconductor Photocatalysis. Chem Rev. 1995;95(1):69-96. https://doi.org/10.1021/cr00033a004.
50. Kabra K, Chaudhary R, Sawhney RL. Treatment of Hazardous Organic and Inorganic Compounds through Aqueous-Phase Photocatalysis: A Review. Ind. Eng Chem Res. 2004;43(24):7683-96. https://doi.org/10.1021/ie0498551.
51. Konstantinou IK, Albanis TA. TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: A review. Appl Catal B Environ. 2004;49(1):1-14. https://doi.org/10. 1016/j.apcatb.2003. 11.010.
52. Litter MI. Heterogeneous photocatalysis: Transition metal ions in photocatalytic systems. Appl Catal B: Environ. 1999;23(2):89-114. https://doi.org/10.1016/S0926-3373 (99) 00069-7.
53. Ljubas D. Solar photocatalysis—a possible step in drinking water treatment. Energy. 2005;30(10):1699-710. https://
doi.org/10.1016/j.energy.2004.11.010.
54. Mahmoodi NM, Bagherzadeh SB. Synthesis of binary and ternary MOF/carbon based composites (MOF/carbon nitride/graphene oxide) for the visible-light assisted destruction of tetracycline and textile dye. Nano Mater Sci. 2024. https://doi.org/10.1016/j.nanoms.2024.04.015.
55. Mills A, Le Hunte S. An overview of semiconductor photocatalysis. J Photochem Photobiol A Chem. 1997;
108(1):1-35. https://doi.org/10.1016/S1010-6030(97)00118-4.
56. Ollis DF, Pelizzetti E, Serpone N. Photocatalyzed destruction of water contaminants. Environ Sci Technol. 1991;25(9):1522-9. https://doi.org/10.1021/es00021a001.
57. Pirkanniemi K, Sillanpää M. Heterogeneous water phase catalysis as an environmental application: a review. Chemosphere. 2002;48(10):1047-60. https://doi.org/10.1016/S0045-6535(02)00168-6
58. Thiruvenkatachari R, Vigneswaran S, Moon IS. A review on UV/TiO2 photocatalytic oxidation process (Journal Review). Korean J Chem Eng. 2008;25(1):64-72. https://doi.org/10.1007/s11814-008-0011-8.
59. Van Gerven T, Mul G, Moulijn J, Stankiewicz A. A review of intensification of photocatalytic processes. Chem Eng
Process:Process Intensif. 2007;46(9):781-9. https://doi.org/10.1016/j.cep.2007.05.012.
60. Yaron P. Preferential photodegradation – why and how? C. R. Chim. 2006;9(5-6):774-87. https://10.1016/j.crci.2005
.03.032.
61. Reutergådh LB, Iangphasuk M. Photocatalytic decolourization of reactive azo dye: A comparison between TiO2 and us photocatalysis. Chemosphere. 1997;35(3):585-96. https://doi.org/10.1016/S0045-6535(97)00122-7.
62. Qamar M, Saquib M, Muneer M. Photocatalytic degradation of two selected dye derivatives, chromotrope 2B and amido black 10B, in aqueous suspensions of titanium dioxide. Dyes Pigm. 2005;65(1):1-9. https://doi.org/10.1016/j.dyepig.
2004.06.006.
63. Vautier M, Guillard C, Herrmann J-M. Photocatalytic Degradation of Dyes in Water: Case Study of Indigo and of Indigo Carmine. J Catal. 2001;201(1):46-59. https://doi.org/10.1006/jcat.2001.3232.
64. Samhaber WM, Nguyen MT. Chapter 11 - Economical aspects in photocatalytic membrane reactors. In: Basile A, Mozia S, Molinari R, editors. CTFD(Bio-)membranes: Elsevier; 2018. p. 317-45. https://doi.org/10.1016/B978-0-12-813549-5.00011-6.
65. Yang G, Li J, Cheng Z, Qin Q, Zhang H, Lu N, et al. Revealing key meso-particles responsible for irreversible membrane fouling in an integrated oxidation-coagulation ultrafiltration system: Fouling behavior and interfacial interaction mechanism. Chem Eng J. 2023;454:140482. https://doi.org/10.1016/j.cej.2022.140482.
66. Bera SP, Godhaniya M, Kothari C. Emerging and advanced membrane technology for wastewater treatment: A review. J
Basic Microbiol. 2022;62(3-4):245-59. https://doi.org/10.1002/jobm.202100259.
67. Wang Q, Lin W, Chou S, Dai P, Huang X. Patterned membranes for improving hydrodynamic properties and mitigating membrane fouling in water treatment: A review. Water Res. 2023;236:119943. https://doi.org/10.1016/j.watres.2023.119943.
68. García A, Rodríguez B, Giraldo H, Quintero Y, Quezada R, Hassan N, et al. Copper-modified polymeric membranes for water treatment: a comprehensive review. Membr. 2021;11(2):93. https://doi.org/10.3390/membranes11020093.
69. Chen L, Xu P, Wang H. Photocatalytic membrane reactors for produced water treatment and reuse: fundamentals, affecting factors, rational design, and evaluation metrics. J Hazard Mater. 2022;424:127493. https://doi.org/10.1016/j.jhazmat.2021.127493.
70. Rani CN, Karthikeyan S, Prince Arockia Doss S. Photocatalytic ultrafiltration membrane reactors in water and wastewater treatment - A review. Chem Eng Process: Process Intensif. 2021;165:108445. https://doi.org/10.1016/j.cep.2021.108445.
71. Asha RC, and Kumar M. Sulfamethoxazole in poultry wastewater: Identification, treatability and degradation pathway determination in a membrane-photocatalytic slurry reactor. J. Environ. Sci. Health, Part A. 2015;50(10):1011-9.
https://doi.org/10.1080/10934529.2015.1038161.
72. Mozia S, Darowna D, Wróbel R, Morawski AW. A study on the stability of polyethersulfone ultrafiltration membranes in a photocatalytic membrane reactor. J Membr Sci .2015;495:176-86. https://doi.org/10.1016/j.memsci.2015.08.024.
73. Hussain A, Jianhua H, Muhammad T, S. AS, Ur RZ, Muhammad B, et al. Recent advances in BiOX-based photocatalysts to enhanced efficiency for energy and environment applications. Catal Rev. 2024;66(1):119-73.
https://doi.org/10.1080/01614940.2022.2041836.
74. Sibhatu AK, Weldegebrieal GK, Sagadevan S, Tran NN, Hessel V. Photocatalytic activity of CuO nanoparticles for organic and inorganic pollutants removal in wastewater remediation. Chemosphere. 2022;300:134623. https://doi.org/10.1016/j.chemosphere.2022.134623.
75. Mirza NR, Huang R, Du E, Peng M, Pan Z, Ding H, et al. A review of the textile wastewater treatment technologies with special focus on advanced oxidation processes (AOPs), membrane separation and integrated AOP-membrane processes. Desalin Water Treat. 2020;206:83-107. https://doi.org/10.5004/dwt.2020.26363.
76. Slusarski-Santana V, Fiorentin-Ferrari LD, Massochin SDP, Maestre KL, Triques CC, Fiorese ML. Combination of Photocatalysis and membrane separation for treatment of dye wastewater. In: Muthu SS, Khadir A ,editors. Advanced oxidation processes in dye-containing wastewater: Volume 2. Singapore: Springer Nature Singapore; 2022:365-403.
https://doi.org/10.1007/978-981-19-0882-8_14.
77. Basile A, Mozia S, Molinari R. CTFD(Bio-) membranes:
photocatalytic membranes and photocatalytic membrane Reactors. Elsevier; 2018.
78. Koe WS, Lee JW, Chong WC, Pang YL, Sim LC. An overview of photocatalytic degradation: photocatalysts, mechanisms, and development of photocatalytic membrane. Environ Sci Pollut Res. 2020;27(3):2522-65. https://doi.org/10.1007/s11356-019-07193-5.
79. Bhattacharya A, Ambika S. Progression and application of photocatalytic membrane reactor for dye removal: an overview. In: Muthu SS, Khadir A, editors. Membrane based methods for dye containing wastewater: recent advances. Singapore :Springer Singapore; 2022. 49-77. https://doi.org/10.1007/978-981-16-4823-6_4.
80. Chen H, Zhang YJ, He PY, Li CJ, Li H. Coupling of self-supporting geopolymer membrane with intercepted Cr(III) for dye wastewater treatment by hybrid photocatalysis and membrane separation. Appl Surf Sci. 2020;515:146024. https://doi.org/10.1016/j.apsusc.2020.146024.
81. Singh R, Sinha MK, Purkait MK. Stimuli responsive mixed matrix polysulfone ultrafiltration membrane for humic acid and photocatalytic dye removal applications. Sep Purif Technol. 2020;250:117247. https://doi.org/ 10.1016/j.seppur.2020.117247.
82. Zeng H, Yu Z ,Shao L, Li X, Zhu M, Liu Y, et al. Ag2CO3@UiO-66-NH2 embedding graphene oxide sheets photocatalytic membrane for enhancing the removal performance of Cr(VI) and dyes based on filtration. Desalin. 2020;491:114558. https://doi.org/10.1016/j. desal.2020.114
558.
83. Wang M, Zhang Y, Yu G, Zhao J ,Chen X, Yan F, et al. Monolayer porphyrin assembled SPSf/PES membrane reactor for degradation of dyes under visible light irradiation coupling with continuous filtration. J Taiwan Inst Chem Eng. 2020;109:62-70. https://doi.org/10.1016/j .jtice.2020
.02.013.
84. Hussien MSA, Mohammed MI, Yahia IS. Flexible photocatalytic membrane based on CdS/PMMA polymeric nanocomposite films: multifunctional materials. Environ Sci Pollut Res. 2020;27(36):45225-37. https://doi.org/10.1007/s11356-020-10305-1.
85. Penboon L, Khrueakham A, Sairiam S. TiO2 coated on PVDF membrane for dye wastewater treatment by a photocatalytic membrane. Water Sci Technol. 2019;79(5):958-66. https://doi.org/10.2166/wst.2019.023.
86. Chi L, Qian Y, Guo J, Wang X, Arandiyan H, Jiang Z. Novel g-C3N4/TiO2/PAA/PTFE ultrafiltration membrane enabling enhanced antifouling and exceptional visible-light photocatalytic self-cleaning. Catal Today. 2019;335:527-37.
https://doi.org/10.1016/j.cattod.2019.02.027.
87. Kuvarega AT, Khumalo N, Dlamini D, Mamba BB. Polysulfone/N,Pd co-doped TiO2 composite membranes for photocatalytic dye degradation. Sep Purif Technol. 2018;191:122-33. https://doi.org/10.1016/j.seppur.2017.07. 064.
88. Wu X-Q, Shen J-S, Zhao F, Shao Z-D, Zhong L-B, Zheng Y-M. Flexible electrospun MWCNTs/Ag3PO4/PAN ternary composite fiber membranes with enhanced photocatalytic activity and stability under visible-light irradiation. J Mater Sci 2018;53(14):10147-59. https://doi.org/10.1007/s10853-018-2334-0.
89. Fryczkowska B. The application of ultrafiltration composite GO/PAN membranes for removing dyes from textile wastewater. Desalin Water Treat. 2018;128:79-88. https://doi.org/10.5004/dwt.2018.22599.
90. Mandegari M, Fashandi H. Untapped potentials of acrylonitrile-butadiene-styrene/polyurethane (ABS/PU) blend membrane to purify dye wastewater. JEnviron Manage. 2017;197:464-75. https://doi.org/10.1016/ j.jenvman.2017. 04.026.
91. Mastropietro TF, Meringolo C, Poerio T, Scarpelli F, Godbert N, Di Profio G, et al. Multistimuli activation of TiO2/α-alumina membranes for degradation of methylene blue. Ind Eng Chem Res. 2017;56(39):11049-57. https://doi.org/
10.1021/acs.iecr.7b02778.
92. Koutahzadeh N, Esfahani MR, Arce PE. Sequential use of uv/h2o2—(psf/tio2/mwcnt) mixed matrix membranes for dye removal in water purification: membrane permeation, fouling, rejection, and decolorization. Environ Eng Sci. 2016;33(6):430-40. https://doi.org/10.1089/ees.2016.0023.
93. Wang M, Yang G, Jin P, Tang H, Wang H, Chen Y. Highly hydrophilic poly(vinylidene fluoride)/meso-titania hybrid mesoporous membrane for photocatalytic membrane reactor in water. Sci Rep. 2016;6(1):19148. https://doi.org/
10.1038/srep19148.
94. Khader EH, Mohammed TJ, Albayati TM, Harharah HN, Amari A, Saady NMC, et al. Current trends for wastewater treatment technologies with typical configurations of photocatalytic membrane reactor hybrid systems: A review. Chem Eng Process: Process Intensif. 2023;192:109503.
https://doi.org/10.1016/j.cep.2023.109503.
95. Sathya U, Keerthi P, Nithya M, Balasubramanian N. Development of photochemical integrated submerged membrane bioreactor for textile dyeing wastewater treatment. Environ Geochem Health. 2021;43(2):885-96.
https://doi.org/10.1007/s10653-020-00570-x.
96. Nascimben Santos E, Ágoston Á, Kertész S, Hodúr C, László Z, Pap Z, et al. Investigation of the applicability of TiO2, BiVO4, and WO3 nanomaterials for advanced photocatalytic membranes used for oil-in-water emulsion separation. Asia-Pacific J Chem Eng. 2020;15(5):e2549. https://doi.org/10.1002/apj.2549.
97. Berger TE, Regmi C, Schäfer AI, Richards BS. Photocatalytic degradation of organic dye via atomic layer deposited TiO2 on ceramic membranes in single-pass flow-through operation. J Membr Sci. 2020;604:118015. https://doi.org/10.1016/j.memsci.2020.118015.
98. Bouziane Errahmani K, Benhabiles O, Bellebia S, Bengharez Z, Goosen M, Mahmoudi H .Photocatalytic nanocomposite polymer-tio2 membranes for pollutant removal from wastewater. Catal. 2021;11(3):402. https://doi.org/10.3390/catal11030402.
99. Wu C-J, Valerie Maggay I, Chiang C-H, Chen W, Chang Y, Hu C, et al. Removal of tetracycline by a photocatalytic membrane reactor with MIL-53(Fe)/PVDF mixed-matrix membrane. Chem Eng J. 2023;451:138990. https://doi.org/10.1016/j.cej.2022.138990.
100. Sakhaie S, Taghipour F. UV-LED silicon carbide composite photocatalytic membrane reactor for the degradation of organic contaminants. Chemosphere. 2023;328:138593.
https://doi.org/10.1016/j.chemosphere.2023.138593.
101. Zioui D, Salazar H, Audjit L, Martins P, Lanceros-Mendez S. Photocatalytic polymeric nanocomposite membrane towards oily wastewater. Preprints. 2019. https://
doi.org/10.20944/preprints201904.0060.v1.
102. Abdullah RR, Shabeeb KM, Alzubaydi AB, Figoli A, Criscuoli A, Drioli E, et al. Characterization of the efficiency of photo-catalytic ultrafiltation PES membrane modified with tungsten oxide in the removal of tinzaparin sodium. Eng Technol J. 2022;40(12):1-10. https://doi.org/10.30684/ETJ.2022.134070.1219.
103. Asha RC, Priyanka YMS, and Kumar M. Sulfamethoxazole removal in membrane-photocatalytic reactor system– experimentation and modelling. Environ. Technol. 2019;40(13):1697-704. https://doi.org/10.1080/09593330.
2018.1428227.
104. Salehian S, Heydari H, Khansanami M, Vatanpour V, Mousavi SA. Fabrication and performance of polysulfone/H2O2-g-C3N4 mixed matrix membrane in a photocatalytic membrane reactor under visible light irradiation for removal of natural organic matter. SepPurif Technol. 2022;285:120291. https://doi.org/ 10.1016/j.seppur.2021.120291.
105. Bernardo J, Sério J, Oliveira B, Marques AP, Huertas R, Crespo JG, et al. Towards a novel combined treatment approach using light-emitting diodes and photocatalytic ceramic membranes. Water. 2022;14(3):292. https://doi.org/
10.3390/w14030292.
106. Azimifar M, Ghorbani M, Peyravi M. Fabrication and evaluation of a photocatalytic membrane based on Sb2O3/CBO composite for improvement of dye removal efficiency. J Mol Struct. 2022;1270:133957. https://doi.org/10.1016/j.molstruc.2022.133957.
107. Ahmadi A, Sarrafzadeh M-H, Hosseinian A, Ghaffari S-B. Foulant layer degradation of dye in Photocatalytic Membrane Reactor (PMR) containing immobilized and suspended NH2-MIL125(Ti) MOF led to water flux recovery. J Environ
Chem Eng. 2022;10(1):106999. https://doi. org/10.1016/ j.jece.2021.106999.
108. Molinari R, Limonti C, Lavorato C, Siciliano A, Argurio P. Upgrade of a slurry photocatalytic membrane reactor based on a vertical filter and an external membrane and testing in the photodegradation of a model pollutant in water. Chem Eng J. 2023;451:138577. https://doi.org/10.1016/j.cej.2022. 138577.
109. Feng X, Long R, Liu C, Liu X. Novel dual-heterojunction photocatalytic membrane reactor based on Ag2S/NH2-MIL-88B(Fe)/poly(aryl ether nitrile) composite with enhanced photocatalytic performance for wastewater purification. Chem Eng J. 2023;454:139765. https://doi.org/10.1016/ j.cej.2022.139765.
110. Zhang G, Yu Y, Tu Y, Liu Y, Huang J, Yin X, et al. Preparation of reusable UHMWPE/TiO2 photocatalytic microporous membrane reactors for efficient degradation of organic pollutants in water. Sep Purif Technol. 2023;305:122515. https://doi.org/10.1016/j.seppur.2022.12 2515.
111. Kusworo TD, Kumoro AC, Aryanti N, Kurniawan TA, Dalanta F, Alias NH. Photocatalytic polysulfone membrane incorporated by ZnO-MnO2@SiO2 composite under UV light irradiation for the reliable treatment of natural rubber-laden wastewater. Chem Eng J. 2023;451:138593. https:// doi.org/10.1016/j.cej.2022.138593.
112. Ahmed Shehab M, Szőri-Dorogházi E, Szabó S, Valsesia A, Chauhan T, Koós T, et al. Virus and bacterial removal ability of TiO2 nanowire-based self-supported hybrid membranes. Arab J Chem. 2023;16(1):104388. https://doi.org/10.1016/j.arabjc.2022.104388.
113. Dekkouche S, Morales-Torres S, Ribeiro AR, Faria JL, Fontàs C, Kebiche-Senhadji O, et al. In situ growth and crystallization of TiO2 on polymeric membranes for the photocatalytic degradation of diclofenac and 17α-ethinylestradiol. Chem Eng J. 2022;427:131476. https:// doi.org/10.1016/j.cej.2021.131476.
114. Rathna T, PonnanEttiyappan J, D R. Fabrication of visible-light assisted TiO2-WO3-PANI membrane for effective reduction of chromium (VI) in photocatalytic membrane reactor. Environ Technol Innov. 2021;24:102023. https://doi.org/10.1016/j.eti.2021.102023.
115. Heredia Deba SA, Wols BA, Yntema DR, Lammertink RGH. Effects of the water matrix on the degradation of micropollutants by a photocatalytic ceramic membrane. Membranes. 2022;12(10):1004. https://doi.org/10.3390/membranes12101004.
116. Gladysz JA. Recoverable catalysts. ultimate goals, criteria of evaluation, and the green chemistry interface. Pure Appl Chem. 2001;73(8):1319-24. https://doi.org/10.1351/pac 200173081319.
117. Hill CL. Controlled green oxidation. Nature. 1999; 401(6752):436-7. https://doi.org/10.1038/46704.
118. Daels N, Radoicic M, Radetic M, Van Hulle SWH, De Clerck K. Functionalisation of electrospun polymer nanofibre membranes with TiO2 nanoparticles in view of dissolved organic matter photodegradation. Sep Purif Technol. 2014;133:282-90. https://doi.org/10.1016/j.seppur. 2014.06.040.
119. Wu G, Cui L, Xu Y, Lu X. Photocatalytic membrane reactor for degradation of phenol in aqueous solution. Fresenius Environ Bull. 2007;16(7):812-6.
120. Fischer K ,Gawel A, Rosen D, Krause M, Abdul Latif A, Griebel J, et al. Low-Temperature synthesis of anatase/rutile/brookite tio2 nanoparticles on a polymer membrane for photocatalysis. Catal 2017;7(7):209. https:// doi.org/10.3390/catal7070209.
121. Kim JH, Joshi MK, Lee J, Park CH, Kim CS. Polydopamine-assisted immobilization of hierarchical zinc oxide nanostructures on electrospun nanofibrous membrane for photocatalysis and antimicrobial activity. J Colloid Interface Sci. 2018;513:566-74. https://doi.org/10.1016 /j.jcis.2017.11.061.
122. Artoshina OV, Rossouw A, Semina VK ,Nechaev AN, Apel PY. Structural and physicochemical properties of titanium dioxide thin films obtained by reactive magnetron sputtering, on the surface of track-etched membranes. Pet Chem. 2015;55(10):759-68. https://doi.org/10.1134/S0965544115 100011.
123. Shi Y, Yang D, Li Y, Qu J, Yu Z-Z. Fabrication of PAN@TiO2/Ag nanofibrous membrane with high visible light response and satisfactory recyclability for dye photocatalytic degradation. Appl Surf Sci. 2017;426:622-9.
https://doi.org/10.1016/j.apsusc.2017.06.302.
124. Li N, Tian Y, Zhang J, Sun Z, Zhao J, Zhang J, et al. Precisely-controlled modification of PVDF membranes with 3D TiO2/ZnO nanolayer: enhanced anti-fouling performance by changing hydrophilicity and photocatalysis under visible light irradiation. J Membr Sci. 2017;528:359-68. https:// doi.org/10.1016/j.memsci.2017.01.048.
125. Zhang J, Wu H, Shi L, Wu Z, Zhang S, Wang S, et al. Photocatalysis coupling with membrane technology for sustainable and continuous purification of wastewater. Sep Purif Technol. 2024;329:125225. https://doi.org/10.1016 /j.seppur.2023.125225.
126. Drioli E, Fontananova E. Catalytic membranes embedding selective catalysts: preparation and applications. In: Barbaro P, Liguori F, editors. Heterogenized homogeneous catalysts for fine chemicals production: materials and processes. Dordrecht: Springer Netherlands; 2010. p. 203-29. https://doi.org/10.1007/978-90-481-3696-4_6.
127. Paredes L ,Murgolo S, Dzinun H, Dzarfan Othman MH, Ismail AF, Carballa M, et al. Application of immobilized TiO2 on PVDF dual layer hollow fibre membrane to improve the photocatalytic removal of pharmaceuticals in different water matrices. Appl Catal B Environ. 2019;240:9-18. https://doi.org/10.1016/j.apcatb.2018.08.067.
128. Strathmann H. Introduction to membrane science and technology: John Wiley & Sons; 2011.
129. Wang X, Shi F, Huang W, Fan C. Synthesis of high quality TiO2 membranes on alumina supports and their photocatalytic activity. Thin Solid Film. 2012;520(7):2488-92. https://doi.org/10.1016/j.tsf.2011.10.023.
130. Chakraborty S, Loutatidou S, Palmisano G, Kujawa J, Mavukkandy MO, Al-Gharabli S, et al. Photocatalytic hollow fiber membranes for the degradation of pharmaceutical compounds in wastewater. J Environ Chem Eng. 2017;5(5):5014-24. https://doi.org/10.1016/j.jece. 2017.09.038.
131. Nor NAM, Jaafar J, Ismail AF, Mohamed MA, Rahman MA, Othman MHD, et al. Preparation and performance of PVDF-based nanocomposite membrane consisting of TiO2 nanofibers for organic pollutant decomposition in wastewater under UV irradiation. Desalin. 2016;391:89-97. https:// doi.org/10.1016/j.desal.2016.01.015.
132. Kaijun Z, Li Q, and Yu W. Preparation and performance of PMMA/R-TiO2 and PMMA/A-TiO2 electrospun fibrous films. Integr Ferroelectr. 2018;188(1):31-43. https:// doi.org/10.1080/10584587.2018.1454760.
133. Fischer K, Gläser R, Schulze A. Nanoneedle and nanotubular titanium dioxide – PES mixed matrix membrane for photocatalysis. Appl Catal B: Environ. 2014;160-161:456-64. https://doi.org/10.1016/j.apcatb.2014.05.054.
134. Della Foglia F, Chiarello GL, Dozzi MV, Piseri P, Bettini LG, Vinati S, et al. Hydrogen production by photocatalytic membranes fabricated by supersonic cluster beam deposition on glass fiber filters. Int J Hydrogen Energy. 2014; 39(25):13098-104. https://doi.org/10.1016/j.ijhydene.2014 .06.088.
135. Zhang E, Wang L, Zhang B, Xie Y, Sun C, Jiang C, et al. Modification of polyvinylidene fluoride membrane with different shaped α-Fe2O3 nanocrystals for enhanced photocatalytic oxidation performance. Mater Chem Phys. 2018;214:41-7. https://doi.org/10.1016/j.matchemphys.2018 .04.084.
136. Chen Q, Yu Z, Pan Y, Zeng G, Shi H, Yang X, et al. Enhancing the photocatalytic and antibacterial property of polyvinylidene fluoride membrane by blending Ag–TiO2 nanocomposites. J Mater Sci: Mater Electron. 2017;28(4):3865-74. https://doi.org/10.1007/s10854-016-59 99-7.
137. Hoseini SN, Pirzamani AK, Aroon MA, Pirbazari AE. Photocatalytic degradation of 2, 4-dicholorophenol by Co-doped TiO2 (Co/TiO2) nanoparticles and Co/TiO2 containing mixed matrix membranes. J Water Process Eng. 2017;17:124-34. https://doi.org/10.1016/j.jwpe.2017.02.015.
138. Rajeswari A, Vismaiya S, Pius A. Preparation, characterization of nano ZnO-blended cellulose acetate-polyurethane membrane for photocatalytic degradation of dyes from water. Chem Eng J. 2017;313:928-37.
https://doi.org/10.1016/j.cej.2016.10.124.
139. Yin J, Deng B. Polymer-matrix nanocomposite membranes for water treatment. J Membr Sci. 2015;479:256-75.
https://doi.org/10.1016/j.memsci.2014.11.019.
140. Aoudjit L, Martins PM, Madjene F, Petrovykh DY, Lanceros-Mendez S. Photocatalytic reusable membranes for the effective degradation of tartrazine with a solar photoreactor. J Hazard Mater. 2018;344:408-16. https://doi.org/10.1016/j.jhazmat.2017.10.053.
141. Zhao Y, Ma L, Chang W ,Huang Z, Feng X, Qi X, et al. Efficient photocatalytic degradation of gaseous N,N-dimethylformamide in tannery waste gas using doubly open-ended Ag/TiO2 nanotube array membranes. Appl Surf Sci. 2018;444:610-20. https://doi.org/10.1016/j.apsusc.2018.03. 038.
142. Papageorgiou SK, Katsaros FK ,Favvas EP, Romanos GE, Athanasekou CP, Beltsios KG, et al. Alginate fibers as photocatalyst immobilizing agents applied in hybrid photocatalytic/ultrafiltration water treatment processes. Water Res. 2012;46(6):1858-72. https://doi.org/10.1016/j. watres.2012.01.005.
143. Anderson MA, Gieselmann MJ, Xu Q. Tinania and alumina ceramic membranes. J Membr Sci. 1988;39(3):243-58. https://doi.org/10.1016/s0376-7388(00)80932-1.
144. Moosemiller MD, G. HJC, Anderson MA. Physicochemical properties of supported γ-al2o3 and tio2 ceramic membranes. Sep Sci Technol. 1989;24(9-10):641-57. https://doi.org/10.1080/01496398908049798.
145. Molinari R, Palmisano L, Drioli E, Schiavello M. Studies on various reactor configurations for coupling photocatalysis and membrane processes in water purification. J. Membr Sci. 2002;206(1):399-415. https://doi.org/10.1016/S0376-7388 (01)00785-2.
146. Zhang H, Quan X, Chen S, Zhao Y. Fabrication of photocatalytic membrane and evaluation its efficiency in removal of organic pollutants from water. Sep Purif Technol. 3005;50(2):147-55. https://doi.org/10.1016/j.seppur.2005. 11.018.
147. Athanasekou CP, Moustakas NG, Morales-Torres S, Pastrana-Martínez LM, Figueiredo JL, Faria JL, et al. Ceramic photocatalytic membranes for water filtration under UV and visible light. Appl Catal B: Environ. 2015;178:12-9.
https://doi.org/10.1016/j.apcatb.2014.11.021.
148. Pastrana-Martínez LM, Morales-Torres S, Figueiredo JL, Faria JL, Silva AMT. Graphene oxide based ultrafiltration membranes for photocatalytic degradation of organic pollutants in salty water. Water Res. 2015;77:179-90.
https://doi.org/10.1016/j.watres.2015.03.014.
149. Ramasundaram S, Yoo HN, Song KG, Lee J, Choi KJ, Hong SW. Titanium dioxide nanofibers integrated stainless steel filter for photocatalytic degradation of pharmaceutical compounds. J Hazard Mater. 2013;258-259:124-32. https://doi.org/10.1016/j.jhazmat.2013.04.047.
150. Pope MT, Jeannin Y, Fournier M. Heteropoly and isopoly oxometalates: Springer; 1983.
151. Maldotti A, Molinari A, Amadelli R. Photocatalysis with Organized Systems for the Oxofunctionalization of Hydrocarbons by O2. Chem Rev. 2002;102(10):3811-36.
https://doi.org/10.1021/cr010364p.
152. Bonchio M, Carraro M, Scorrano G, Fontananova E, Drioli E. Heterogeneous Photooxidation of Alcohols in Water by Photocatalytic Membranes Incorporating Decatungstate Adv Synth Catal. 2003;345(9-10):1119-26. https://doi.org/ 10.1002/adsc.200303076.
153. Mylonas A, Papaconstantinou E, Roussis V. Photocatalytic degradation of phenol and p-cresol by polyoxotungstates. mechanistic implications. Polyhedron. 1996;15(19):3211-7.
https://doi.org/10.1016/0277-5387(96)00034-4.
154. Texier I, Giannotti C, Malato S, Richter C, Delaire J. Solar photodegradation of pesticides in water by sodium decatungstate. Catal Today. 1999;54(2):297-307. https://doi. org/10.1016/S0920-5861(99)00191-1.
155. Bonchio M, Carraro M, Gardan M, Scorrano G, Drioli E, Fontananova E. Hybrid photocatalytic membranes embedding decatungstate for heterogeneous photooxygenation. Top Catal. 2006;40(1):133-40. https:// doi.org/10.1007/s11244-006-0115-5.
156. Fontananova E, Donato L, Drioli E, Lopez LC, Favia P, d'Agostino R. Heterogenization of Polyoxometalates on the Surface of Plasma-Modified Polymeric Membranes. Chem Mater. 2006;18(6):1561-8. https://doi.org/ 10.1021/cm 051739g.
157. Drioli E, Fontananova E, Bonchio M, Carraro M, Gardan M, Scorrano G. Catalytic membranes and membrane reactors: an integrated approach to catalytic process with a high efficiency and a low environmental impact. Chin J Catal. 2008;29(11):1152-8. https://doi.org/10.1016/S1872-2067(09)60017-6.
158. Carraro M, Gardan M, Scorrano G, Drioli E, Fontananova E, Bonchio M. Solvent-free, heterogeneous photooxygenation of hydrocarbons by Hyflon® membranes embedding a fluorous-tagged decatungstate. Chem Commun. 2006(43):4533-5. https://doi.org/10.1039/B610551C.
159. Mpelane A, Katwire DM, Mungondori HH, Nyamukamba P, Taziwa RT. Application of novel c-TiO2-cfa/pan photocatalytic membranes in the removal of textile dyes in wastewater. Cataly. 2020;10(8):909. https://doi.org/10. 3390/catal10080909.
160. Ashar A, Bhatti IA, Ashraf M, Tahir AA, Aziz H, Yousuf M, et al. Fe3+@ ZnO/polyester based solar photocatalytic membrane reactor for abatement of RB5 dye. J Clean Prod. 2020;246:119010. https://doi.org/10.1016/j.jclepro.2019.11