1. Xing J, Wang N, Li X, Wang J, Taiwaikuli M, Huang X, et al. Synthesis and modifications of g-C3N4-based materials and their applications in wastewater pollutants removal. J Environ Chem Eng. 2022;10(6):108782.https://doi.org/10.1016/j.jece.2022.108782
2. Wang W, Xu P, Chen M, Zeng G, Zhang C, Zhou C, et al. Alkali metal-assisted synthesis of graphite carbon nitride with tunable band-gap for enhanced visible-light-driven photocatalytic performance. ACS Sustain Chem Eng. 2018;6(11):15503-16.https://doi.org/10.1021/acssuschemeng.8b03965
3. Li R, Cui X, Bi J, Ji X, Li X, Wang N, et al. Urea-induced supramolecular self-assembly strategy to synthesize wrinkled porous carbon nitride nanosheets for highly-efficient visible-light photocatalytic degradation. RSC Adv. 2021;11(38):23459-70.https://doi.org/10.1039/D1RA03524J
4. Bi J, Huang X, Wang J, Tao Q, Lu H, Luo L, et al. Self-assembly of immobilized titanate films with different layers for heavy metal ions removal from wastewater: Synthesis, modeling and mechanism. Chem Eng J. 2020;380:122564.https://doi.org/10.1016/j.cej.2019.122564
5. Al-Tohamy R, Ali SS, Li F, Okasha KM, Mahmoud YA-G, Elsamahy T, et al. A criticalreview on the treatment of dye-containing wastewater: Ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety. Ecotoxicol Environ Saf. 2022;231:113160.https://doi.org/10.1016/j.ecoenv.2021.113160
6. Solayman H, Hossen MA, Abd Aziz A, Yahya NY, Leong KH, Sim LC, et al. Performance evaluation of dye wastewater treatment technologies: A review. J Environ Chem Eng. 2023;11(3):109610.https://doi.org/10.1016/j.jece.2023.109610
7. Shabir M, Yasin M, Hussain M, Shafiq I, Akhter P, Nizami A-S, et al. A review on recent advances in the treatment of dye-polluted wastewater. J Ind Eng Chem. 2022;112:1-19.https://doi.org/10.1016/j.jiec.2022.05.013
8. Kumari H, Sonia, Suman, Ranga R, Chahal S, Devi S, et al. A review on photocatalysis used for wastewater treatment: dye degradation. Water Air Soil Pollut. 2023;234(6):349.https://doi.org/10.1007/s11270-023-06359-9
9. Cao M, ZhuangZ, Liu Y, Zhang Z, Xuan J, Zhang Q, et al. Peptide-mediated green synthesis of the MnO2@ ZIF-8 core–shell nanoparticles for efficient removal of pollutant dyes from wastewater via a synergistic process. J Colloid Interface Sci. 2022;608:2779-90.https://doi.org/10.1016/j.jcis.2021.11.003
10. QiuB, Shao Q, Shi J, Yang C, Chu H. Application of biochar for the adsorption of organic pollutants from wastewater: Modification strategies, mechanisms and challenges. Sep Purif Technol. 2022;300:121925.https://doi.org/10.1016/j.seppur.2022.121925
11. Xiao G, Wang Y, Xu S, Li P, Yang C, Jin Y, et al. Superior adsorption performance of graphitic carbon nitride nanosheets for both cationic and anionic heavy metals from wastewater. Chin J Chem Eng. 2019;27(2):305-13.https://doi.org/10.1016/j.cjche.2018.09.028
12. Ahmadi A, Hajilou M, Zavari S, Yaghmaei S. A comparative review on adsorption and photocatalytic degradation of classified dyes with metal/non-metal-based modification of graphitic carbon nitride nanocomposites: Synthesis, mechanism, and affecting parameters. J Clean Prod. 2023;382:134967.https://doi.org/10.1016/j.jclepro.2022.134967
13. Molla A, Youk JH. Mechanochemical synthesisof graphitic carbon nitride/graphene oxide nanocomposites for dye sorption. Dyes Pigments. 2023;220:111725.https://doi.org/10.1016/j.dyepig.2023.111725
14. Li J, Xiong Y, Wan H, Chen J, Fang S, Song X, et al. In-situ investigation of dye pollutant adsorption performance on graphitic carbon nitridesurface: ATR spectroscopy experiment and MD simulation insight. J Hazard Mater. 2021;418:126297.https://doi.org/10.1016/j.jhazmat.2021.126297
15. Pei R, Fan L, Zhao F, Xiao J, Yang Y, Lai A, et al. 3D-Printed metal-organic frameworks within biocompatible polymers as excellent adsorbents for organicdyes removal. J Hazard Mater. 2020;384:121418.https://doi.org/10.1016/j.jhazmat.2019.121418
16. Liu X, Zhao S, Li Q, He P, Duan X, Jia D, et al. 3D printed GO‐g‐C3N4‐geopolymer components with acid treatment for the removal of methylene blue from wastewater. J Am Ceram Soc. 2025;108(5):e20377.https://doi.org/10.1111/jace.20377
17. Chen L, Zhou S, Li M, Mo F, Yu S, Wei J. Catalytic Materials by 3D Printing: A Mini Review. Catalysts. 2022;12(10):1081https://doi.org/10.3390/catal12101081.
18. Rezadoust AM, Sadjadi S, Heydari A. 3D-printed metal-organic framework encapsulated Keggin heteropolyacid for catalytic purpose. JMol Struct. 2024;1305:137808.https://doi.org/10.1016/j.molstruc.2024.137808
19. Wang X, Guo W, Abu-Reziq R, Magdassi S. High-Complexity WO3-Based Catalyst with Multi-Catalytic Species via 3D Printing. Catalysts. 2020;10(8):840.https://doi.org/10.3390/catal10080840
20. Sadjadi S, Rezadoust AM, Yaghoubi S, Monflier E, Heydari A. 3D-Printed Cyclodextrin Polymer Encapsulated Wells–Dawson: A Novel Catalyst for Knoevenagel Condensation Reactions. ACS omega. 2023;8(48):45844-53.https://doi.org/10.1021/acsomega.3c06592
21. Mishra V, Ror CK, Negi S, Kar S, Borah LN. 3D printing with recycled ABS resin: Effect of blending and printingtemperature. Mater Chem Phys. 2023;309:128317.https://doi.org/10.1016/j.matchemphys.2023.128317
22. Daguano JK, Giora FC, Santos KF, Pereira AB, Souza MT, Davila JL, et al. Shear-thinning sacrificial ink for fabrication of Biosilicate® osteoconductive scaffolds by material extrusion 3D printing. MaterChem Phys. 2022;287:126286.https://doi.org/10.1016/j.matchemphys.2022.126286
23. Ravandi MRM, Dezianian S, Ahmad MT, Ghoddosian A, Azadi M. Compressive strength of metamaterial bones fabricated by 3D printing with different porosities in cubic cells. Mater Chem Phys. 2023;299:127515.https://doi.org/10.1016/j.matchemphys.2023.127515
24. Ranjbar F, Rezadoust AM, Sadjadi S. Design and fabrication of collapsible 3D-printed monoliths and their potential applications as temperature indicator and thermos-responsive releasing carrier. Prog Addit Manuf. 2025:1-13.https://doi.org/10.1007/s40964-025-01016-5
25. Zhu J, Wu P, Chao Y, Yu J, Zhu W, Liu Z, et al. Recent advances in 3D printing for catalytic applications. Chem Eng J. 2022;433:134341.https://doi.org/10.1016/j.cej.2021.134341
26. Gao Y, Lalevée J, Simon‐Masseron A. An overview on 3D printing of structured porous materials and their applications. Adv Mater Technol. 2023;8(17):2300377.https://doi.org/10.1002/admt.202300377
27. Chen J, Wu P, Bu F, Gao Y, Liu X, Guan C. 3D printing enhanced catalysis for energy conversion and environment treatment. DeCarbon. 2023;2:100019.https://doi.org/10.1016/j.decarb.2023.100019
28. Gonçalves NP, Olhero SM, Labrincha JA, Novais RM. 3D-printed red mud/metakaolin-based geopolymers aswater pollutant sorbents of methylene blue. J Clean Prod. 2023;383:135315.https://doi.org/10.1016/j.jclepro.2022.135315
29. Far HS, Najafi M, Hasanzadeh M, Rabbani M. Self-supported 3D-printed lattices containing MXene/metal–organic framework (MXOF) composite as an efficient adsorbent for wastewater treatment. ACS Appl Mater Interfaces. 2022;14(39):44488-97.https://doi.org/10.1021/acsami.2c13830
30. Ng TS, Norman A, Mohd Yusoff NH, Chong CH, Cheah KH, Yap TC, et al. 3D Printing and Optimization of Biocompatible and Hydrophilic PEGDA‐HEMA Lattice for Enhanced RhB Dye Removal From Aqueous Solution. Int J Polym Sci. 2024;2024(1):6633503.https://doi.org/10.1155/2024/6633503
31. Pawar OY, Lu B, Lim S. Enhanced Flexible Piezoelectric Nanogenerators Using Ethanol-Exfoliated g-C3N4/PVDF Composites via 3D Printing for Self-Powered Applications. Nanomaterials. 2024;14(19):1578.https://doi.org/10.3390/nano14191578
32. Yang X, Zhang L, Wang D, Zhang Q, Zeng J, Zhang R. Facile synthesis of nitrogen-defective gC 3 N 4 for superior photocatalytic degradation of rhodamine B. RSC Adv. 2021;11(49):30503-9.https://doi.org/10.1039/D1RA05535F
33. Zheng M, Guo M, Ma F, Li W, Shao Y. Recent advances in graphiticcarbon nitride-based composites for enhanced photocatalytic degradation of rhodamine B: mechanism, properties and environmental applications. Nanoscale Adv. 2025.https://doi.org/10.1039/D5NA00439J
34. Modwi A, Elamin MR, Idriss H, Elamin NY, Adam FA, Albadri AE, et al. Excellent adsorption of dyes via MgTiO3@ g-C3N4 nanohybrid: construction, description and adsorption mechanism. Inorganics. 2022;10(11):210.https://doi.org/10.3390/inorganics10110210
35. Alhathlool R, Aldaghri O, Ibnaouf K, Alqarni LS, Modwi A, Taha KK, et al. Efficient Rhodamine B dye uptake onto MgZrO3@ g-C3N4 nanostructures: Fabrication and adsorption mechanism. Inorg Chem Commun. 2024;165:112477.https://doi.org/10.1016/j.inoche.2024.112477
36. Bazan-Wozniak A, Jędrzejczak A, Wolski R, Kaczmarek S, Nosal-Wiercińska A, Cielecka-Piontek J, et al. A study on the adsorption of rhodamine b onto adsorbents prepared from low-carbon fossils: kinetic, isotherm, and thermodynamic analyses. Molecules. 2024;29(6):1412.https://doi.org/10.3390/molecules29061412
37. Miao J, Xu G, Liu J, Lv J, Wu Y. Synthesis and photocatalytic performance of g-C3N4 nanosheets via liquid phase stripping. J Solid State Chem. 20https://doi.org/10.1016/j.jssc.2016.11.028
38. Vijayakumar G, Tamilarasan R, Dharmendirakumar M. Adsorption, Kinetic, Equilibrium and Thermodynamic studies on the removal of basic dye Rhodamine-B from aqueous solution by the use of natural adsorbent perlite. J Mater Environ Sci.
39. Xiao W, Garba ZN, Sun S, Lawan I, Wang L, Lin M, et al. Preparation and evaluation of an effective activated carbon from white sugar for the adsorption of rhodamine B dye. J Clean Prod 2020;253:119989.https://doi.org/10.1016/j.jclepro.2020.119989
40. Khan M, Siddiqui MR, Otero M, Alshareef SA, Rafatullah M. Removal of rhodamine b from water using a solvent impregnated polymeric dowex 5wx8 resin: statistical optimization and batch adsorption studies. Polymers. 2020;12:500.https://doi.org/10.3390/polym12020500
41. Chieng HI, Lim LB, Priyantha N. Sorption characteristicsof peat from Brunei Darussalam for the removal of rhodamine B dye from aqueous solution: adsorption isotherms, thermodynamics, kinetics and regeneration studies. Desalination and Water Treatment 2015;55:664–77.https://doi.org/10.1080/19443994.2014.919609
42. Saigl ZM, Ahmed AM. Separation of rhodamine b dye from aqueous media using natural pomegranate peels. Indonesia. J. Chem. 2021;21 (1): 212. https://doi.org/10.22146/ijc.5859
43. Pan K, Yu F, Liu Z, Zhou X, Sun R, Li W, et al. Enhanced low-temperature CO-SCR denitration performance and mechanism of two-dimensional CuCoAl layered double oxide. J Environ Chem Eng. 2022;10(3):108030.https://doi.org/10.1016/j.jece.2022.108030
44. Barveen NR, Parasuraman B, Wang P-Y, Zeng C-W, Cheng Y-W, Thangavelu P. Facile construction of ZnWO4/g-C3N4 heterojunction for the improved photocatalytic degradation of MB, RhB and mixed dyes. Surf Interfaces. 2024;53:105039.https://doi.org/10.1016/j.surfin.2024.105039
45. Akram MY, Ashraf T, Tong L, Yin X, Dong H, Lu H. Architecting high-performance photocatalysts: A review of modified 2D/2D graphene/g-C3N4 heterostructures. J Environ Chem Eng. 2024;12(5):113415.https://doi.org/10.1016/j.jece.2024.113415
46. Khan MA, Mutahir S, Shaheen I, Qunhui Y, Bououdina M, Humayun M. Recent advances over the doped g-C3N4 in photocatalysis: A review. Coord Chem Rev. 2025;522:216227.https://doi.org/10.1016/j.ccr.2024.216227
47. Luo W, Chen X, Wei Z, Liu D, Yao W, Zhu Y. Three-dimensional network structure assembled by g-C3N4 nanorods for improving visible-light photocatalytic performance. Appl Catal B: Environ. 2019;255:117761.https://doi.org/10.1016/j.apcatb.2019.117761
48. Yan Y, Meng Q, Tian L, Cai Y, Zhang Y, Chen Y. Engineering of g-C3N4 for photocatalytic hydrogen production: a review. Int J Mol Sci. 2024;25(16):8842.https://doi.org/10.3390/ijms25168842