Dyes Adsorption from Wastewater Using Metal-Organic Frameworks: Operational Parameters, Kinetics, and Isotherms

Document Type : Review paper

Authors

1 Department of Civil Engineering, Science and Research Branch, Islamic Azad University, P.O. Box: 14515/775, Tehran, Iran

2 Department of Civil Engineering, Faculty of Technical Engineering, Qom University of Technology (QUT), P.O. Box: 37181-46645,Qom, Iran

3 Faculty of Chemistry and Petrochemical Engineering, Standard Research Institute (SRI), P.O. Box: 31745-139, Karaj, Iran

10.30509/jscw.2025.167614.1251

Abstract

Rapid industrial growth and population increase have led to large amounts of wastewater containing various organic and inorganic pollutants, including dyes. Azo dyes, making up 70% of annual dye production, are the most widely used and hazardous class, linked to cancer, skin irritation, and respiratory issues. Their complex aromatic structure makes them resistant to conventional treatment methods, posing significant environmental challenges. Adsorption has emerged as an efficient and suitable approach for removing these compounds. Recently, metal–organic frameworks (MOFs) have gained considerable attention as effective adsorbents due to their unique properties, such as tunable structure, high surface area, and porosity. This article reviews the classification of dyes, their environmental impact, toxicity, and mutagenicity. It also examines the decolorization process using various MOFs as adsorbents, along with characterization methods of synthesized adsorbents and experimental procedures. Key factors affecting dye removal—including adsorbent dosage, initial dye concentration, pH, adsorption kinetics, isotherms, mechanisms, and adsorbent reusability—are discussed in detail.

Keywords

Main Subjects


1.   Rojas S, Horcajada P. Metal–organic frameworks for the removal of emerging organic contaminants in water. Chem Rev. 2020;120(16):8378-415. https://doi.org/10.1021/acs.chemrev.9b00797.
2.   Lapworth D, Baran N, Stuart M, Ward R. Emerging organic contaminants in groundwater: a review of sources, fate and occurrence. Environ Pollut. 2012;163:287-303. https://doi.org/10.1016/j.envpol.2011.12.034.
3.   Srivastava A, Shukla S, Jangid NK, Srivastava M, Vishwakarma R. World of the Dye.  Research Anthology on Emerging Techniques in Environmental Remediation. IGI Global Scientific Publishing; 2022. p. 493-507.
4.   Han Z, An W, Yang M, Zhang Y. Assessing the impact of source water on tap water bacterial communities in 46 drinking water supply systems in China. Water Res. 2020;172:115469.
doi: https://doi.org/10.1016/j.watres.2020.115469.
5.   Gavrilescu M, Demnerová K, Aamand J, Agathos S, Fava F. Emerging pollutants in the environment: present and future challenges in biomonitoring, ecological risks and bioremediation. New biotechnol. 2015;32(1):147-56. doi: https://doi.org/10.1016/j.nbt.2014.01.001.
6.   Sharma E, Thakur V, Sangar S, Singh K. Recent progress on heterostructures of photocatalysts for environmental remediation. Mater. Today. Proceedings. 2020;32:584-93.
doi: https://doi.org/10.1016/j.matpr.2020.02.403.
7.   Selvaraj V, Karthika TS, Mansiya C, Alagar M. An over review on recently developed techniques, mechanisms and intermediate involved in the advanced azo dye degradation for industrial applications. J Mol Struct. 2021;1224:129195.
doi: https://doi.org/10.1016/j.molstruc.2020.129195.
8.   Vasconcelos MW, Goncalves S, de Oliveira EC, Rubert S, de Castilhos Ghisi N. Textile effluent toxicity trend: A scientometric review. J Clean Prod. 2022;366:132756. https://doi.org/10.1016/j.jclepro.2022.132756.
9.   Gita S, Shukla S, Saharan N, Prakash C, Deshmukhe G. Toxic effects of selected textile dyes on elemental composition, photosynthetic pigments, protein content and growth of a freshwater chlorophycean alga Chlorella vulgaris. Bull. Environ Contam Toxicol. 2019;102:795-801. doi: https://doi.org/10.1007/s00128-019-02599-w.
10.  Mehra S, Singh M, Chadha P. Adverse impact of textile dyes on the aquatic environment as well as on human beings. Toxicol Int. 2021:165-76.
doi: https://doi.org/10.18311/ti/2021/v28i2/26798.
11.  Ngulube T, Gumbo J, Masindi V, Maity A. Calcined magnesite as an adsorbent for cationic and anionic dyes: characterization, adsorption parameters, isotherms and kinetics study. Heliyon. 2018;4(10).
doi: https://doi.org/10.1016/j.heliyon.2018.e00838.
12.  Reddy MS, Nirmala V, Ashwini C. Bengal Gram Seed Husk as an adsorbent for the removal of dye from aqueous solutions–Batch studies. Arabian J. Chem. 2017;10:S2554-S66. doi: https://doi.org/10.1016/j.arabjc.2013.09.029.
13.  Marubini A, Mhlarhi R, Edokpayi JN. Adsorptive Removal of Crystal Violet Dye from Aqueous Solution Using a Vermiculite-Based Geopolymer. Scientific African. 2025:e02701.
doi: https://doi.org/10.1016/j.sciaf.2025.e02701.
14.  Weng C-H, Tsai K-L. Ultrasound and heat enhanced persulfate oxidation activated with Fe0 aggregate for the decolorization of CI Direct Red 23. Ultrasonics Sonochem. 2016;29:11-8.
doi: https://doi.org/10.1016/j.ultsonch.2015.08.012.
15.  Saleh TA. Nanomaterials: Classification, properties, and environmental toxicities. Environ. Technol. Innov. 2020;20:101067.
doi: https://doi.org/10.1016/j.eti.2020.101067.
16.  Alansi AM, Qahtan TF, Saleh TA. Solar‐driven fixation of bismuth oxyhalides on reduced graphene oxide for efficient sunlight‐responsive immobilized photocatalytic systems. Adv. Mater. Interfaces. 2021;8(3):2001463.
doi: https://doi.org/10.1002/admi.202001463.
17.  Liu Q, Li Y, Chen H, Lu J, Yu G, Möslang M, Zhou Y. Superior adsorption capacity of functionalised straw adsorbent for dyes and heavy-metal ions. J. Hazard. Mater. 2020;382:121040.
doi: https://doi.org/10.1016/j.jhazmat.2019.121040.
18.  Horcajada P, Serre C, Maurin G, Ramsahye NA, Balas F, Vallet-Regí M, et al. Flexible porous metal-organic frameworks for a controlled drug delivery. J Am Chem Soc. 2008;130(21):6774-80.
doi: https://doi.org/10.1021/ja710973k.
19.  Pan Y, Abazari R, Yao J, Gao J. Recent progress in 2D metal-organic framework photocatalysts: synthesis, photocatalytic mechanism and applications. J Phys Energy. 2021;3(3):032010. doi: https://doi.org/10.1088/2515-7655/abf721. 
20.  Hu Y, Abazari R, Sanati S, Nadafan M, Carpenter-Warren CL, Slawin AM, et al. A dual-purpose Ce (III)–organic framework with amine groups and open metal sites: third-order nonlinear optical activity and catalytic CO2 fixation. ACS Appl Mater Interfaces. 2023;15(31):37300-11.
doi: https://doi.org/10.1021/acsami.3c04506.
21.  Abazari R, Sanati S, Morsali A. Mixed metal Fe2Ni MIL-88B metal–organic frameworks decorated on reduced graphene oxide as a robust and highly efficient electrocatalyst for alkaline water oxidation. Inorg Chem. 2022;61(8):3396-405.
doi: https://doi.org/10.1021/acs.inorgchem.1c03216.
22.  Liu A, Wang CZ, Chu C, Chu HY, Chen X, Du AF, et al. Adsorption performance toward organic pollutants, odour control and anti-microbial activities of one Ag-based coordination polymer. J Environ Chem Eng. 2018;6(4):4961-9. doi: https://doi.org/10.1016/j.jece.2018.07.035.
23.  Liu A, Wang C-C, Wang C-z, Fu H-f, Peng W, Cao Y-L, et al. Selective adsorption activities toward organic dyes and antibacterial performance of silver-based coordination polymers. J Colloid Interfac Sci. 2018;512:730-9. doi: https://doi.org/10.1016/j.jcis.2017.10.099.
24.  Chu H-Y, Fu H, Liu A, Wang P, Cao Y-L, Du A-F, Wang C-C. Two silver-based coordination polymers constructed from organic carboxylate acids and 4, 4′-bipyridine-like bidentate ligands: synthesis, structure, and antimicrobial performances. Polyhedron. 2020;188:114684. https://doi.org/10.1016/j.poly.2020.114684.
25.  Alezi D, Belmabkhout Y, Suyetin M, Bhatt PM, Weseliński ŁJ, Solovyeva V, et al. MOF crystal chemistry paving the way to gas storage needs: aluminum-based soc-MOF for CH4, O2, and CO2 storage. J Am. Chem Soc. 2015;137(41):13308-18. https://doi.org/10.1021/jacs.5b07053.
26.  Farha OK, Özgür Yazaydın A, Eryazici I, Malliakas CD, Hauser BG, Kanatzidis MG, et al. De novo synthesis of a metal–organic framework material featuring ultrahigh surface area and gas storage capacities. Nature Chem. 2010;2(11):944-8. https://doi.org/10.1038/nchem.834.
27.  Wang C-Y, Wang C-C, Zhang X-W, Ren X-Y, Yu B, Wang P, et al. A new Eu-MOF for ratiometrically fluorescent detection toward quinolone antibiotics and selective detection toward tetracycline antibiotics. Chinese Chem Lett. 2022;33(3):1353-7. https://doi.org/10.1016/j.cclet.2021.08.095.
28.  Rice AM, Martin CR, Shustova NB. Photochemistry and photophysics of MOFs: steps towards MOF-based sensing enhancements Chem Soc Rev. 2018;47:4710-4728. https://doi.org/10.1039/C7CS00861A.
29.  Yang F, Du M, Yin K, Qiu Z, Zhao J, Liu C, et al. Applications of metal‐organic frameworks in water treatment: a review. Small. 2022;18(11):2105715.
https://doi.org/10.1002/smll.202105715.
30.  Liu X, Shan Y, Zhang S, Kong Q, Pang H. Application of metal organic framework in wastewater treatment. Green Energy Environ. 2023;8(3):698-721.
https://doi.org/10.1016/j.gee.2022.03.005.
31.  Zhang Q, Yang H, Zhou T, Chen X, Li W, Pang H. Metal–organic frameworks and their composites for environmental applications. Adv Sci. 2022;9(32):2204141. https://doi.org/10.1002/advs.202204141.
32.  Kalhorizadeh T, Dahrazma B, Zarghami R, Mirzababaei S, Kirillov AM, Abazari R. Quick removal of metronidazole from aqueous solutions using metal–organic frameworks. New J Chem. 2022;46(19):9440-50. https://doi.org/10.1039/D1NJ06107K.
33.  Yang D, Gates BC. Catalysis by metal organic frameworks: perspective and suggestions for future research. ACS Catal. 2019;9(3):1779-98. https://doi.org/10.1021/acscatal.8b04515.
34.  Li H, Eddaoudi M, O'Keeffe M, Yaghi OM. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 1999;402(6759):276-9. https://doi.org/10.1038/46248.
35.  Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM. The chemistry and applications of metal-organic frameworks. Science 2013;341(6149):1230444. https://doi.org/10.1126/science.1230444.
36.  Li YH, Wang CC, Zeng X, Sun XZ, Zhao C, Fu H, Wang P. Seignette salt induced defects in Zr-MOFs for boosted Pb (Ⅱ) adsorption: universal strategy and mechanism insight. Chem Eng J. 2022;442:136276. https://doi.org/10.1016/j.cej.2022.136276.
37.  Ren X, Wang CC, Li Y, Wang P, Gao S. Defective SO3H-MIL-101 (Cr) for capturing different cationic metal ions: Performances and mechanisms. J Hazard Mater. 2023;445:130552. https://doi.org/10.1016/j.jhazmat.2022.130552.
38.  Ihsanullah I. Applications of MOFs as adsorbents in water purification: Progress, challenges and outlook. Current Opinion in Environmental Science & Health. 2022;26:100335. https://doi.org/10.1016/j.coesh.2022.100335.
39.  Qiu J, Feng Y, Zhang X, Jia M, Yao J. Acid-promoted synthesis of UiO-66 for highly selective adsorption of anionic dyes: Adsorption performance and mechanisms. J. Colloid Interface Sci. 2017;499:151-8. https://doi.org/10.1016/j.jcis.2017.03.101.
40.  Deng Y, Wu Y, Chen G, Zheng X, Dai M, Peng C. Metal-organic framework membranes: Recent development in the synthesis strategies and their application in oil-water separation. Chem Eng J. 2021;405:127004. https://doi.org/10.1016/j.cej.2020.127004.
41.  Gu J, Fan H, Li C, Caro J, Meng H. Robust superhydrophobic/superoleophilic wrinkled microspherical MOF@ rGO composites for efficient oil–water separation. Angewandte Chemie. 2019;131(16):5351-5. https://doi.org/10.1002/ange.201814487.
42.  Zhao C, Meng L, Chu H, Wang J-F, Wang T, Ma Y, Wang C-C. Ultrafast degradation of emerging organic pollutants via activation of peroxymonosulfate over Fe3C/Fe@ NCx: Singlet oxygen evolution and electron-transfer mechanisms. Appl Catal B: Environ. 2023;321:122034. https://doi.org/10.1016/j.apcatb.2022.122034.
43.  Wang T, Zhao C, Meng L, Li Y, Chu H, Wang F, et al. In-situ-construction of BiOI/UiO-66 heterostructure via nanoplate-on-octahedron: A novel pn heterojunction photocatalyst for efficient sulfadiazine elimination. Chem Eng J. 2023;451:138624. https://doi.org/10.1016/j.cej.2022.138624.
44.  Pang D, Wang C-C, Wang P, Liu W, Fu H, Zhao C. Superior removal of inorganic and organic arsenic pollutants from water with MIL-88A (Fe) decorated on cotton fibers. Chemosphere. 2020;254:126829. https://doi.org/10.1016/j.chemosphere.2020.126829.
45.  Wang C, Luan J, Wu C. Metal-organic frameworks for aquatic arsenic removal. Water Res. 2019;158:370-82. https://doi.org/10.1016/j.watres.2019.04.043.
46.  Wang CC, Ren X, Wang P, Chang C. The state of the art review on photocatalytic Cr (VI) reduction over MOFs-based photocatalysts: From batch experiment to continuous operation. Chemosphere. 2022;303:134949. https://doi.org/10.1016/j.chemosphere.2022.134949.
47.  Li M, Liu Y, Li F, Shen C, Kaneti YV, Yamauchi Y, et al. Defect-rich hierarchical porous UiO-66 (Zr) for tunable phosphate removal. Environ. Sci. Technol. 2021;55(19):13209-18. https://doi.org/10.1021/acs.est.1c01723.
48.  Tang C, Ma S-Q, Yi X-H, Wang C-C, Wang P. MIL-88A (Fe)/TCNQ composites for boosted photo-Fenton sulfamethoxazole degradation under LED visible light. Mater Res Bull. 2023;160:112138. https://doi.org/10.1016/j.materresbull.2022.112138.
49.  Shi K-X, Qiu F, Wang J-W, Wang P, Li H-Y, Wang C-C. Sulfamethoxazole degradation via peroxydisulfate activation over WO3/MIL-100 (Fe) under low power LED visible light. Sep Purif Technol. 2023;309:122991. https://doi.org/10.1016/j.seppur.2022.122991.
50.  Yi XH, Ji H, Wang CC, Li Y, Li YH, Zhao C, et al. Photocatalysis-activated SR-AOP over PDINH/MIL-88A (Fe) composites for boosted chloroquine phosphate degradation: Performance, mechanism, pathway and DFT calculations. Appl Catal B: Environ. 2021;293:120229. https://doi.org/10.1016/j.apcatb.2021.120229.
51.  Chen Y-J, Chen Y, Miao C, Wang Y-R, Gao G-K, Yang R-X, et al. Metal–organic framework-based foams for efficient microplastics removal. J Mater Chem. A. 2020;8(29):14644-52. https://doi.org/10.1039/D0TA04891G.
52.  Kong Z, Lu L, Zhu C, Xu J, Fang Q, Liu R, Shen Y. Enhanced adsorption and photocatalytic removal of PFOA from water by F-functionalized MOF with in-situ-growth TiO2: Regulation of electron density and bandgap. Sep Purif Technol. 2022;297:121449. https://doi.org/10.1016/j.seppur.2022.121449.
53.  Lopez YC, Viltres H, Gupta NK, Acevedo-Pena P, Leyva C, Ghaffari Y, et al. Transition metal-based metal–organic frameworks for environmental applications: a review. Environ Chem Lett. 2021;19:1295-334. doi: https://doi.org/10.1007/s10311-020-01119-1.
54.  Rubio-Martinez M, Avci-Camur C, Thornton AW, Imaz I, Maspoch D, Hill MR. New synthetic routes towards MOF production at scale. Chem Soc Rev. 2017;46(11):3453-80. doi: https://doi.org/10.1039/C7CS00109F.
55.  Valsala T, Joseph A, Shah J, Raj K, Venugopal V. Synthesis and characterization of cobalt ferrocyanides loaded on organic anion exchanger. J. Nuclear Mater. 2009;384(2):146-52. https://doi.org/10.1016/j.jnucmat.2008.11.003.
56.  Lin K-YA, Chang H-A, Chen B-J. Multi-functional MOF-derived magnetic carbon sponge. J Mater Chem A. 2016;4(35):13611-25. https://doi.org/10.1039/C6TA04619C.
57.  Qi X, Liu K, Chang Z. Beyond powders: Monoliths on the basis of metal-organic frameworks (MOFs). Chem. Eng. J. 2022;441:135953. https://doi.org/10.1016/j.cej.2022.135953.
58.  Lin H, Jie B, Ye J, Zhai Y, Luo Z, Shao G, et al. Recent advance of macroscopic metal-organic frameworks for water treatment: A review. Surfaces and Interfaces. 2023;36:102564. https://doi.org/10.1016/j.surfin.2022.102564.
59.  Li X, Wu D, Hua T, Lan X, Han S, Cheng J, et al. Micro/macrostructure and multicomponent design of catalysts by MOF-derived strategy: Opportunities for the application of nanomaterials-based advanced oxidation processes in wastewater treatment. Sci Total Environ. 2022;804:150096. https://doi.org/10.1016/j.scitotenv.2021.150096.
60.  Khan A, Naeem A, Mahmood T. Kinetic studies of methyl orange and Congo red adsorption and photocatalytic degradation onto PVP-functionalized ZnO. Kinetics Catal. 2020;61:730-9. https://doi.org/10.1134/S0023158420050055.
61.  Khan A, Naeem A, Mahmood T, Ahmad B, Ahmad Z, Farooq M, Saeed T. Mechanistic study on methyl orange and congo red adsorption onto polyvinyl pyrrolidone modified magnesium oxide. Int J Environ Sci. Technol. 2022:1-14. https://doi.org/10.1007/s13762-021-03308-z.
62.  Khan A, Naeem A, Mahmood T, Muhammad N, Hussain S. Fixed‐bed column adsorption of methyl orange by poly (vinyl pyrrolidone)‐functionalized manganese oxide. J Chem Technol Biotechnol. 2022;97(10):2898-903. https://doi.org/10.1002/jctb.7162.
63.  Mahmoudi A, Mousavi SA, Atashkar S. Kinetic and isotherm studies on the removal of reactive Red 2 from aqueous solutions using phosphoric acid activated carbon. AQUA—Water Infrastructure, Ecosystems and Society. 2023;72(2):123-38. https://doi.org/10.2166/aqua.2022.125.
64.  Yagub MT, Sen TK, Afroze S, Ang HM. Dye and its removal from aqueous solution by adsorption: a review. Adv. Colloid Interface Sci. 2014;209:172-84. https://doi.org/10.1016/j.cis.2014.04.002.
65.  Yuan H, Chen L, Cao Z, Hong FF. Enhanced decolourization efficiency of textile dye Reactive Blue 19 in a horizontal rotating reactor using strips of BNC-immobilized laccase: Optimization of conditions and comparison of decolourization efficiency. BioChem Eng. J. 2020;156:107501.
https://doi.org/10.1016/j.bej.2020.107501.
66.  Benkhaya S, M'rabet S, El Harfi A. A review on classifications, recent synthesis and applications of textile dyes. Inorg Chem Commun. 2020;115:107891. https://doi.org/10.1016/j.inoche.2020.107891.
67.  Rauf M, Meetani M, Hisaindee S. An overview on the photocatalytic degradation of azo dyes in the presence of TiO2 doped with selective transition metals. Desalin. 2011;276(1-3):13-27. https://doi.org/10.1016/j.desal.2011.03.071.
68.  Zollinger H. Color chemistry: syntheses, properties, and applications of organic dyes and pigments. John Wiley & Sons; 2003.
69.  Mossavi E, Sabzevari MH, Ghaedi M, Azqhandi MA. Adsorption of the azo dyes from wastewater media by a renewable nanocomposite based on the graphene sheets and hydroxyapatite/ZnO nanoparticles. J Mol Liq. 2022;350:118568. https://doi.org/10.1016/j.molliq.2022.118568.
70.  Isaev AB, Shabanov NS, Magomedova AG, Nidheesh P, Oturan MA. Electrochemical oxidation of azo dyes in water: a review. Environ Chem Lett. 2023;21(5):2863-911. https://doi.org/10.1007/s10311-023-01610-5.
71.  Tekade RK. Pharmacokinetics and Toxicokinetic Considerations-Vol II. Academic Press; 2022.
72.  Hong Y, Xu M, Guo J, Xu Z, Chen X, Sun G. Respiration and growth of Shewanella decolorationis S12 with an azo compound as the sole electron acceptor. Appl Environ Microbiol. 2007;73(1):64-72. https://doi.org/10.1128/AEM.01415-06.
73.  Chung K-T, Cerniglia CE. Mutagenicity of azo dyes: structure-activity relationships. Mutation Research/Reviews in Genetic Toxicology. 1992;277(3):201-20. https://doi.org/10.1016/0165-1110(92)90044-A.
74.  Brown JP, Roehm GW, Brown RJ. Mutagenicity testing of certified food colors and related azo, xanthene and triphenylmethane dyes with the Salmonella/microsome system. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis. 1978;56(3):249-71. doi: https://doi.org/10.1016/0027-5107(78)90192-6.
75.  Fujita S, Peisach J. Liver microsomal cytochromes P-450 and azoreductase activity. J Biol Chem. 1978;253(13):4512-3. doi: https://doi.org/10.1016/S0021-9258(17)30415-5.
76.  Venturini S, Tamaro M. Mutagenicity of anthraquinone and azo dyes in Ames' Salmonella typhimurium test. Mutation Research/Genetic Toxicology. 1979;68(4):307-12. https://doi.org/10.1016/0165-1218(79)90163-0.
77.  Walker R. The metabolism of azo compounds: a review of the literature. Food and Cosmetics Toxicol. 1970;8(6):659-76. https://doi.org/10.1016/S0015-6264(70)80455-2.
78.  Van der Zee FP, Villaverde S. Combined anaerobic–aerobic treatment of azo dyes—a short review of bioreactor studies. Water Res. 2005;39(8):1425-40. https://doi.org/10.1016/j.watres.2005.03.007.
79.  Singh G, Dwivedi SK, Mishra J. Role of Fungal Enzymes in the Removal of Azo Dyes. In: Arora, N., Mishra, J., Mishra, V. (eds) Microbial Enzymes: Roles and Applications in Industries. Microorganisms for Sustainability, 2020;11. Springer, Singapore. https://doi.org/10.1007/978-981-15-1710-5_9
80.  Pandey S, Makhado E, Kim S, Kang M. Recent developments of polysaccharide based superabsorbent nanocomposite for organic dye contamination removal from wastewater—A review. Environ Res. 2023;217:114909. https://doi.org/10.1016/j.envres.2022.114909.
81.  Gomase V, Doondani P, Saravanan D, Pandey S, Jugade R. A novel Chitosan-Barbituric acid hydrogel supersorbent for sequestration of chromium and cyanide ions: Equilibrium studies and optimization through RSM. Sep Purif Technol. 2024;330:125475. https://doi.org/10.1016/j.seppur.2023.125475.
82.  Rápó E, Tonk S. Factors affecting synthetic dye adsorption; desorption studies: a review of results from the last five years (2017–2021). Molecules 2021;26(17):5419. https://doi.org/10.3390/molecules26175419.
83.  Khan MS, Shahid M. Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites.  Electrochemical applications of metal-organic frameworks. Elsevier; 2022. p. 17-35.
84.  Kamal S, Khalid M, Khan MS, Shahid M, Ahmad M. Amine-and imine-functionalized Mn-based MOF as an unusual turn-on and turn-off sensor for d10 heavy metal ions and an efficient adsorbent to capture iodine. Crystal Growth Design. 2022;22(5):3277-94. https://doi.org/10.1021/acs.cgd.2c00092.
85.  Kamal S, Khalid M, Khan MS, Shahid M, Ahmad M. A Zinc (II) MOF for recognition of nitroaromatic explosive and Cr (III) ion. J. Solid State Chem. 2022;315:123482. doi: https://doi.org/10.1016/j.jssc.2022.123482.
86.  Iman K, Ahamad MN, Ansari A, Saleh HA, Khan MS, Ahmad M, et al. How to identify a smoker: a salient crystallographic approach to detect thiocyanate content. RSC adv. 2021;11(28):16881-91. https://doi.org/10.1039/D1RA01749G.
87.  MacGillivray LR. Metal-organic frameworks: design and application. John Wiley & Sons; 2010.
88.  Chaemchuen S, Kabir NA, Zhou K, Verpoort F. Metal–organic frameworks for upgrading biogas via CO2 adsorption to biogas green energy. Chem. Soc. Rev. 2013;42(24):9304-32. https://doi.org/10.1039/C3CS60244C.
89.  Chaikittisilp W, Ariga K, Yamauchi Y. A new family of carbon materials: synthesis of MOF-derived nanoporous carbons and their promising applications. J. Mater. Chem. A. 2013;1(1):14-9. https://doi.org/10.1039/C2TA00278G.
90.  Rosi NL, Kim J, Eddaoudi M, Chen B, O'Keeffe M, Yaghi OM. Rod packings and metal− organic frameworks constructed from rod-shaped secondary building units. J Am Chem Soc. 2005;127(5):1504-18. https://doi.org/10.1021/ja045123o.
91.  Khan MS, Khalid M, Shahid M. What triggers dye adsorption by metal organic frameworks? The current perspectives. Mater. Adv. 2020;1(6):1575-601. https://doi.org/10.1039/D0MA00291G.
92.  Kamal S, Khalid M, Khan MS, Shahid M. Metal organic frameworks and their composites as effective tools for sensing environmental hazards: An up to date tale of mechanism, current trends and future prospects. Coord Chem Rev. 2023;474:214859. https://doi.org/10.1016/j.ccr.2022.214859.
93.  Ahamad MN, Khan MS, Shahid M, Ahmad M. Metal organic frameworks decorated with free carboxylic acid groups: topology, metal capture and dye adsorption properties. Dalton Transactions. 2020;49(41):14690-705. https://doi.org/10.1039/D0DT02949A.
94.  Kamal S, Khalid M, Khan MS, Shahid M, Ahmad M. A bifunctionalised Pb-based MOF for iodine capture and dye removal. Dalton Transactions. 2023;52(14):4501-16. https://doi.org/10.1039/D3DT00237C.
95.  Deng Q, Liu X, Li Z, Fan H, Zhang Y, Yang HY. Cobalt-nickel bimetallic sulfide (NiS2/CoS2) based dual-carbon framework for super sodium ion storage. J Colloid Interfac Sci. 2023;633:480-8. https://doi.org/10.1016/j.jcis.2022.11.083.
96.  Yan D, Yang HY, Bai Y. Tactics to optimize conversion-type metal fluoride/sulfide/oxide cathodes toward advanced lithium metal batteries. Nano Res. 2023;16(6):8173-90. https://doi.org/10.1007/s12274-023-5427-7.
97.  Li TC, Lim Y, Li XL, Luo S, Lin C, Fang D, et al. A universal additive strategy to reshape electrolyte solvation structure toward reversible Zn storage. Adv Energy Mater. 2022;12(15):2103231. https://doi.org/10.1002/aenm.202103231.
98.  Khan MS, Leong ZY, Li D-S, Qiu J, Xu X, Yang HY. A mini review on metal–organic framework-based electrode materials for capacitive deionization. Nanoscale. 2023;15(39):15929-49. https://doi.org/10.1039/D3NR03993E.
99.  Gu Y, Wu Yn, Li L, Chen W, Li F, Kitagawa S. Controllable modular growth of hierarchical MOF‐on‐MOF architectures. Angewandte Chemie. 2017;129(49):15864-8. https://doi.org/10.1002/ange.201709738.
100. Yao MS, Xiu JW, Huang QQ, Li WH, Wu WW, Wu AQ, et al. Van der Waals Heterostructured MOF‐on‐MOF Thin Films: Cascading Functionality to Realize Advanced Chemiresistive Sensing. Angewandte Chemie. 2019;131(42):15057-61. https://doi.org/10.1002/ange.201907772.
101. Qiu X, Zhong W, Bai C, Li Y. Encapsulation of a metal–organic polyhedral in the pores of a metal–organic framework. J. Am. Chem. Soc. 2016;138(4):1138-41. https://doi.org/10.1021/jacs.5b12189.
102. Ji H, Lee S, Park J, Kim T, Choi S, Oh M. Improvement in crystallinity and porosity of poorly crystalline metal–organic frameworks (MOFs) through their induced growth on a well-crystalline MOF template. Inorg Chem. 2018;57(15):9048-54. https://doi.org/10.1021/acs.inorgchem.8b01055.
103. Luo T-Y, Liu C, Gan XY, Muldoon PF, Diemler NA, Millstone JE, Rosi NL. Multivariate stratified metal–organic frameworks: diversification using domain building blocks. J Am Chem Soc. 2019;141(5):2161-8. https://doi.org/10.1021/jacs.8b13502.
104. Liu C, Wang J, Wan J, Yu C. MOF-on-MOF hybrids: Synthesis and applications. Coord Chem Rev. 2021;432:213743. https://doi.org/10.1016/j.ccr.2020.213743.
105. Horcajada P, Surblé S, Serre C, Hong D-Y, Seo Y-K, Chang J-S, et al. Synthesis and catalytic properties of MIL-100 (Fe), an iron (III) carboxylate with large pores. Chem. Commun. 2007(27):2820-2. https://doi.org/10.1039/B704325B.
106. Nguyen DTC, Le HTN, Do TS, Pham VT, Lam Tran D, Ho VTT, et al. Metal‐Organic Framework MIL‐53 (Fe) as an Adsorbent for Ibuprofen Drug Removal from Aqueous Solutions: Response Surface Modeling and Optimization. J Chem. 2019;2019(1):5602957. https://doi.org/10.1155/2019/5602957.
107. Bezverkhyy I, Weber G, Bellat J-P. Degradation of fluoride-free MIL-100 (Fe) and MIL-53 (Fe) in water: Effect of temperature and pH. Micropor Mesopor Mater. 2016;219:117-24. https://doi.org/10.1016/j.micromeso.2015.07.037.
108. Huo S-H, Yan X-P. Metal–organic framework MIL-100 (Fe) for the adsorption of malachite green from aqueous solution. J Mater Chem. 2012;22(15):7449-55. https://doi.org/10.1039/C2JM16513A.
109. Shi J, Hei S, Liu H, Fu Y, Zhang F, Zhong Y, Zhu W. Synthesis of MIL‐100 (Fe) at Low Temperature and Atmospheric Pressure. J Chem. 2013;2013(1):792827. https://doi.org/10.1155/2013/792827.
110. Han L, Qi H, Zhang D, Ye G, Zhou W, Hou C, et al. A facile and green synthesis of MIL-100 (Fe) with high-yield and its catalytic performance. New J Chem. 2017;41(22):13504-9. https://doi.org/10.1039/C7NJ02975F.
111. Yuan B, Wang X, Zhou X, Xiao J, Li Z. Novel room-temperature synthesis of MIL-100 (Fe) and its excellent adsorption performances for separation of light hydrocarbons. Chem Eng J. 2019;355:679-86. https://doi.org/10.1016/j.cej.2018.08.201.
112. Yaghi OM, O'Keeffe M, Ockwig NW, Chae HK, Eddaoudi M, Kim J. Reticular synthesis and the design of new materials. Nature 2003;423(6941):705-14. https://doi.org/10.1038/nature01650.
113. Lee J, Farha OK, Roberts J, Scheidt KA, Nguyen ST, Hupp JT. Metal–organic framework materials as catalysts. Chem Soc Rev. 2009;38(5):1450-9. https://doi.org/10.1039/B807080F.
114. Zhou K, Chaemchuen S, Wu Z, Verpoort F. Rapid room temperature synthesis forming pillared metal-organic frameworks with Kagomé net topology. Micropor Mesopor Mater. 2017;239:28-33. https://doi.org/10.1039/D1NA00819F.
115. Chaemchuen S, Zhou K, Kabir NA, Chen Y, Ke X, Van Tendeloo G, Verpoort F. Tuning metal sites of DABCO MOF for gas purification at ambient conditions. Micropor Mesopor Mater. 2015;201:277-85. https://doi.org/10.1016/j.micromeso.2014.09.038.
116. Zhang Q, Li B, Chen L. First-principles study of microporous magnets M-MOF-74 (M= Ni, Co, Fe, Mn): the role of metal centers. Inorg Chem. 2013;52(16):9356-62. https://doi.org/10.1021/ic400927m.
117. Chaemchuem S, Kui Z, Verpoort F. Control of interpenetration via in situ lithium incorporation in MOFs and their gas adsorption properties and selectivity. CrystEngComm. 2016;18(39):7614-9. https://doi.org/10.1039/C6CE01522K.
118. Tranchemontagne DJ, Mendoza-Cortés JL, O’keeffe M, Yaghi OM. Secondary building units, nets and bonding in the chemistry of metal–organic frameworks. Chem. Soc. Rev. 2009;38(5):1257-83. https://doi.org/10.1039/B817735J.
119. Vuong G-T, Pham M-H, Do T-O. Synthesis and engineering porosity of a mixed metal Fe 2 Ni MIL-88B metal–organic framework. Dalton Transactions. 2013;42(2):550-7. https://doi.org/10.1039/C2DT32073H.
120. Jee B, Eisinger K, Gul-E-Noor F, Bertmer M, Hartmann M, Himsl D, Pöppl A. Continuous wave and pulsed electron spin resonance spectroscopy of paramagnetic framework cupric ions in the Zn (II) doped porous coordination polymer Cu3− x Zn x (btc) 2. J. Phys. Chem. C. 2010;114(39):16630-9. https://doi.org/10.1021/jp105955w.
121. Li Y-W, He K-H, Bu X-H. Bottom-up assembly of a porous MOF based on nanosized nonanuclear zinc precursors for highly selective gas adsorption. J Mater Chem. A. 2013;1(13):4186-9. https://doi.org/10.1039/C3TA01322G.
122. Lalonde M, Bury W, Karagiaridi O, Brown Z, Hupp JT, Farha OK. Transmetalation: routes to metal exchange within metal–organic frameworks. J Mater Chem. A. 2013;1(18):5453-68. https://doi.org/10.1039/C3TA10784A.
123. Zeng M-H, Wang B, Wang X-Y, Zhang W-X, Chen X-M, Gao S. Chiral magnetic metal-organic frameworks of dimetal subunits: magnetism tuning by mixed-metal compositions of the solid solutions. Inorg Chem. 2006;45(18):7069-76. https://doi.org/10.1021/ic060520g.
124. Guesh K, Caiuby CA, Mayoral Al, Díaz-García M, Díaz I, Sanchez-Sanchez M. Sustainable preparation of MIL-100 (Fe) and its photocatalytic behavior in the degradation of methyl orange in water. Crystal Growth & Design. 2017;17(4):1806-13. https://doi.org/10.1021/acs.cgd.6b01776.
125. Pan Y, Liu Y, Zeng G, Zhao L, Lai Z. Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system. Chem Commun. 2011;47(7):2071-3. https://doi.org/10.1039/C0CC05002D.
126. Liu N, Wang H, Weng C-H, Hwang C-C. Adsorption characteristics of Direct Red 23 azo dye onto powdered tourmaline. Arabian J Chem. 2018;11(8):1281-91. https://doi.org/10.1016/j.arabjc.2016.04.010.
127. Dinnebier RE, Billinge SJ. Powder diffraction: theory and practice. Royal society of chemistry; 2015.
128. Epp J. X-ray diffraction (XRD) techniques for materials characterization.  Materials characterization using nondestructive evaluation (NDE) methods. Elsevier; 2016. p. 81-124.
129. Ebnesajjad S. Surface and material characterization techniques.  Handbook of adhesives and surface preparation. Elsevier; 2011. 31-48.
130. Kumar A, Khandelwal M, Gupta SK, Kumar V, Rani R. Fourier transform infrared spectroscopy: Data interpretation and applications in structure elucidation and analysis of small molecules and nanostructures.  Data processing handbook for complex biological data sources. Elsevier; 2019. 77-96.
131. Jaleh B, Fakhri P. Infrared and Fourier transform infrared spectroscopy for nanofillers and their nanocomposites.  Spectroscopy of polymer nanocomposites. Elsevier; 2016. p. 112-29.
132. Mohamed MA, Jaafar J, Ismail A, Othman M, Rahman M. Fourier transform infrared (FTIR) spectroscopy.  Membrane characterization. Elsevier; 2017. p. 3-29.
133. Hanaor DA, Ghadiri M, Chrzanowski W, Gan Y. Scalable surface area characterization by electrokinetic analysis of complex anion adsorption. Langmuir. 2014;30(50):15143-52. https://doi.org/10.1021/la503581e.
134. Ratna D. Chapter 6—Characterization, performance evaluation and lifetime analysis of thermoset resin. Recent Advances and Applications of Thermoset Resins, 2nd ed; Ratna, D, Ed. 2022:503-82.
135. Oveisi M, Asli MA, Mahmoodi NM, MIL-Ti metal-organic frameworks (MOFs) nanomaterials as superior adsorbents: Synthesis and ultrasound-aided dye adsorption from multicomponent wastewater systems. J Hazard Mater. 2018;347:123-140. https://doi.org/10.1016/j.jhazmat.2017.12.057
136. Soroush, S, Mahmoodi, NM, Mohammadnezhad, B, Karimi, A, Activated carbon (AC)-Metal-organic framework (MOF) composite: Synthesis, characterization and dye removal. Korean J Chem Eng. 2020;39:2394-2404. https://doi.org/10.1007/s11814-022-1100-9
137. Rabeie B, Mahmoodi NM, Environmentally friendly novel covalent organic framework composites as porous photocatalysts and adsorbents for Tetracycline and dyes (Congo Red and Methylene Blue) removal: Green synthesis, kinetics, regeneration, and removal mechanisms. Appl Mater. Today 2025;6:102884. https://doi.org/10.1016/j.apmt.2025.102884
138. Ayar S, Tajik H, Mahmoodi NM, Fallah Moafi H, Rabeie B. Removal of malachite green dye from wastewater using metal-organic mold biocomposite (ZIF-67) and polymer (carboxymethyl cellulose). J Stud Color World. 2024;14(4):285-301. https://doi.org/10.30509/jscw.2024.167336.1197 [In Persian].
139. Hosseinabadi-Farahani Z, Hosseini-Monfared H, Mahmoodi NM, Graphene oxide nanosheet: preparation and dye removal from binary system colored wastewater. Desalin Water Treat. 2015;56: 2382-2394.
140. Mahmoodi NM, Mokhtari-Shourijeh Z, Modified poly (vinyl alcohol)-triethylenetetramine nanofiber by glutaraldehyde: preparation and dye removal ability from wastewater. Desalin Water Treat. 2016;57:20076-20083. https://doi.org/10.1080/19443994.2015.1109562
141. Bagheri A, Hoseinzadeh H, Hayati B, Mahmoodi NM, Mehraeen E, Post-synthetic functionalization of the metal-organic framework: Clean synthesis, pollutant removal, and antibacterial activity. J Environ Chem Eng. 2021;9:104590. https://doi.org/10.1016/j.jece.2020.104590.
142. Rabeie B, Mahmoodi NM. Heterogeneous MIL-88A on MIL-88B hybrid: A promising eco-friendly hybrid from green synthesis to dual application (Adsorption and photocatalysis) in tetracycline and dyes removal. J Colloid Interface Sci. 2024;654:495–522. https://doi.org/10.1016/j.jcis.2023.10.060.
143. Mahmoodi NM, Hosseinabadi‐Farahani Z, Chamani H, Dye adsorption from single and binary systems using NiO‐MnO2 nanocomposite and artificial neural network modeling. Environ Prog Sustain. 2017;36:111-119. https://doi.org/10.1002/ep.12452
144. Rabeie B, MXenes: From introduction of structure and synthesis to photocatalytic ability to degrade dyes and organic pollutants in water. J Stud Color World. 2025;15(1):91-114. https://doi.org. 10.30509/jscw.2025.167478.1222 [In Persian].
145. Mahmoodi NM, Maghsoodi A, Kinetics and isotherm of cationic dye removal from multicomponent system using the synthesized silica nanoparticle. Desalin. Water Treat. 2015;54:562-571. https://doi.org/10.1080/19443994.2014.880158
146. Oshani F, Kargari A, Norouzbeigi R, Mahmoodi NM, Role of Fabrication Parameters on Microstructure and Permeability of Geopolymer Microfilters. Chem. Eng. Res. Des. 2024;210;190-201. https://doi.org/10.1016/j.cherd.2024.08.009
147. Mahmoodi NM, Mokhtari-Shourijeh Z, Preparation of aminated nanoporous nanofiber by solvent casting/porogen leaching technique and dye adsorption modeling. J Taiwan Inst Chem Eng. 2016;65:378-389. https://doi.org/10.1016/j.jtice.2016.05.042
148. Mahmoodi NM, Bakhtiari M, Oveisi M, Mahmoodi B, Hayati B, Green synthesis of eco-friendly magnetic metal-organic framework nanocomposites (AlFum-graphene oxide) and pollutants (dye and pharmaceuticals) removal capacity from water. Mater. Chem. Phys. 2023;302:127720.https://doi.org/10.1016/j.matchemphys.2023.127720
149. Shokrgozar A, Seifpanahi-Shabani K, Mahmoodi B, Mahmoodi NM, Khorasheh F, Baghalha M, Synthesis of Ni-Co-CNT nanocomposite and evaluation of its photocatalytic dye (Reactive Red 120) degradation ability using response surface methodology. Desalin. Water Treat 2021;216:389-400. https://doi.org/10.5004/dwt.2021.26804
150. Ahmadi S, Mahmoodi B, Kazemini M, Mahmoodi NM, Photocatalytic degradation of dye (Reactive Red 198) and pharmaceutical (tetracycline) using MIL-53 (Fe) and MIL-100 (Fe): catalyst synthesis and pollutant degradation. Pigm Resin Technol. 2023;52:357-368. https://doi.org/10.1108/PRT-05-2022-0067
151. Rabeie B, Nasrollahi F. Exploring the photocatalytic efficacy of GQD/MIL101 nanocomposites for the degradation of malachite green under visible light irradiation. J Stud Color World. 2025;15(2): 191-209. https://doi.org.10.30509/jscw.2025
152. Crini G, Badot PM, Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: A review of recent literature. Prog Polym Sci. 2008;33:399-447. https://doi.org/10.1016/j.progpolymsci.2007.11.001
153. Mokhtari-Shourijeh Z, Mahmoodi NM, Novel electrospun metal-organic framework nanofibers (Nickel-Coated ZIF-67/Chitosan/Polyvinyl Alcohol) as efficient adsorbents: Isotherm, kinetic and thermodynamic. Surfaces and Interfaces 2025;72:107142. https://doi.org/10.1016/j.surfin.2025.107142
154. Shahmansoori M, Yaghmaei S, Mahmoodi NM, Green synthesis of chitosan-ZIF67 composite beads for efficient removal of Malachite Green and Tetracycline. Chem. Eng. Sci. 2025;304:121017. https://doi.org/10.1016/j.ces.2024.121017
155. Hasan Z, Jhung SH. Removal of hazardous organics from water using metal-organic frameworks (MOFs): Plausible mechanisms for selective adsorptions. J Hazard Mater. 2015;283:329-39. doi: https://doi.org/10.1016/j.jhazmat.2014.09.046.
156. Mahmoodi NM, Arami M. Modeling and sensitivity analysis of dyes adsorption onto natural adsorbent from colored textile wastewater. J Appl Polym Sci. 2008;109(6):4043-8. doi: https://doi.org/10.1002/app.28547.
157. Xie L, Liu D, Huang H, Yang Q, Zhong C. Efficient capture of nitrobenzene from waste water using metal–organic frameworks. Chem Eng. J. 2014;246:142-9. doi: https://doi.org/10.1016/j.cej.2014.02.070.
158. Zhao S, Li Y, Wang M, Chen B, Zhang Y, Sun Y, et al. The defects, physicochemical properties, and surface charge of MIL-88A (Al) crystal were regulated for highly efficient removal of anionic dyes: preparation, characterization, and adsorption mechanism. Langmuir. 2023;39(30):10611-24. doi: https://doi.org/10.1021/acs.langmuir.3c01207.
159. Zhong Y, Mu X, Cheang UK. High-performance and selective adsorption of ZIF-8/MIL-100 hybrids towards organic pollutants. Nanoscale advances. 2022;4(5):1431-44. doi: https://doi.org/10.1039/D1NA00819F.
160. Chu H, Wang C-C. MIL-100 (Fe)-based functional materials for water decontamination: A state of the art review. Progress in Natural Science: Materials International. 2023. doi: https://doi.org/10.1016/j.pnsc.2023.10.001.
161. Li J-R, Sculley J, Zhou H-C. Metal–organic frameworks for separations. Chemical reviews. 2012;112(2):869-932. doi: https://doi.org/10.1021/cr200190s.
162. Aris AZ, Hir ZAM, Razak MR. Metal-organic frameworks (MOFs) for the adsorptive removal of selected endocrine disrupting compounds (EDCs) from aqueous solution: A review. Applied Materials Today. 2020;21:100796. doi: https://doi.org/10.1016/j.apmt.2020.100796.
163. Gao Y, Liu K, Kang R, Xia J, Yu G, Deng S. A comparative study of rigid and flexible MOFs for the adsorption of pharmaceuticals: Kinetics, isotherms and mechanisms. J Hazard Mater. 2018;359:248-57. doi: https://doi.org/10.1016/j.jhazmat.2018.07.054.
164. Tan K, Nijem N, Gao Y, Zuluaga S, Li J, Thonhauser T, Chabal YJ. Water interactions in metal organic frameworks. Cryst Eng Comm. 2015;17(2):247-60. doi: https://doi.org/10.1039/C4CE01406E.
165. Mahmoodi NM, Taghizadeh M, Taghizadeh A. Ultrasound-assisted green synthesis and application of recyclable nanoporous chromium-based metal-organic framework. Korean J Chem Eng. 2019;36(2):287-98. https://doi.org/10.1007/s11814-018-0162-1.
166. Rezaei B, Rahmani F, Khamforoush M. Photocatalytic and kinetics studies of colored and agriculture wastewater treatment using bismuth oxybromide reinforced with a trace amount of metal-organic framework (zr) nanoparticles. J Stud Color World. 2025;15(3):281-295. https://doi.org.10.30509/jscw.2025.167497.1227 [In Persian].
167. Shiri M, Hosseinzadeh M, Javanshir Sh, Shiri S. Synthesis of MOF-5 / cellulose aerogel composite and investigation of its performance in removing methylene blue dye. J Stud Color World. 2024;14(3):193-203. https://doi.org/10.30509/ J Stud Color World..2024.167288.1188 [In Persian].
168. Alizadeh R, Tahmasebee F. Metal organic framework nanocomposite adsorbents with enzyme function to remove direct green 6 dye pollution. Stud Color World. 2024;14(1)45-55. https://dorl.net/dor/20.1001.1.22517278.1402.14.1.4.9 [In Persian].
169. Mokhtari-Shourijeh Z, Arjmand M, Mahmoodi NM, Gholipour-Kanani A, Synthesis of ZIF-67 in alcoholic solvents: morphology and adsorption properties for methylene blue. J Stud Color World. 2025;15(2):169-189. https://doi.org. 10.30509/jscw.2025.167461.1219 [In Persian].
170. Rabeie B, Mahmoodi NM, Fish scales-like magnetic covalent organic framework (COF) composite: Synthesis and photocatalytic tetracycline and dye degradation using LED visible light in water. Surf Interfac. 2025;72:107251. https://doi.org/10.1016/j.surfin.2025.107251
171. Meghdadian M, Mahmoodi NM, Dual-functional materials (catalysts and adsorbents) as innovative and sustainable pathways toward combined healthcare (antibacterial, antifungal, antiviral, antioxidant, and anticancer properties) and water pollution remediation. J Environ Chem Eng. 2025;13:117718. https://doi.org/10.1016/j.jece.2025.117718
172. Moyo S, Mahlangu OT, Vilakati GD, Mamba BB, Kock LAD, Gumbi NN, Nxumalo EN, MOF incorporated Polyethersulfone/Polylactic Acid ultrafiltration membranes for the catalytic removal of dyes via persulfate activation. Inorg Chem Commun. 2025;171:113634. https://doi.org/10.1016/j.inoche.2024.113634
173. Li K, Zhang X, Wang J, Guo L, Deng S, Xie T, Wang J, Zhu G, Hetero-metal MOF derivatives anchored on porous carbonized wood as photo-Fenton catalysts for ultrafast organic pollutant removal. J Photochem Photobiol A: Chem. 2026;470:116616. https://doi.org/10.1016/j.jphotochem.2025.116616
174. Chen N, Wang C, Wu D, Kong F, Wang S, Multifunctional MOFs-modified composite papers for antibacterial, UV resistance and dye selective removal. Ind Crops Prod. 2025;231:121160. https://doi.org/10.1016/j.indcrop.2025.121160
175. Wu X, Zhao J, Chen X, Gu Y, Luo X, Design of Zn-MOFs with rhombic channels via mixed-ligand approach for targeted removal of carcinogenic dyes BR9 and BV14. J. Mol. Struct. 2025;1348:143489. https://doi.org/10.1016/j.molstruc.2025.143489
176. Umar A, Alam S, Rehman N, Zahoor M, Ullah R, Ali EA, Umar MN, Synthesis of trimetallic; CuNiZn-BTC MOF for the removal of patent blue VF dye from aqueous solutions. Inorg Chem Commun. 2025;180:114942. https://doi.org/10.1016/j.inoche.2025.114942
177. Ragui P, Yadav A, Goyal S, Rani S, Goel VK, Sharma RK, Bimetallic MOFs for the effective removal of organic contaminants: Dyes and antibiotics. Colloids Surf C Environ Asp. 2025;3:100070. https://doi.org/10.1016/j.colsuc.2025.100070
178. Yin Z, Zhou T, Li Z, Deng Y, Xue M, Chen Y, Ou J, Xie Y, Luo Y, Xie C, Hong Z, A photocatalytic and superhydrophobic self-cleaning nanocellulose-based membrane based on Cu-MOF for highly efficient oil/water separation, the removal of dyes and anti-biofouling towards sewage remediation. Int J Biol Macromol. 2025;322:146499. https://doi.org/10.1016/j.ijbiomac.2025.146499
179. Liu Q, Yu H, Zeng F, Li X, Sun J, Li C, Lin H, Su Z, HKUST-1 modified ultrastability cellulose/chitosan composite aerogel for highly efficient removal of methylene blue.Carbohydr. Polym. 2021;255: 117402. https://doi.org/10.1016/j.carbpol.2020.117402
180. Ediati R, Aulia W, Nikmatin B A, Hidayat ARP, Fitriana UM, Muarifah C, Sulistiono DO, Martak F, Prasetyoko D, Chitosan/UiO-66 composites as high-performance adsorbents for the removal of methyl orange in aqueous solution. Mater. Today Chem. 2021;21:100533. https://doi.org/10.1016/j.mtchem.2021.100533
181. Kulsum U, Fansuri H, Santoso E, Kurniawati L, Hidayat ARP, Zulfa LL, Abdullah MAB, Ediati R., Room temperature synthesis of copper-modified ZIF-8/Chitosan for enhanced adsorptive removal of congo red. South African J Chem. Eng. 2024;49:86-98. 10.1016/j.sajce.2024.04.006
182. Ma Y, You D, Fang Y, Luo J, Pan Q, Liu Y, Wang F,  Yang W, Confined growth of MOF in chitosan matrix for removal of trace Pb(Ⅱ) from reclaimed water. Sep Purif Technol., 2022;294:121223. https://doi.org/10.1016/j.seppur.2022.121223
183. Wei Y, Zou R, Xia Y, Wang Z, Yang W, Luo J, Liu C, Enhanced arsenite adsorption from water by activated MOF embedded in macroporous chitosan bionanocomposite beads. Mater Today Chem. 2022;26:101091. https://doi.org/10.1016/j.mtchem.2022.101091
184. Liu L, Yang W, Gu D, Zhao X, Pan Q, In situ Preparation of Chitosan/ZIF-8 Composite Beads for Highly Efficient Removal of U(VI). Front Chem. 2019;7:607. https://doi.org/10.3389/fchem.2019.00607
185. Xu K, Bi Y, Wei Y, Li X, Liu YT, Lin YT, Wang CQ, Hu GX, Liu Q, Zhang Y, Facile in-situ growth of ZIF-67 nanoparticles and in-situ polymerization of polyacrylamide on chitosan aerogel spheres and their high-efficient adsorption of tetracycline. J. Solid State Chem. 2024;329:124442. https://doi.org/10.1016/j.jssc.2023.124442
186. Qu Y, Qin L, Liu X, Carbonized ZIF-8/chitosan biomass imprinted hybrid carbon aerogel for phenol selective removal from wastewater. Carbohydr Polym. 2023;300:120268. https://doi.org/10.1016/j.carbpol.2022.120268
187. Jin Y, Li Y, Du Q, Chen B, Chen K, Zhang Y, Wang M, Sun Y, Zhao S, Jing Z, Wang J, Pi X,  Wang YQ, Efficient adsorption of Congo red by MIL-53(Fe)/chitosan composite hydrogel spheres. Micropor Mesopor Mater. 2023;348:112404. https://doi.org/10.1016/j.micromeso.2022.112404
188. Niu C, Zhang N, Hu C, Zhang C, Zhang H, Xing Y, Preparation of a novel citric acid-crosslinked Zn-MOF/chitosan composite and application in adsorption of chromium(VI) and methyl orange from aqueous solution. Carbohydr Polym., 2021;258:117644. https://doi.org/10.1016/j.carbpol.2021.117644
189. Valadi FM, Shahsavari S, Akbarzadeh E, Gholami MR, Preparation of new MOF-808/chitosan composite for Cr(VI) adsorption from aqueous solution: Experimental and DFT study. Carbohydr. Polym. 2022;288:119383. https://doi.org/10.1016/j.carbpol.2022.119383
190. Wang Y, Wang K, Lin J, Xiao L, Wang X, The preparation of nano-MIL-101(Fe)@chitosan hybrid sponge and its rapid and efficient adsorption to anionic dyes.Int. J Biol Macromol. 2020;165:2684- 2684-2692. https://doi.org/10.1016/j.ijbiomac.2020.10.073
191. Liu L, Ma Y, Yang W, Chen C, Li M, Lin D, Pan Q, Reusable ZIF-8@chitosan sponge for the efficient and selective removal of congo red. New J Chem. 2020;44:15459. https://doi.org/10.1039/D0NJ02699A
192. Mahmoodi NM, Oveisi M, Taghizadeh A, Taghizadeh M, Synthesis of pearl necklace-like ZIF-8@chitosan/PVA nanofiber with synergistic effect for recycling aqueous dye removal. Carbohydr Polym., 2020;227:115364. https://doi.org/10.1016/j.carbpol.2019.115364
193. Yuan Z, Li F, Zhang X, Li MC, Chen Y, de Hoop CF, Qi J, Huang X, Bio-based adsorption foam composed of MOF and polyethyleneimine-modified cellulose for selective anionic dye removal. Environ Res. 2024;248:118263. https://doi.org/10.1016/j.envres.2024.118263
194. Dahlan I, Keat OH, Aziz HA, Hung YT, Synthesis and characterization of MOF-5 incorporated waste-derived siliceous materials for the removal of malachite green dye from aqueous solution. Sustain Chem Pharm. 2023;31:100954. https://doi.org/10.1016/j.scp.2022.100954
195. Liu Y, Yan A, Ding L, Wei J, Liu Y, Niu Y, Qu R, Simultaneous and ultrafast removal of anionic and cationic dyes from aqueous solution by Zr-based MOFs hybridized by attapulgite and adsorption performance research. Colloids Surf A: Physicochem Eng Asp. 2024;680:132643. https://doi.org/10.1016/j.colsurfa.2023.132643
196. Ghosh A, Das G, Green synthesis of Sn(II)-BDC MOF: Preferential and efficient adsorption of anionic dyes. Micropor. Mesopor. Mater. 2020;297:110039. https://doi.org/10.1016/j.micromeso.2020.110039
197. Gang SQ, Yan JW, Liu ZY, Yu JM, Du JL, An anionic In(III)-MOF for efficient adsorption of CO2 from CO2/N2 mixture and dye removal. Chem Eng Sci. 2024;283:119409. https://doi.org/10.1016/j.ces.2023.119409
198. Qasem KMA, Khan S, Chinnam S, Saleh HAM, Mantasha I, Zeeshan M, Manea YK, Shahid M, Sustainable fabrication of Co-MOF@CNT nano-composite for efficient adsorption and removal of organic dyes and selective sensing of Cr(VI) in aqueous phase. Mater Chem Phys. 2022;291:126748. https://doi.org/10.1016/j.matchemphys.2022.126748
199. Mbega AYS, Fotsop CG, Tchuifon DRT, Kouteu PAN, Feudjio FDS, Bopda A, Baigenzhenov O, Hosseini-Bandegharaei A, Unravelling the sorption mechanism of two organic dyes (Indigo Carmine and Orange II) onto Al-Fum MOF: Kinetic and isotherm scrutinization. Results Eng. 2025;27:106412. https://doi.org/10.1016/j.rineng.2025.106412
200. Zhao Y, Zhou H, Song M, Xu ZX, Sun Z, Xu Q, Chen Y, Liao X, Interface engineering of Ti-MOFs: Adsorption of anionic, cationic and neutral dyes in wastewater. J Mole Struct. 2023;1283:135268. https://doi.org/10.1016/j.molstruc.2023.135268
201. Yang M, Bai Q, Flower-like hierarchical Ni-Zn MOF microspheres: Efficient adsorbents for dye removal. Colloids Surf A Physicochem Eng Asp. 2019;582:123795. https://doi.org/10.1016/j.colsurfa.2019.123795
202. Liu S, Zheng LN, Dong SW, Sun YZ, Xue N, Qu X, Ding T, Selective adsorption and efficient separation of methylene blue dye in a water-stable nickel-based metal–organic framework. Sep Purif Technol. 2025;376:134057.https://doi.org/10.1016/j.seppur.2025.134057
203. Yang Q, Wang Y, Wang J, Liu F, Hu N, Pei H, Yang W, Li Z, Suo Y, Wang J, High effective adsorption/removal of illegal food dyes from contaminated aqueous solution by Zr-MOFs (UiO-67). Food Chem. 2018;254:241-248. https://doi.org/10.1016/j.foodchem.2018.02.011
204. Fan S, Guo H, Wang Y, Liu J, Selective adsorption of the cationic dye rhodamine-6G from aqueous solution by phosphotungstic acid@MOF-199 composites. J Indian Chem Soc. 2022;99:100579. https://doi.org/10.1016/j.jics.2022.100579