Application of Iron Oxide and Hydroxyapatite Nanoparticles in the Removal of Black B Dye from Water

Document Type : Research

Authors

1 Department of Soil Science and Engineering, Faculty of Agriculture, Malayer University, P. O. Code: 84621-65741, Malayer, Iran

2 Department of Soil Science and Engineering, Faculty of Agriculture, Malayer University, P. O. Code: 84621-65741, Malayer, Iran.

10.30509/jscw.2025.167564.1244

Abstract

This study investigated the adsorption efficiency of iron oxide and hydroxyapatite nanoparticles for the removal of the industrial dye Remazol Black B from aqueous solutions. Experiments were conducted under varying conditions of pH, temperature, contact time, and adsorbent dosage. Iron oxide nanoparticles achieved 78.50% removal efficiency at pH 3, 35 °C, and 180 minutes, while nano-hydroxyapatite showed 53.75% efficiency at 15 °C and 20 minutes. The adsorption processes for both followed the pseudo-second-order kinetic model and the Freundlich isotherm, indicating chemical adsorption and heterogeneous surface interactions. Thermodynamic analysis revealed spontaneous adsorption in both cases: endothermic for iron oxide and exothermic for hydroxyapatite. The adsorption capacities were 22.46 and 25.36 mg/g, respectively. These results confirmed the potential of these nano-adsorbents for dye removal and provided insights into their thermodynamic behavior and relative performance. Each adsorbent, depending on operational conditions, offers specific advantages and can serve as an effective material for removing anionic dyes from industrial wastewater, supporting the development of sustainable and efficient treatment systems

Keywords

Main Subjects


 
1.  Alavi M, Kamarasu P, McClements DJ, Moore MD. Metal and metal oxide-based antiviral nanoparticles: Properties, mechanisms of action, and applications. Adv Colloid Interface Sci. 2022;306:102726. https://doi. org/10.1016/j.cis.2022.102726.
2.  Lakshmi NJ, Sampathkumar V, Manoj S, Kulanthaivel P, Makhishasooravardhini G, Mahasivasri MV. Review on various technologies for treatment of textile wastewater. In: International Conference on Eco-friendly Fibers and Polymeric Materials. Singapore: Springer Nature Singapore; 2024. 379–405. https://doi.org/10.1007/978-981-97-7071-7.
3.  Lemessa F, Simane B, Seyoum A, Gebresenbet G. Assessment of the Impact of Industrial Wastewater on the Water Quality of Rivers around the Bole Lemi Industrial Park (BLIP), Ethiopia. Sustainability. 2023;15:4290.  https://doi.org/10.3390/su15054290.
4.  Liu Y, Chen J, Duan D, Zhang Z, Liu C, Cai W, et al. Environmental impacts and biological technologies toward sustainable treatment of textile dyeing wastewater: a review. Sustainability. 2024; 16(24):10867. https://doi.org/10.3390/su162410867.
5.  Singh VK, Sett A, Karmakar S. Waste to wealth: Facile activation of red mud waste and insights into industrial reactive dye removal from wastewater. Chem Eng J. 2024;481:148373. https://doi.org/10.1016/j.cej.2023. 148373.‏ 
6.  Patel D, Singh A, Ambati SR, Singh RS, Sonwani RK. An overview of recent advances in treatment of complex dye-containing wastewater and its techno-economic assessment. J Environ Manage. 2024; 370:122804. https://doi.org/10.1016/j.jenvman.2024.122804
7.  Kayani KF, Mohammed SJ, Mustafa MS, Aziz SB. Dyes and their toxicity: removal from wastewater using carbon dots/metal oxides as hybrid materials: a review. Mater Adv. 2025; 6:5391–5409. https://doi.org/ 10.1039/D5MA00572H.
8.  Jeevanantham S, Saravanan A, Hemavathy RV, Kumar PS, Yaashikaa PR, Yuvaraj D. Removal of toxic pollutants from water environment by phytoremediation: A survey on application and future prospects. Environ Technol Innov. 2019; 13:264–276.https://doi.org/10.1016/j.eti.2018.12.003.
9.  Gao X, Guo C, Hao J, Zhao Z, Long H, Li M. Adsorption of heavy metal ions by sodium alginate-based adsorbent—A review and new perspectives. Int J Biol Macromol. 2020; 164:4423–4434. https://doi.org/ 10.1016/j.ijbiomac.2020.09.221.
10. Aziz K, Raza N, Kanwal N, Khairy M, Ahmadi Y, Kim KH. Recent advances in nanomaterial-based adsorbents for removal of pharmaceutical pollutants from wastewater. Mater Horiz. 2025; 12:6043–6068. https://doi.org/10.1039/D5MH00627A
11. Yang Y, Li X, Wan C, Zhang Z, Cao W, Wang G, et al. A comprehensive review of cellulose nanomaterials for adsorption of wastewater pollutants: focus on dye and heavy metal Cr adsorption and oil/water separation. Collagen Leather. 2024;6(1):35. https://doi.org/ 10.1186/s42825-024-00179-1‏
12. Khelali A, Benmahdi F, Sahnoune D, Sami K, Hacıosmanoğlu GG, Akram S, et al. Removal of AG 25 dye from aqueous solutions and treatment of real tannery wastewater by reusable magnetic iron oxide nanoparticles loaded with pomegranate pomace extract. Environ Res. 2025;279(1):121744. https://doi.org/ 10.1016/j.envres.2025.121744
13. Aly ST, Saed A, Mahmoud A, Badr M, Garas SS, Yahya S, et al. Preparation of magnetite nanoparticles and their application in the removal of methylene blue dye from wastewater. Sci Rep. 2024;14(1):20100. https://doi .org/10.1038/s41598-024-69790-w
14. Bouzar B, Benzerzour M, Abriak NE. Innovative reuse of mineral waste for treatment of a contaminated soil by fluorine: synthesis of hydroxyapatite (HAP) and chemical performance assessments. Environ Sci Pollut Res. 2024;31(36):49267–49284. https://doi.org/10. 1007 s11356-024-34452-x
15. Feng Y, Yang J, Liu W, Yan Y, Wang Y. Hydroxyapatite as a passivator for safe wheat production and its impacts on soil microbial communities in a Cd-contaminated alkaline soil. J Hazard Mater. 2021;404:124005. https://doi.org/10. 1016/j.jhazmat.2020.124005
16. Giri SK, Das NN, Pradhan GC. Synthesis and characterization of magnetite nanoparticles using waste iron ore tailings for adsorptive removal of dyes from aqueous solution. Colloids Surf A Physicochem Eng Asp. 2011;389(1-3):43–49. https://doi.org/10.1016/j .colsurfa 2011.08.042
17. Sigma-Aldrich. Reactive Black 5 [Internet]. Darmstadt (Germany): Merck KGaA; [cited 2025 Jul 17]. Available from: https://www.sigmaaldrich.com/US/en/ product/sial/306452
18. He C, Han FS, Zhang JH, Zhang WX. The In₂SeS/gC₃N₄ heterostructure: a new two-dimensional material for photocatalytic water splitting. J Mater Chem C. 2020;8(20):6923–6930. https://doi.org/10.1039/D0TC 01545H.
19. Mahdavi S, Mosavi M, Toranjian A. The Efficiency of Congo red Dye Removal Using Inorganic Nano-Adsorbent Beidellite and Organic Graphene. J Color Sci Technol. 2024;18(3):235–252. https://doi.org/ 10.30509/jcst.2025.167405.1243 [In Persion].
20. Sangoremi A. Adsorption kinetic models and their applications: a critical review. Int J Res Sci Innov. 2025;XII:245–258. https://doi.org/10.51244/IJRSI. 2025.120500019
21. Benmessaoud A, Nibou D, Mekatel EH, Amokrane S. A comparative study of the linear and non-linear methods for determination of the optimum equilibrium isotherm for adsorption of Pb²⁺ ions onto Algerian treated clay. Iran J Chem Chem Eng. 2020;39(4):153–171. https://doi.org/10.30492/ijcce.2019.35116
22. Chakraborty AR, Toma FTZ, Alam K, Yousuf SB, Hossain KS. Influence of annealing temperature on Fe₂O₃ nanoparticles: synthesis optimization and structural, optical, morphological, and magnetic properties characterization for advanced technological applications. Heliyon.2024;10(21):e40000. https://doi. org/101016/j.heliyon.2024.e40000
23. Talbot D, Queiros Campos J, Checa-Fernandez BL, Marins JA, Lomenech C, Hurel C, et al. Adsorption of organic dyes on magnetic iron oxide nanoparticles. Part I: mechanisms and adsorption-induced nanoparticle agglomeration. ACS Omega. 2021;6(29):19086–19098. https://doi.org/10.1021/acsomega.1c02401
24. Mobarak MB, Chowdhury F, Ahmed S. Preparation and characterization of highly crystalline hydroxyapatite (HAp) from the scales of an anadromous fish (Tenualosa ilisha): a comparative study with the freshwater fish scale (Labeo rohita) derived HAp. RSC Adv. 2024;14(54):39874–39889. https://doi.org/ 10.1039/D4RA06662F
25. Pai S, Kini MS, Selvaraj R. A review on adsorptive removal of dyes from wastewater by hydroxyapatite nanocomposites. Environ Sci Pollut Res Int. 2021;28(10):11835–11849. https://doi.org/10.1007/ s11356-019-07319-9
26. Santoso UT, Abdullah A, Mujiyanti DR, Ariyani D, Waskito J. Room temperature synthesis of magnetite particles by an oil membrane layer-assisted reverse co-precipitation approach. Adv Mater Res. 2021;1162:41–46. https://doi.org/10.4028/www.scientific.net/AMR. 1162.41
27.  Garcia Zamarron DJ, Donohue-Cornejo A, Cuevas-González JC, Espinosa Cristobal LF, Reyes-López SY, Garibay Alvarado JA, et al. Polymer-based hydroxyapatite–silver composite resin with enhanced antibacterial activity for dental applications. Polymers. 2024;16(14):2017. https://doi.org/10.3390/polym1614 2017 
28. Wang N, Zhu L, Wang D, Wang M, Lin Z, Tang H. Sono-assisted preparation of highly-efficient peroxidase-like Fe₃O₄ magnetic nanoparticles for catalytic removal of organic pollutants with H₂O₂. Ultrason Sonochem. 2010;17(3):526–533. https://doi .org/10.1016/j.ultsonch.2009.11.010
29. Lara-Ochoa S, Ortega-Lara W, Guerrero-Beltrán CE. Hydroxyapatite nanoparticles in drug delivery: physicochemistry and applications. Pharmaceutics. 2021;13(10):1642.  https://doi.org/10.3390/ pharmaceutics13101642
30. Zhang J, Lin S, Han M, Su Q, Xia L, Hui Z. Adsorption properties of magnetic magnetite nanoparticle for coexistent Cr(VI) and Cu(II) in mixed solution. Water. 2020;12(2):446. https://doi.org/10.3390/w12020446.
31. Lawtae P, Tangsathitkulchai C. The use of high surface area mesoporous-activated carbon from longan seed biomass for increasing capacity and kinetics of methylene blue adsorption from aqueous solution. Molecules. 2021;26(21):6521. https://doi.org/10.3390/ molecules26216521
32. He Q, Qi J, Liu X, Zhang H, Wang Y, Wang W, et al. Carbon-in-silicate nanohybrid constructed by in situ confined conversion of organics in rectorite for complete removal of dye from water. Nanomaterials. 2023;13(19):2627. https://doi.org/10.3390/nano131926 27.
33. Wang W, Lu T, Chen Y, Tian G, Sharma VK, Zhu Y, et al. Mesoporous silicate/carbon composites derived from dye-loaded palygorskite clay waste for efficient removal of organic contaminants. Sci Total Environ. 2019;696:133955. https://doi.org/10.1016/j.scitotenv. 2019.133955.
34. Liu Q, Yang B, Zhang L, Huang R. Adsorption of an anionic azo dye by cross-linked chitosan/bentonite composite. Int J Biol Macromol. 2015;72:1129–1135. https://doi.org/10.1016/j.ijbiomac.2014.09.065.
35. Vimonses V, Jin B, Chow CW, Saint C. Enhancing removal efficiency of anionic dye by combination and calcination of clay materials and calcium hydroxide. J Hazard Mater. 2009;171(1–3):941–947. https://doi.org/ 10.1016/j.jhazmat.2009.06.067
36. Samat JH, Shahri NNM, Abdullah MA, Suhaimi NAA, Padmosoedarso KM, Kusrini E, et al. Adsorption of Acid Blue 25 on agricultural wastes: Efficiency, kinetics, mechanism, and regeneration. Air Soil Water Res. 2021;14:11786221211057496. https://doi.org/ 10.1177/11786221211057496.
37. El Ghanjaoui M, Soufi A, Kadmi Y, Barka N, Tounsadi H. Sustainable synthesized iron oxide nanoparticles as a highly efficient material for degradation of dyes: characterization and statistical optimization approach. Chemosphere. 2025;376:144266. https://doi.org/10. 1016/j.chemosphere.2025.144266.
38. Kim HJ, Han JW, Yu JH, Kwak J, Son C, Jun BM et al. Hydroxyapatite and magnetic hydroxyapatite biochar from pine nut husks for anionic azo dye adsorption: Performance and reusability assessment. Appl Surf Sci. 2025;707:163607. https://doi.org/10.1016/j.apsusc. 2025.163607.
39. Celebi M, Söğüt EG. High-efficiency removal of cationic dye and heavy metal ions from aqueous solution using amino-functionalized graphene oxide. Turk J Chem. 2022;46(5):1577–1593.  https://doi.org/10.3906/kim-2202-13.
40. Magdy A, Mostafa MR, Moustafa SA, Mohamed GG, Fouad OA. Kinetics and adsorption isotherms studies for the effective removal of Evans blue dye from an aqueous solution utilizing forsterite nanoparticles. Sci Rep. 2024;14(1):24392.  https://doi.org/10. 1038/ s41598-024-61710-2.
41. Kamranifar MO, Rezaei A, Taheri E, Mengelizadeh N, Pourzamani HR. The removal efficiency of Remazol Black B (RBB) textile dyes by chitosan adsorbent from aqueous solutions. J Rafsanjan Univ Med Sci. 2017;15(10):929–942. 
42. Cetina M, Mihovilović P, Pešić A, Vojnović B. Influence of ionic strength and temperature on the adsorption of Reactive Black 5 dye by activated carbon: kinetics, mechanisms and thermodynamics. Molecules. 2025;30(12):2593. https://doi.org/10.3390/molecules 30122593.
43. Khan S, Malik A. Degradation of Reactive Black 5 dye by a newly isolated bacterium Pseudomonas entomophila BS1. Can J Microbiol. 2016;62(3):220–232. https://doi.org/10.1139/cjm-2015-0632.
44. Zamri NII, Zulmajdi SLN, Daud NZA, Mahadi AH, Kusrini E, Usman A. Insight into the adsorption kinetics, mechanism, and thermodynamics of methylene blue from aqueous solution onto pectin-alginate-titania composite microparticles. SN Appl Sci. 2021;3:1–16.  https://doi.org/10.1007/s42452-021-04684-6.
45. Wang H, Liu W, Xin J, Zhao S, Jin Y, Lei H. Research progress in starch-based dye adsorbents. Curr Anal Chem. 2024;20(1):1–10. https://doi.org/10.2174/15 73411019666240225123456.
46. Khan A, Ju P, Han Z, Ni C. A comprehensive review on adsorptive removal of azo dyes using functional materials. AQUA-Water Infrastruct Ecosyst Soc. 2024;73(2):266–285. https://doi.org/10.2166/aqua. 2024.292.
47. Shao Y, Chen C, Wang X, Liu H. A novel hydroxyapatite/graphene oxide composite for efficient adsorption of Congo red dye. Chem Eng J. 2012;217:240–247. https://doi.org/10.1016/j.cej.2012. 01.100.
48. Nuñez N, Lima Jr E, Mansilla MV, Goya GF, Gallo-Cordova Á, del Puerto Morales M, Winkler EL. Effect of temperature and copper doping on the heterogeneous Fenton-like activity of CuxFe3−xO4 nanoparticles. Appl Surf Sci. 2024; 656:159655. https://doi.org/ 10.1016/j.apsusc.2024.159655
49. Dadras K, Ashrafi SD, Taghavi K, Jaafari J. Evaluating the efficiency of scallop shell/iron oxide(II) nanocomposite in removal of Direct red 81 dye from aqueous solutions: kinetic, isotherm and thermodynamic studies. Desalination Water Treat. 2023; 289:238–247. https://doi.org/10.5004/dwt. 2023.29374.
50. Ghaedi M, editor. Adsorption: Fundamental processes and applications. London: Academic Press; 2021.
51. Aksu Z, Akın AB. Comparison of Remazol Black B biosorptive properties of live and treated activated sludge. Chem Eng J. 2010;165(1):184–193. https://doi. org/10.1016/j.cej.2010.08.027
52. Elayazi L, Ellouzi I, Khairat A, El Hajjaji S, Mountacer H. Removal of blue levafix dye from aqueous solution by clays. J Mater Environ Sci. 2014;5:2030–2036. 
53. Soleimani H, Sharafi K, Parian JA, Jaafari J, Ebrahimzadeh G. Acidic modification of natural stone for Remazol Black B dye adsorption from aqueous solution—central composite design (CCD) and response surface methodology (RSM). Heliyon. 2023;9(4):e14743.https://doi.org/10.1016/j.heliyon.20 23.e14743
54. Ziapour AR, Sefidrooh M, Moadeli MR. Adsorption of Remazol Black B dye from aqueous solution using bagasse. Prog Color Colorants Coat. 2016;9(2):99–108. https://doi.org/10.30509/pccc.2016.75881.
55. Mazumder AZM I, Bikash CR, Rahman MA, Hossain MM. A comparative study for adsorptive removal of Remazol Red R and Remazol Black B from aqueous solution by ZnO. Dhaka Univ J Sci. 2018;66(2):121–127. https://doi.org/10.3329/dujs.v66i2.54555.
56. Topal Canbaz G. Fe₃O₄@Granite: a novel magnetic adsorbent for dye adsorption. Processes. 2023; 11(9):2681. https://doi.org/10.3390/pr11092681
57. Leal ANR, de Lima ADC, dos Anjos Azevedo MGFA, do Nascimento Santos DKD, Zaidan LEMC, de Lima VF, et al. Removal of Remazol Black B dye using bacterial cellulose as an adsorbent. Sci Plena. 2021;17(3):034201. https://doi.org/10.14808/sci.plena. 2021.034201
58. Lestari DY, Laksono EW, Ikhsan J, Rohaeti E. Modified natural zeolite as adsorbent for Remazol Black B dye: kinetics and equilibrium aspects. AIP Conf Proc. 2023;2556(1):040011. https://doi.org/10.1063/ 5.0137 966.