Investigation of Core-shell Polymer Structures with Application in Paint and Resin Industry

Document Type : Review paper

Authors

1 School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Tehran, Iran

2 Department of Resin and Additives, Institute for Color Science and Technology, P. O. Box: 16765-654, Tehran, Iran.

3 School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), P. O. Box: 16765-654, Tehran, Iran.

Abstract

Many studies have been conducted on the synthesis, properties, and application of core-shell polymeric nanostructures. In this review, organic-organic and organic-inorganic core-shell structures, along with their synthesis techniques, have been investigated. The processes of making these structures include multi-stage seeded polymerization (including emulsion, miniemulsion, Microemulsion, Pickering emulsion, etc.), co-precipitation, and sol-gel. Among them, the emulsion polymerization strategies are the most paramount. Core-shell polymers are hybrid composite particles that have at least two different components. There are also parameters such as the kind and quantity of initiators, glass transition temperature (Tg), and crosslinks Density (CLD), which affect the morphology of particles. Soft or stiff core or shell, glass transition temperature, type of inorganic nanoparticles, and nanoparticle modifier can lead to different efficiencies for this type of core-shell polymer structure.

Keywords

Main Subjects


1.   Ghosh Chaudhuri R, Paria S. Core/shell nanoparticles: Classes, properties, synthesis mechanisms, characterization, and applications. Chem Rev. 2012;112:2373–433. https://doi.org/10.1021/CR100449N.
2.   Chiozzi V, Rossi F. Inorganic-organic core/shell nanoparticles: Progress and applications. Nanoscale Adv. 2020;2:5090-5105. https://doi.org/10.1039/D0NA00411A.
3.   Ho KM, Li WY, Wong CH, Li P. Amphiphilic polymeric particles with core-shell nanostructures: Emulsion-based syntheses and potential applications. Colloid Polym Sci. 2010;288:1503–1523. https://doi.org/10.1007/S00396-010-2276-9.
4.   Ma J, Liu Y, Bao Y, Liu J, Zhang J. Research advances in polymer emulsion based on “core-shell” structure particle design (Internet). Adv Colloid Interface Sci. 2013;197–198:118–131. https://doi.org/10.1016/J.CIS.2013.04.006.
5.   Zou H, Zhai S. Synthetic strategies for raspberry-like polymer composite particles. Polym Chem. 2020;11:3370–3392. https://doi.org/10.1039/D0PY00394H.
6.   Ramli RA, Laftah WA, Hashim S. Core-shell polymers: A review. RSC Adv. 2013;3:15543–15565.
https://doi.org/10.1039/C3RA41296B.
7.   Mahdavi Z, Rezvani H, Keshavarz Moraveji M. Core-shell nanoparticles used in drug delivery-microfluidics: a review. RSC Adv. 2020;10:18280–18295.
https://doi.org/10.1039/D0RA01032D.
8.   Chruściel J, Ślusarski L. Synthesis of nanosilica by the sol-gel method and its activity toward polymers. Mater Sci Pol (Internet). 2003;21:461–469.
9.   Aboualigaledari N, Rahmani M. A review on the synthesis of the TiO2 -based photocatalyst for the environmental purification. J Compos Compd. 2021;3:25–42. https://doi.org/10.52547/JCC.3.1.4,
10.  Patel P (ed). Polymer blends. John Wiley & Sons; 2019.
11.  Chern CS. Principles and Applications of Emulsion Polymerization. Wiley; 2008.
12.  Kim Y, Kwon HJ, Kook JW, Park JJ, Lee C, Koh WG, et al. Wetting properties and morphological behavior of core-shell polymer-based nanoparticle coatings (Internet). Prog Org Coatings. 2022;163:106606.
https://doi.org/10.1016/J.PORGCOAT.2021.106606.
13.  Landfester K, Spiess HW. Characterization of interphases in core-shell latexes by solid-state NMR (Internet). Acta Polym. 1998;49:451–464.
https://doi.org/10.1002/(SICI)1521-4044(199809)49:9<451 ::AID-APOL451>3.0.CO;2-U.
14.Gui Y, Sun SL, Han Y, Zhang HX, Zhang BY. Influence of the rubber crosslinking density of a core–shell structure modifier on the properties of toughened poly (methyl methacrylate). J Appl Polym. Sci. 2010;115:2386-2393.
https://doi.org/10.1002/app.31176
15.   Jasinski F, Teo VL, Kuchel RP, Mballa MM, Thickett SC, Brinkhuis RHG, et al. Core–shell and gradient morphology polymer particles analyzed by X-ray photoelectron spectroscopy: Effect of monomer feed order. J Polym Sci Part A Polym Chem. 2017;55:2513–2526.
https://doi.org/10.1002/POLA.28644.
16.  Zhang X, Wei X, Yang W, Li Y, Chen H. Characterization and properties of gradient polyacrylate latex particles by gradient emulsion polymerization. J Coatings Technol Res. 2012;9:765–774.
https://doi.org/10.1007/S11998-012-9422-X
17.  Ma J, Dong Y, Bao Y, Zhao Y, Liu C. Tunable microstructure of polyacrylate/ZnO nanorods composite emulsion and its film-forming properties. Prog Org Coatings.  2019;135:382–391.
https://doi.org/10.1016/J.PORGCOAT.2019.05.044
18.  Tafreshinejad SA, Pishvaei M, Soleimani-Gorgani A. Synthesis of antibacterial conductive polypyrrole/titanium dioxide core–shell nanocomposites. Polym Sci - Ser B. 2020;62:137–143. https://doi.org/10.1134/S1560090420020074
19.  Mamaghani MY, Pishvaei M, Kaffashi B. Synthesis of latex based antibacterial acrylate polymer/nanosilver via in situ miniemulsion polymerization. Macromol Res. 2011;19:243–249. https://doi.org/10.1007/S13233-011-0307-0.
20.  Lv Y, Suo H, Zou H. An emulsion swelling route to surface-wrinkled polystyrene-silica colloidal nanocomposite particles. Polymer. 2022;254:125108. https://doi.org/10.1016/J.POLYMER.2022.125108.
21.  Zhang F, Jing C, Yan Z, Ge S, Liu P, Maganti S, et al. Fluorinated acrylic monomer modified core-shell polyacrylate latex particles: Preparation, properties and characterizations. Polymer. 2022;247:124783.
https://doi.org/10.1016/J.POLYMER.2022.124783.
22.  Christopher KR, Pal A, Mirchandani G, Dhar T. Synthesis and characterization of polystyrene-acrylate/polysiloxane (PSA/PSi) core shell polymers and evaluation of their properties for high durable exterior coatings. Prog Org Coat. 2014;77:1063-1068.
https://doi.org/10.1016/J.PORGCOAT.2014.03.008.
23.  Limousin E, Ballard N, Asua JM. Soft core–hard shell latex particles for mechanically strong VOC-free polymer films. J Appl Polym Sci. 2019;136:47608.
https://doi.org/10.1002/APP.47608.
24.  Meng Y, Gao Y, Li J, Liu J, Wang X, Yu F, et al. Preparation and characterization of cross-linked waterborne acrylic /PTFE composite coating with good hydrophobicity and anticorrosion properties. Colloids Surfaces A Physicochem Eng Asp. 2022;653:129872.
https://doi.org/10.1016/J.COLSURFA.2022.129872
25.  Khan AK, Ray BC, Dolui SK. Preparation of core-shell emulsion polymer and optimization of shell composition with respect to opacity of paint film (Internet). Prog Org Coat. 2008;62:65–70.
https://doi.org/10.1016/J.PORGCOAT.2007.09.022.
26.  Shaghaghi M, Yousefi A, Pishvaei M. Synthesis of artificial opals with core-shell morphology via emulsion polymerization technique. Polymers.  2012;1–4.
https://doi.org/10.1515/EPOLY.2012.12.1.217
27.  Pishvaei M, Tabrizi FF. Synthesis of high solid content polyacrylate/nanosilica latexes via miniemulsion polymerization (Internet). Iran Polym J (English Ed) (Internet). 2010;19:707–716.