A Review of the Effect of Different Structures and Morphologies of g-C3N4 on Its Performance in Dyes Removal

Document Type : Review paper

Authors

Department of Nanotechnology, Faculty of New Sciences and Technologies, Semnan University, P. O. Code: 35131- 19111, Semnan, Iran.

10.30509/jscw.2025.167430.1214

Abstract

Water pollution is becoming an unavoidable problem in today's world. Tons of dangerous pollutants are discharged into clean water every day. Pollutants in water have negative effects on the natural environment and human health and are also one of the causes of death in the world. In this regard, adsorbers and photocatalysts using nanotechnology, such as the use of organic, metallic, and non-metallic semiconductor photocatalysts, have attracted a lot of attention in the past few decades. The objective of this study is to examine the impact of various nanostructures of graphitic carbon nitride (g-C₃N₄), including nanosheets, nanotubes, and nanorods, on their performance, as well as the effectiveness of certain g-C₃N₄-based composites as adsorbents and photocatalysts in adsorption and photocatalytic processes for dye removal from wastewater. Based on previous research findings, the dye removal efficiency of g-C₃N₄ nanostructures is significantly enhanced compared to their bulk counterparts due to their higher porosity and surface area, stronger electrostatic interactions, and a greater number of active sites.

Keywords

Main Subjects


1. Chen Z, Zhang S, Liu Y, Alharbi NS, Rabah SO, Wang S, et al. Synthesis and fabrication of g-C3N4-based materials and their application in elimination of pollutants. Sci Total Environ. 2020;731:139054. https://doi.org/10.1016/j. scitot env.2020.139054.
2.  Lanjwani MF, Tuzen M, Khuhawar MY, Saleh TA. Trends in photocatalytic degradation of organic dye pollutants using nanoparticles: A review. Inorg Chem Commun. 2024;159: 111613. https://doi.org/10.1016/j.inoche.2023.111613.
3.  Sumethra R, Jayakumari T, Anuradha N, Ravichandran K, Varshini M, Ayyanar M, et al. Effect of nanocomposite partnering of g-C3N4 with Morinda pubescens leaf extract mediated Sr doped Ni/NiO on the photocatalytic dye detoxification: Confirmation by seed germination test. Diam Relat Mater. 2024;150: 111716. https://doi.org/10.1016/ j.diamond.2024.111716.
4.  Jalalian T, Keramati N, Fallah N. A review of reduced electron/hole recombination in coupled photocatalysts for dyes degradation. J Stud Color World. 2023;12(4): 293–314. https://dorl.net/dor/20.1001.1.22517278.1401.12.4.1.2 [In Persian].
5.  Gharagozlou M, Mohammadsadegh A. Smart nanocomposites of metal-organic framework (mof) and their applications in removing dye and environmental pollutants. J Stud. Color World. 2024;14(2): 87–101. https://dorl.net/dor/10.30509/jscw.2023.81974 [In Persian].
6.  Shiri M, Hosseinzadeh M, Javanshir S, Shiri S. Synthesis of MOF-5 / cellulose aerogel composite and investigation of its performance in removing methylene blue dye. J Stud Color World. 2024;14(3):193–203. https://doi.org/10.30509 /jscw.2024.167288.1188 [In Persian].
7.  Hosseinian Naeini A, Kalaee MR, Moradi O, Mahmoodi NM. Investigating factors affecting the removal of dyestuff from wastewater using different nanocomposites: a review Study. J Stud Color World. 2023;12(4):343–368. https://dorl.net/dor/20.1001.1.22517278.1401.12.4.4.5 [In Persian].
8.  Keerthana S, Yuvakkumar R, Ravi G, Kungumadevi L, Ravi Sankar V. Hydrothermal synthesis of CeVO4/g-C3N4 Z-scheme photocatalyst for removal of dyes under photocatalysis. Inorg Chem Commun. 2024;168:112928. https://doi.org/10.1016/j.inoche.2024.112928.
9.  Khezami L, Bessadok A, Ali Ben Aissa M, Ahmed AH, Modwi A, Benhamadi N, et al. Revolutionizing dye removal: g-C3N4-Modified ZnO nanocomposite for exceptional adsorption of basic fuchsin dye. Inorg Chem Commun. 2024;164: 112413. https://doi.org/10.1016/ j.inoche.2024.112413.
10.  Upadhyay GK, Purohit LP, Sharma H, Jain N, Sharma SK. Z-scheme based photoactive ZnO:TiO2:CdO:g-C3N4 nanocomposites for advance oxidation process. J Mol Struct. 2025;1319:139366. https://doi.org/10.1016/j. molstruc. 2024.139366.
11.  YarAhmadi G, Keramati N. Reduced electron/hole recombination in Z-scheme nanostructure of zeolitic imidazolate framework-11/graphitic carbon nitride as photocatalyst under visible light. Sci Rep. 2023;13(1): 22547. https://doi.org/10.1038/s41598-023-49315-7.
12.  Lakayan S, Baharlouei A, Jalilnejad E. Application of Agricultural Wastes as Natural Adsorbent for Removal of Industrial Dyes Graphical abstract. J Stud Color World. 2016;6(4): 27–43. https://doi.org/20.1001.1.22517278. 1395.6.4.4.3[In Persian].
13.  karimi  zahra, Allahverdi A, Oshani F. Investigation on the Removal of Dyes from Wastewater Using Alumina Composite Nano Adsorbent. J Stud Color World. 2020;10(2): 41–59. https://doi.org/20.1001.1.22517278. 1399.10.2.4.7[In Persian].
14.  Mortazavi Milani SH, Sabbagh Alvani AA, Salimi R, Sameie H. The Study of Methods for the Degradation of Organic Dyes by Photocatalytic Nanoparticles Using Plasmonic Property. J Stud Color World. 2019;9(2): 1–8. https://doi.org/20.1001.1.22517278.1398.9.2.2.8[In Persian].
15.  Farzaneh Kondori F, Badii K, Masoomi M. Study of Dyes Removal from Industrial Wastewaters by Nano Adsorbents. J. Stud. Color World. 2012;2(1): 1. https://doi.org/ https://dorl.net/dor/20.1001.1.22517278.1391.2.1.6.1[In Persian].
16.  Saadati F, Keramati N, Ghazi MM. Influence of parameters on the photocatalytic degradation of tetracycline in wastewater: A review. Crit Rev Environ Sci Technol. 2016;46(8):757–782. https://doi.org/ 10.1080/10643389. 2016.1159093.
17.  Hassan AE, Elewa AM, Hussien MSA, EL-Mahdy AFM, Mekhemer IMA, Yahia IS, et al. Designing of covalent organic framework/2D g-C3N4 heterostructure using a simple method for enhanced photocatalytic hydrogen production. J. Colloid Interface Sci. 2024;653: 1650–1661. https://doi.org/10.1016/j.jcis.2023.10.010.
18.  Farhadi H, Keramati N. Investigation of kinetics, isotherms, thermodynamics and photocatalytic regeneration of exfoliated graphitic carbon nitride/zeolite as dye adsorbent. Sci Rep. 2023;13(1): 14098. https://doi.org/10.1038/ s41598-023-41262-7.
19.  Al-Zawahreh K, Barral MT, Paradelo R. Overview of factors to take into account when selecting high-grade dye adsorbents. Environ. Technol. Rev. 2024;13(1): 597–613. https://doi.org/10.1080/21622515.2024.2404650.
20.  Sakkaki M, Arab SM. Non-catalytic applications of g-C3N4: A brief review. Synth Sinter. 2022;2(4): 176–180. https://doi.org/10.53063/synsint.2022.24126.
21.  Barveen NR, Parasuraman B, Wang PY, Zeng CW, Cheng YW, Thangavelu P. Facile construction of ZnWO4/g-C3N4 heterojunction for the improved photocatalytic degradation of MB, RhB and mixed dyes. 2024;53(2): 105039. https://doi.org/10.1016/j.surfin.2024.105039.
22.  Akram MY, Ashraf T, Tong L, Yin X, Dong H, Lu H. Architecting high-performance photocatalysts: A review of modified 2D/2D graphene/g-C3N4 heterostructures. J. Environ. Chem. Eng. 2024;12(5): 113415. https://doi.org/ 10.1016/j.jece.2024.113415.
23.  Baran NY, Çalışkan M, Kızılbulut N, Baran T. Pd@Na-CMC/g-C3N4: A nanostructured catalyst system based on sodium carboxymethyl cellulose/graphitic carbon nitride hydrogel beads and its performance in the treatment of organic and inorganic pollutants in water. Int. J. Biol. Macromol. 2024;276: 134001. https://doi.org/ 10.1016/j.ijbiomac.2024.134001.
24.  Zhang H, Zhang J, Chen W, Tao M, Meng X, Zhang Y, et al. Insight into structure evolution of carbon nitrides and its energy conversion as luminescence. 2024;6(2): 134001. https://doi.org/10.1002/cey2.463.
25.  Yurova VY, Potapenko KO, Aliev TA, Kozlova EA, Skorb E V. Optimization of g-C3N4 synthesis parameters based on machine learning to predict the efficiency of photocatalytic hydrogen production. Int J Hydrogen Energy. 2024;81: 193–203. https://doi.org/10.1016/j.ijhydene.2024.07.245.
26.  Khan MA, Mutahir S, Shaheen I, Qunhui Y, Bououdina M, Humayun M. Recent advances over the doped g-C3N4 in photocatalysis: A review. Coord. Chem. Rev. 2025;522: 216227. https://doi.org/10.1016/j.ccr.2024.216227.
27.  Joy J, George E, Poornima Vijayan P, Anas S, Thomas S. An overview of synthesis, morphology, and versatile applications of nanostructured graphitic carbon nitride (g-C3N4). J Ind Eng Chem. 2024;133: 74–89. https://doi.org/10.1016/j.jiec.2023.12.016.
28.  Gaddam SK, Pothu R, Boddula R. Graphitic carbon nitride (g‐C 3 N 4 ) reinforced polymer nanocomposite systems—A review. Polym. Compos. 2020;41(2): 430–442. https://doi.org/10.1002/pc.25410.
29.  Kumar R, Gokul S, Ran F, Sambasivam S, Alrashidi KA, Thangappan R. Green synthesis of g-C3N4 decorated with SnO2 nanocomposites using a novel Ananas comosus crown extract for boosted performance of asymmetric supercapacitors. J Energy Storage. 2024;98: 113231. https://doi.org/10.1016/j.est.2024.113231.
30.  Saman F, Se Ling CH, Ayub A, Rafeny NHB, Mahadi AH, Subagyo R, et al. Review on synthesis and modification of g-C3N4 for photocatalytic H2 production. Int. J. Hydrogen Energy. 2024;77: 1090–1116. https://doi.org/10.1016 /j.ijhydene.2024.06.212.
31.  Xiang-Xue W, Xing L, Jia-Qi W, Hong-Tao Z. Recent Advances in Carbon Nitride-Based Nanomaterials for the Removal of Heavy Metal Ions from Aqueous Solution. J Inorg Mater. 2019;35(3): 436. https://doi.org/10.15541 /jim20190436.
32.  Claudino CH, Scola Rodrigues B, Marinho Factori I, dos Santos de Souza J. Microwave Synthesis of (g‐C3N4 )−BiVO 4 : Selective Adsorption and Photocatalytic Activity Towards Dye Degradation. 2024;9(12): e202400076. https://doi.org/10.1002/slct.202400076.
33.  Ismael M. Construction of novel Ru-embedded bulk g-C3N4 photocatalysts toward efficient and sustainable photocatalytic hydrogen production. Diam Relat Mater. 2024;144: 111024. https://doi.org/10.1016/j.diamond. 2024.111024.
34.  Kalidasan K, Mallapur S, Munirathnam K, Nagarajaiah H, Reddy MBM, Kakarla RR, et al. Transition metals-doped g-C3N4 nanostructures as advanced photocatalysts for energy and environmental applications. Chemosphere. 2024;352: 141354. https://doi.org/10.1016/j.chemosphere.2024.14 1354.
35.  Dong Z, Yang T, Ullah I, Irshad N, Xue S. The influence of morphological changes on the physicochemical and optical properties of g-C3N4. Ceram Int. 2024;50(10): 17882–17889. https://doi.org/10.1016/j.ceramint.2024.02.276.
36.  Malebadi KA, Seheri NH, Ojelere O, Onwudiwe DC. ZnO nanoparticles modified with g-C3N4: Optical and structural properties. Mater. Sci Eng. B. 2024;310: 117676. https://doi.org/10.1016/j.mseb.2024.117676.
37.  Swathi S, Yuvakkumar R, Ravi G, Arunmetha S, Arun A, Velauthapillai D. Bayberry-like Cu3BiS3 with 2D layered nanosheets of rGO and g-C3N4 for effective electrochemical HER activity. Int J Hydrogen Energy. 2024;49: 295–308. https://doi.org/10.1016/j.ijhydene. 2023 .07.279.
38.  Drdanová AP, Krajčovičová TE, Gál M, Nemčeková K, Imreová Z, Ryba J, et al. Unveiling Versatile Applications and Toxicity Considerations of Graphitic Carbon Nitride. Int J Mol Sci. 2024;25(14): 7634. https://doi.org/ 10.3390 /ijms25147634.
39.  Huang J, Klahn M, Tian X, Dai X, Rabeah J, Aladin V, et al. Exfoliated Polymeric Carbon Nitride Nanosheets for Photocatalytic Applications. ACS Appl. Nano Mater. 2024;7(7): 7442–7452. https://doi.org/10.1021/ acsanm. 4c00133.
40.  Pei J, Li H, Zhuang S, Zhang D, Yu D. Recent Advances in g-C3N4 photocatalysts: a review of reaction parameters, structure design and exfoliation methods. Catalysts. 2023;13(11):1402. https://doi.org/10.3390/catal13111402.
41.  Michalska M, Pavlovsky J, Simha Martynkova G, Kratosova G, Hornok V, Nagy PB, et al. Comparative study of photocatalysis with bulk and nanosheet graphitic carbon nitrides enhanced with silver Sci Rep. 2024;14(1): 11512. https://doi.org/10.1038/s41598-024-62291-w.
42.  Zhao X, Yu J, Meng T, Luo Y, Fu Y, Li Z, et al. Modulation of the microstructure and enhancement of the photocatalytic performance of g-c3n4 by thermal exfoliation. Bull. Chem. React. Eng. Catal. 2024;19(3): 442–454. https://doi.org/ 10.9767/bcrec.20189.
43.  Jiang X, Li X, Liu Y, Zhai H, Wang G. The oxidative thermal exfoliation-dependent microstructure and photocatalytic performance of g-C3N4 nanosheets. Diam Relat Mater. 2024;143: 110918. https://doi.org/10.1016 /j.diamond.2024.110918.
44.  Chegeni M, Mousavi Z, Soleymani M, Dehdashtian S. Removal of aspirin from aqueous solutions using graphitic carbon nitride nanosheet: Theoretical and experimental studies. Diam Relat Mater. 2020;101: 107621. https://doi.org/10.1016/j.diamond.2019.107621.
45.  Ganesan S, Kokulnathan T, Sumathi S, Palaniappan A. Efficient photocatalytic degradation of textile dye pollutants using thermally exfoliated graphitic carbon nitride (TE–g–C3N4). Sci Rep. 2024;14(1): 2284. https://doi.org/ 10.1038/s41598-024-52688-y.
46.  Plaza J, Arencibia A, López-Muñoz MJ. Optimization of thermal exfoliation of graphitic carbon nitride for methylparaben photocatalytic degradation under simulated solar radiation. J Mater Chem. A. 2023;11(18): 9922–9930. https://doi.org/10.1039/D3TA01109G.
47.  Schiavo L, Cammarano A, Carotenuto G, Longo A, Palomba M, Nicolais L. An overview of the advanced nanomaterials science. Inorganica Chim. Acta. 2024;559: 121802. https://doi.org/10.1016/j.ica.2023.121802.
48.  Mahi K, Elassad Zemallach Ouari K, Mostefa R. Synthesis of nanoscale spinel aluminates powder and studies of their optical and structural properties. Phys Scr. 2024;99(9): 95982. https://doi.org/10.1088/1402-4896/ad6e37.
49.  Escorcia-Díaz D, García-Mora S, Rendón-Castrillón L, Ramírez-Carmona M, Ocampo-López C. Advancements in nanoparticle deposition techniques for diverse substrates: a review. 2023;13(18): 2586. https://doi.org/10.3390 /nano13182586.
50.  Altammar KA. A review on nanoparticles: characteristics, synthesis, applications, and challenges. Front Microbiol. 2023;14(18): 2586. https://doi.org/10.3389/fmicb.2023. 1155622.
51.  Kumari S, Raturi S, Kulshrestha S, Chauhan K, Dhingra S, András K, et al. A comprehensive review on various techniques used for synthesizing nanoparticles. J. Mater. Res. Technol. 2023;27: 1739–1763. https://doi.org/ 10.1016/j.jmrt.2023.09.291.
52.  Vijayaram S, Razafindralambo H, Sun YZ, Vasantharaj S, Ghafarifarsani H, Hoseinifar SH, et al. Applications of Green Synthesized Metal Nanoparticles- a Review. Biol Trace Elem Res. 2024;202(1):360–386. https://doi.org/ 10.1007/s12011-023-03645-9.
53.  Škriniarová J, Andok R, Kadlečíková M, Nevřela J. Problems concerning the demolding process of nano imprint lithography. In: AIP Conf. Proc. AIP Publishing; 2023. p. 30011. https://doi.org/10.1063/5.0136329.
54.  Kang H, Lee D, Yang Y, Kyo Oh D, Seong J, Kim J, et al. Emerging low-cost, large-scale photonic platforms with soft lithography and self-assembly. Photon Insight. 2023;2(2): R04. https://doi.org/10.3788/PI.2023.R04.
55.  Yang M, Schoop LM. Friends not foes: exfoliation of non-van der waals materials. Acc Chem. Res. 2024;57(17): 2490–2499. https://doi.org/10.1021/acs.accounts.4c00295.
56.  Vega MF, Olivas C, Díaz-Faes E, Barriocanal C. Evaluation of water splitting efficiency of g-C3N4 thermally etched/exfoliated under air and CO2 atmospheres. Catal Today. 2024;427: 114412. https://doi.org/10.1016/j. cattod.2023.114412.
57.  Rasool Z, Athar MS, Muneer M. Construction of flake ball-shaped Bi2WO6 embedded on phenyl functionalized g-C3N4 nanosheet for efficient degradation insight of colorless pollutants and its biological application. Environ Sci Pollut Res. 2024;31(21): 31259–31272. https://doi. org/10.1007/s11356-024-33294-x.
58.  Luo W, Chen X, Wei Z, Liu D, Yao W, Zhu Y. Three-dimensional network structure assembled by g-C3N4 nanorods for improving visible-light photocatalytic performance. Appl Catal B Environ. 2019;255: 117761. https://doi.org/10.1016/j.apcatb.2019.117761.
59.  Yan Y, Meng Q, Tian L, Cai Y, Zhang Y, Chen Y. Engineering of g-C3N4 for Photocatalytic Hydrogen Production: A Review. Int J Mol Sci. 2024;25(16): 8842. https://doi.org/10.3390/ijms25168842.
60.  Li DF, Huang WQ, Zou LR, Pan A, Huang GF. Mesoporous g-C 3 N 4 Nanosheets: Synthesis, Superior Adsorption Capacity and Photocatalytic Activity. J Nanosci Nanotechnol. 2018;18(8): 5502–5510. https://doi.org/ 10.1166/jnn.2018.15441.
61.  Cai X, He J, Chen L, Chen K, Li Y, Zhang K, et al. A 2D-g-C3N4 nanosheet as an eco-friendly adsorbent for various environmental pollutants in water. Chemosphere. 2017;171: 192–201. https://doi.org/10.1016/j.chemosphere.2016.12.073.
62.  Yousefi M, Villar-Rodil S, Paredes JI, Moshfegh AZ. Oxidized graphitic carbon nitride nanosheets as an effective adsorbent for organic dyes and tetracycline for water remediation. J. Alloys Compd. 2019;809: 151783. https://doi.org/10.1016/j.jallcom.2019.151783.
63.  Zhang P, Wang F, Qin Y, Wang N. Exfoliated Graphitic Carbon Nitride Nanosheets/Gold Nanoparticles/Spherical Montmorillonite Ternary Porous Heterostructures for the Degradation of Organic Dyes. ACS Appl. Nano Mater. 2020;3(8): 7847–7857. https://doi.org/10.1021/ acsanm. 0c01355.
64.  Miao J, Xu G, Liu J, Lv J, Wu Y. Synthesis and photocatalytic performance of g-C3N4 nanosheets via liquid phase stripping. J. Solid State Chem. 2017;246: 186–193. https://doi.org/10.1016/j.jssc.2016.11.028.
65.  Majidi M, Givianrad MH, Saber-Tehrani M, Azar PA. Synthesis of porous g-C3N4 nanosheets with carbon vacancies for photodegradation of direct red 227 and direct black 166 dyes in aqueous solutions. Diam Relat Mater. 2023;137: 110163. https://doi.org/10.1016/j.diamond. 2023.110163.
66.  Fareed I, Farooq M ul H, Khan MD, Yunas MF, Sandali Y, Ali Z, et al. Comprehensive investigations into the synergy of S-scheme heterojunction between nitrogen-doped ZnO nano-rods and g-C3N4 nanosheets for improved photocatalytic degradation. Mater Chem Phys. 2024;316: 129062. https://doi.org/10.1016/j.matchemphys.2024.129062.
67.  Maridevaru MC, Nagaveni M, Kumari MM, Shankar MV, Khraisheh M, Selvaraj R. Unravelling the efficiency of CoAl-LDH / g-C3N4 nanosheets: Type-II heterojunction for photocatalytic hydrogen production and dye degradation under solar light irradiation. Int J Hydrogen Energy. 2024;89: 1112–1125. https://doi.org/10.1016/j.ijhydene. 2024.09.286.
68.  Gupta SV, Kulkarni VV, Ahmaruzzaman M. ZIF-8 incorporated CeO2-CdS quantum dots @ 2D g-C3N4 nanosheets as a staggered type II heterojunction for decolouration of a set of dyes. J Environ Chem Eng. 2024;12(1): 111642. https://doi.org/10.1016/j.jece.2023. 111642.
69.  Harikrishnan L, Alwar K, Rajaram A. Structural and morphological studies of g-C3N4-functionalized MWCNTs nanocomposite for sunlight-responsive photocatalytic activity. 2024;54: 105238. https://doi.org/10.1016/j.surfin. 2024.105238.
70.  Gao H, Yao Z, Chen X, Zhu M, Zhao G, Zhang S, et al. Oxygen doping induced intramolecular electron acceptor system in red g-C3N4 nanosheets with remarkably enhanced photocatalytic performance. 2024; https://doi.org/10.1016 /j.chphma.2024.09.001.
71.  Surana M, Pattanayak DS, Singh VK, Pal D. g-C3N4 based Z-scheme photocatalysts for tetracycline degradation: A comprehensive review. J Hazard Mater Lett. 2024;5: 100116. https://doi.org/10.1016/j.hazl.2024.100116.
72.  Nguyen TB, Sherpa K, Chen CW, Chen L, Thao Ho PN, Dong CD. Enhancing photocatalytic reduction of Cr(VI) in water through morphological manipulation of g-C3N4 photocatalysts: A comparative study of 1D, 2D, and 3D structures. Chemosphere. 2024;362: 142787. https://doi.org/ 10.1016/j.chemosphere.2024.142787.
73.  Shanmugam P, Gopalakrishnan M, Smith SM, Luengnaruemitchai A, Kheawhom S, Boonyuen S. Enhanced photocatalytic performance of magnetically reclaimable N-doped g-C3N4/Fe3O4 nanocomposites for efficient tetracycline degradation. Nano-Struct Nano-Objects. 2024;40: 101392. https://doi.org/10.1016/ j.nanoso. 2024.101392.
74.  Nabi G, Malik N, Tahir MB, Tanveer M, Rafique R, Rehman S, et al. Synthesis of g-C3N4 nanorods for visible-light photocatalytic degradation of methylene blue, methylene orange and rhodamine-B. Int J Environ Anal Chem. 2022;102(19): 8503–8518. https://doi.org/10. 1080/03067319.2020.1849666.
75.  Vijayarangan R, Mohan S, Selvaraj M, Assiri MA, Ilangovan R. Surface-engineered anisotropic g-C3N4 photocatalysts via green-exfoliation for visible light-driven water remediation. Surf Interfaces. 2024;44: 103782. https://doi.org/10.1016/j.surfin.2023.103782.
76.  Wang J, Ren P, Zhao X, Chen Z, Jin Y, Zhang Z. Acid-alkali assisted synthesis of white tremella-like g-C3N4 homojunction for photocatalytic degradation under visible light. Mater Res Bull. 2024;171: 112619. https://doi.org/10.1016/j.materresbull.2023.112619.
77.  Li S, Peng Y, Hu C, Chen Z. Self-assembled synthesis of benzene-ring-grafted g-C3N4 nanotubes for enhanced photocatalytic H2 evolution. Appl. Catal. B Environ. 2020;279: 119401. https://doi.org/10.1016/j.apcatb. 2020. 119401.
78.  He X, Wang L, Sun S, Guo X, Tian H, Xia Z, et al. Photodeposition synthesis of hollow g-C3N4/Ag nanotubes with high oxidation properties to enhance visible-light photocatalytic performance. Mater Res Bull. 2024;172: 112658. https://doi.org/10.1016/j.materresbull.2023. 112 658.
79.  Hemmati-Eslamlu P, Habibi-Yangjeh A, Asadzadeh-Khaneghah S, Chand H, Krishnan V. Integration g-C3N4 nanotubes and Sb2MoO6 nanoparticles: Impressive photoactivity for tetracycline degradation, Cr (VI) reduction, and organic dyes removals under visible light. Adv Powder Technol. 2021;32(7): 2322–2335. https://doi. org/ 10.1016/j.apt.2021.05.007.
80.  Jiang Z, Zhang X, Chen H, Hu X, Yang P. Formation of g‐C 3 N 4 Nanotubes towards Superior Photocatalysis Performance. Chem Cat Chem. 2019;11(18): 4558–4567. https://doi.org/10.1002/cctc.201901038.
81.  Chong B, Chen L, Han D, Wang L, Feng L, Li Q, et al. CdS-modified one-dimensional g-C3N4 porous nanotubes for efficient visible-light photocatalytic conversion. Chinese J Catal. 2019;40(6): 959–968. https://doi.org/10.1016/S1872-2067(19)63355-3.
82.  Li H, Zang L, Shen F, Wang L, Sun L, Yuan F. Tubular g-C 3 N 4 /carbon framework for high-efficiency photocatalytic degradation of methylene blue. RSC Adv. 2021;11(30): 18519–18524. https://doi.org/10.1039/D1RA02918E.
83.  Xie J, Wu C, Xu Z, Tian C, Li M, Huang J. Novel AgCl/g-C3N4 heterostructure nanotube: Ultrasonic synthesis, characterization, and photocatalytic activity. Mater Lett. 2019;234: 179–182. https://doi.org/10.1016/j.matlet. 2018. 09.089.
84.           Habibi Lisar S, Karimi G. Synthesis of novel maghemite (γ-Fe2O3)-decorated g-C3N4 nano-tubes (g-C3N4 NTs/γ-Fe2O3) photocatalytic nano-composite for ultrafast degradation of organics in wastewater: Insight into the mechanism of photoexcited charge separation. Appl Surf Sci Adv. 2023;18:100515. https://doi.org/10.1016/j.apsadv. 2023.100515.