چاپ زیستی سه بعدی و جوهرهای زیستی طبیعی مورد استفاده: مفاهیم و کاربردها

نوع مقاله : مقاله مروری

نویسندگان

1 دانشجوی دکترا، گروه پژوهشی علوم و فناوری چاپ، پژوهشگاه رنگ

2 دانشیار، گروه پژوهشی علوم و فناوری چاپ، پژوهشگاه رنگ

3 استادیار، دانشکده مهندسی شیمی و نفت، دانشگاه صنعتی شریف

چکیده

در حال حاضر، چاپ زیستی سه‌بعدی به عنوان یک روش ساخت افزایشی برای تولید سازه‌های سه‌بعدی با هندسه‌ی دلخواه، به طور گسترده در کاربردهای مهندسی بافت و غربالگری دارو به کار گرفته می‌شود. چاپ زیستی سه‌بعدی ساخت بافت‌های زنده را با استفاده از چاپ تجمعات سلولی و یا سلول‌های گنجانده شده در زیست مواد ممکن می‌سازد که به تمامی آن‌ها جوهر زیستی گفته می‌شود. مطالعات روی تهیه جوهرهای زیستی نوین با قابلیت چاپ مناسب، زیست‌سازگاری بالا و خواص مکانیکی مشابه بافت هدف پیش‌شرطی اساسی به منظور پیشبرد کاربرد چاپ زیستی در طب ترمیمی است. تنها دسته‌ای از مواد که توانایی فراهم کردن محیطی مشابه بدن انسان را داشته و سلول‌ها توانایی زنده ماندن حین فرآیند گنجانده شدن درون آن‌ها دارند، هیدروژل‌ها هستند. از میان دو دسته‌ی هیدروژل‌های طبیعی و سنتزی بکارگرفته شده به عنوان جوهرهای زیستی، مواد طبیعی به‌دلیل زیست‌سازگاری بهتر، خطر رد ایمنی کمتر، مشابهت بیشتر به بافت‌های بدن و همچنین امکان اصلاح در آزمایشگاه و ترکیب با سایر مواد به منظور بهینه‌سازی خواص، کاربرد بسیار گسترده‌تری را نسبت به جوهرهای زیستی سنتزی پیدا کرده‌اند. در این مقاله، ابتدا مروری بر فناوری چاپ زیستی سه‌بعدی و انواع روش‌های تهیه، اعمال و کاربرد آن ارائه شده است. سپس، زیست‌مواد بکار رفته به عنوان جوهرهای زیستی و سازوکارهای شبکه‌ای شدن آن‌ها بررسی می‌شود. در انتها نیز خلاصه‌ای از مطالعات صورت گرفته روی برخی از پرکاربردترین جوهرهای زیستی طبیعی (شامل: کلاژن، ژلاتین، ابریشم، آلژینات، اسید هیالورونیک، کیتوسان و بستر خارج سلولی) گزارش شده است. نتایج تحقیقات نشان می‌دهد که بازساخت اعضای بدن با استفاده از چاپ زیستی نیازمند قرارگیری دقیق سلول‌های مشخص، مواد و عوامل زیست‌فعال به منظور القای تشکیل بافت عملکردی است. برآوردن این نیازها برای بافت‌های پیچیده‌تر، لزوم تهیه جوهرهای زیستی مختص بافت با خواص زیستی و مکانیکی قابل تنظیم را پررنگ‌تر می‌کند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

3D Bioprinting and Natural Bioinks: Principles and Applications

نویسندگان [English]

  • Amirhossein Jalali Kandeloos 1
  • Saeed Bastani 2
  • Shohreh Mashayekhan 3
1 Department of Printing Science and Technology, Institute for Color and Technology
2 Department of Printing Science and Technology, Institute for Color and Technology
3 Department of Chemical & Petroleum Engineering, Sharif University of Technology
چکیده [English]

Currently, 3D bioprinting as an additive manufacturing technique for building 3D constructs with desired geometries is broadly employed in tissue engineering and drug screening applications. Bioprinting enables the fabrication of living tissues using cell aggregates or cells encapsulated in biomaterials—all of which can be referred to as bioink. Research on novel bioinks with appropriate printability, biocompatibility, and mechanical properties akin to the target tissue is an essential prerequisite toward advancing 3D bioprinting applications in regenerative medicine. The only class of materials capable of providing an environment similar to the human body and maintaining cell viability during encapsulation is hydrogels. Among the two categories of natural and synthetic hydrogels employed as bioinks, natural materials are much more widely used than synthetic ones due to their better biocompatibility, lower risk of immune rejection, more similarity to native tissues, and the possibility of laboratory modification and combination with other materials to obtain optimal properties. In this article, first, a review of 3D bioprinting technology and its defined modalities is presented. Next, bioink biomaterials and their cross-linking mechanism are discussed. Finally, a summary of studies on some of the most widely used natural bioinks (including collagen, gelatin, silk, alginate, hyaluronic acid, chitosan and extracellular matrix) is reported. Research results indicate that recreating organs using 3D bioprinting necessitates precise placement of specific cells, materials, and bioactive factors to induce functional tissue formation. Attempting to meet these requirements for more complex tissues highlights the need for more tissue-specific, biologically and mechanically tunable bioinks.

کلیدواژه‌ها [English]

  • 3D bioprinting
  • Bioink
  • Natural hydrogels
  • Photo-polymerization
  • Tissue engineering
  1. 1.T. D. Ngo, A. Kashani, G. Imbalzano, K. T. Q. Nguyen, D. Hui, "Additive manufacturing (3D printing): A review of materials, methods, applications and challenges", Compos. Part B Eng. 143, 172–196, 2018.
  2. 2. P. Rastogi, B. Kandasubramanian, "Review of alginate-based hydrogel bioprinting for application in tissue engineering, Biofabrication". 11,  Doi: 10.1088/1758-5090/ab331e, 2019.
  3. 3.R. Yadav, R. Goud, A. Dutta, X. Wang, M. Naebe, B. Kandasubramanian, "Biomimicking of Hierarchal Molluscan Shell Structure Via Layer by Layer 3D Printing", Ind. Eng. Chem. Res. 57, 10832–10840, 2018.
  4. 4.D. Sandeep, "Comparison and analysis of different 3d printing techniques", Int. J. Latest Trends Eng. Technol. 8, 264-272, 2017.
  5. 5.S. Gharde, A. Surendren, J.M. Korde, S. Saini, N. Deoray, R. Goud, S. Nimje, B. Kandasubramanian, "Recent advances in additive manufacturing of bio-inspired materials, in: Biomanufacturing, Springer International Publishing", 35–68, 2019.
  6. 6. P. Admane, A.C. Gupta, P. Jois, S. Roy, C. Chandrasekharan Lakshmanan, G. Kalsi, B. Bandyopadhyay, S. Ghosh, "Direct 3D bioprinted full-thickness skin constructs recapitulate regulatory signaling pathways and physiology of human skin", Bioprint. 15, Doi: 10.1016/j.bprint.2019.e00051, 2019.
  7. 7. R.J. Klebe, "Cytoscribing: A method for micropositioning cells and the construction of two- and three-dimensional synthetic tissues", Exp. Cell Res. 179, 362–373, 1988.
  8. 8. S. V. Murphy, A. Atala, "3D bioprinting of tissues and organs", Nat. Biotechnol. 32, 773–785, 2014.
  9. 9. T. Boland, V. Mironov, A. Gutowska, E.A. Roth, R.R. Markwald, "Cell and organ printing 2: Fusion of cell aggregates in three-dimensional gels", Anat. Rec. A. Discov. Mol. Cell. Evol. Biol. 272, 497–502, 2003.

10.N. E. Fedorovich, J. Alblas, J. R. De Wijn, W. E. Hennink, A. B. J. Verbout, W. J. A. Dhert, "Hydrogels as extracellular matrices for skeletal tissue engineering: State-of-the-art and novel application in organ printing", Tissue Eng. 13, 1905–1925, 2007.

11. A. Khademhosseini, G. Camci-Unal, "3D Bioprinting in Regenerative Engineering: Principles and Applications", CRC Press, 2018.

12. K. Jakab, A. Neagu, V. Mironov, R.R. Markwald, G. Forgacs, "Engineering biological structures of prescribed shaped using self-assembling multicellular systems", Proc. Natl. Acad. Sci. U. S. A. 101, 2864–2869, 2004.

13. W.E. Block, R. Whitehead, "Human Organ Transplantation: Economic and Legal Issues, in: Palgrave Macmillan", Springer International Publishing, 353–371, 2019.

14.Organ Donation Statistics |Organ Donor, https:// www.organdonor .gov/statistics-stories/statistics.html.

15.OPTN: Organ Procurement and Transplantation Network - OPTN, https://optn.transplant.hrsa.gov.

16.M. Ponec, "Skin constructs for replacement of skin tissues for in vitro testing", Adv. Drug Deliv. Rev. 19–30, 2002.

17. K. W. Binder, A. J. Allen, J. J. Yoo, A. Atala, "Drop-on-demand inkjet bioprinting: A primer", Gene Ther. Regul. 6, 33–49, 2011.

18.آ. سلیمانی گرگانی, مروری بر انواع هدهای چاپگر جوهرافشان پیزوالکتریک، نشریه علمی مطالعات در دنیای رنگ. 9، 42-31، 2019.

19. د. عوض نژاد فرد, م. خطیب زاده, س. گرجی کندی، "کنترل تشکیل قطره در چاپ جوهر‌‌‌افشان با استفاده از تنظیم خواص فیزیکی مرکب چاپ و بررسی تاثیر اعداد بدون بعد در قابلیت چاپ"، نشریه علمی مطالعات در دنیای رنگ، 8، 26-15،2018

20.B. Derby, "Bioprinting: inkjet printing proteins and hybrid cell-containing materials and structures", J. Mater. Chem. 18, 5717–5721, 2008.

21.R.E. Saunders, B. Derby, "Inkjet printing biomaterials for tissue engineering: Bioprinting", Int. Mater. Rev. 59, 430–448, 2014.

22.F. Pati, J. Jang, J.W. Lee, D. W. Cho, "Extrusion bioprinting", Essentials 3D Biofabrication Transl, Elsevier Inc. 123–152, 2015.

23.R. Raman, R. Bashir, "Stereolithographic 3D bioprinting for biomedical applications", Essentials 3D Biofabrication Transl, Elsevier Inc. 89–121, 2015.

24.B. Dhariwala, E. Hunt, T. Boland, "Rapid prototyping of tissue-engineering constructs, using photopolymerizable hydrogels and stereolithography", Tissue Eng. 10, 1316–1322 , 2004.

25.C. Mézel, A. Souquet, L. Hallo, F. Guillemot, "Bioprinting by laser-induced forward transfer for tissue engineering applications: jet formation modeling", Biofabrication. 2, 2010.

26.K. Y. Lee, D. J. Mooney, "Hydrogels for tissue engineering", Chem. Rev. 101, 1869–1879, 2001.

27.J. Malda, J. Visser, F. P. Melchels, T. Jüngst, W. E. Hennink, W. J. A. Dhert, J. Groll, D.W. Hutmacher, "25th Anniversary Article: Engineering Hydrogels for Biofabrication", Adv. Mater. 25, 5011–5028, 2013.

28.M. Hospodiuk, M. Dey, D. Sosnoski, I. T. Ozbolat, "The bioink: A comprehensive review on bioprintable materials", Biotechnol. Adv. 35, 217–239, 2017.

29.D. Chimene, K.K. Lennox, R.R. Kaunas, A.K. Gaharwar, "Advanced Bioinks for 3D Printing: A Materials Science Perspective", Ann. Biomed. Eng. 44, 2090–2102, 2016.

30.A.K. Gaharwar, N.A. Peppas, A. Khademhosseini, "Nanocomposite hydrogels for biomedical applications", Biotechnol. Bioeng. 111, 441–453, 2014.

31.E.A. Appel, J. Del Barrio, X.J. Loh, O.A. Scherman, "Supramolecular polymeric hydrogels", Chem. Soc. Rev. 41, 6195–6214, 2012.

32.Y. L. Chiu, S. C. Chen, C. J. Su, C.W. Hsiao, Y. M. Chen, H. L. Chen, H. W. Sung, "pH-triggered injectable hydrogels prepared from aqueous N-palmitoyl chitosan: In vitro characteristics and in vivo biocompatibility", Bio Mater. 30, 4877–4888, 2009.

33.X. Ding, J. Janjanam, A. Tiwari, M. Thompson, "P. A. Heiden, Peptide-directed self-assembly of functionalized polymeric nanoparticles part I: Design and self-assembly of peptide-copolymer conjugates into nanoparticle fibers and 3D scaffolds", Macromol. Biosci. 14, 853–871, 2014.

34. S. Vijayavenkataraman, W.F. Lu, J.Y.H. Fuh, "3D bioprinting of skin: A state-of-the-art review on modelling", materials, and processes, Biofabrication. 8, Doi: 10.1088/1758-5090/ 8/3/ 03 2001, 2016.

35.A. G. Tabriz, M.A. Hermida, N.R. Leslie, W. Shu, "Three-dimensional bioprinting of complex cell laden alginate hydrogel structures", Biofabrication. 7, 10.1088/1758-5090/7/4/045012,  2015.

36.R. F. Pereira, A. Sousa, C.C. Barrias, P.J. Bártolo, P.L. Granja, "A single-component hydrogel bioink for bioprinting of bioengineered 3D constructs for dermal tissue engineering", Mater. Horizons. 5, 1100–1111, 2018.

37.F.E. Freeman, D.J. Kelly, "Tuning alginate bioink stiffness and composition for controlled growth factor delivery and to spatially direct MSC Fate within bioprinted tissues", Sci. Rep. 7, 1–12, 2017.

38.A. Schwab, R. Levato, M. D’Este, S. Piluso, D. Eglin, J. Malda, "Printability and Shape Fidelity of Bioinks in 3D Bioprinting", Chem. Rev. 120, 11028–11055, 2020.

39.س. عبداللهی باغبان, مروری بر الیگومرها و مونومرهای تجدیدپذیر جهت تهیه پوشش‌های تابش‌پز، نشریه علمی مطالعات در دنیای رنگ. 8، 76-51، 2019.

40.O. Jeon, D.S. Alt, S.M. Ahmed, E. Alsberg, "The effect of oxidation on the degradation photocrosslinkable alginate hydrogels", Bio Mater. 33, 3503–3514, 2012.

41.G. Basara, X. Yue, P. Zorlutuna, "Dual crosslinked gelatin methacryloyl hydrogels for photolithography and 3D printing", Gels. 5, DOI: 10.3390/gels5030034, 2012.

42.T.Y. Lee, T.M. Roper, E.S. Jonsson, I. Kudyakov, K. Viswanathan, C. Nason, C.A. Guymon, C.E. Hoyle, "The kinetics of vinyl acrylate photopolymerization", Polym. 44, 2859–2865, 2003.

43.V.L. Tsang, A.A. Chen, L.M. Cho, K.D. Jadin, R.L. Sah, S. DeLong, J.L. West, S.N. Bhatia, "Fabrication of 3D hepatic tissues by additive photopatterning of cellular hydrogels", FASEB J. 21, 790–801, 2007.

44.T. Billiet, E. Gevaert, T. De Schryver, M. Cornelissen, P. Dubruel, "The 3D printing of gelatin methacrylamide cell-laden tissue-engineered constructs with high cell viability", Biomater. 35, 49-62, 2014.

45.A. Bagheri, J. Jin, "Photopolymerization in 3D Printing", ACS Appl. Polym. Mater. 1, 593–611, 2007.

46.A. Skardal, S. V. Murphy, K. Crowell, D. Mack, A. Atala, S. Soker, "A tunable hydrogel system for long-term release of cell-secreted cytokines and bioprinted in situ wound cell delivery", J. Biomed. Mater. Res. Part B Appl. Biomater. 105, 1986–2000, 2017.

47.A. Skardal, M. Devarasetty, H. W. Kang, I. Mead, C. Bishop, T. Shupe, S. J. Lee, J. Jackson, J. Yoo, S. Soker, A. Atala, "A hydrogel bioink toolkit for mimicking native tissue biochemical and mechanical properties in bioprinted tissue constructs", Acta Biomater. 25, 24-34, 2015.

48.C. S. Bahney, T. J. Lujan, C. W. Hsu, M. Bottlang, J. L. West, B. Johnstone, "Visible light photoinitiation of mesenchymal stem cell-laden bioresponsive hydrogels", Eur. Cells Mater. 22, 43–55, 2011.

49.D. Petta, A.R. Armiento, D. Grijpma, M. Alini, D. Eglin, M. D’Este, "3D bioprinting of a hyaluronan bioink through enzymatic-and visible light-crosslinking", Biofabrication. 10, 2018.

50.S. Sakai, H. Ohi, T. Hotta, H. Kamei, M. Taya, "Differentiation potential of human adipose stem cells bioprinted with hyaluronic acid/gelatin-based bioink through microextrusion and visible light-initiated crosslinking", Biopolym. 109, DOI: 10.1002/bip.23080, 2018.

51.J. Jia, D.J. Richards, S. Pollard, Y. Tan, J. Rodriguez, R.P. Visconti, T.C. Trusk, M.J. Yost, H. Yao, R.R. Markwald, Y. Mei, "Engineering alginate as bioink for bioprinting", Acta Biomater. 10, 4323–4331, 2014.

52.K. Markstedt, A. Mantas, I. Tournier, H. Martínez Ávila, D. Hägg, P. Gatenholm, "3D bioprinting human chondrocytes with nanocellulose-alginate bioink for cartilage tissue engineering applications", Biomacromolecules. 16, 1489–1496, 2015.

53.G. Gao, A.F. Schilling, K. Hubbell, T. Yonezawa, D. Truong, Y. Hong, G. Dai, X. Cui, "Improved properties of bone and cartilage tissue from 3D inkjet-bioprinted human mesenchymal stem cells by simultaneous deposition and photocrosslinking in PEG-GelMA", Biotechnol. Lett. 37, 2349–2355 , 2015.

54.T. Billiet, E. Gevaert, T. De Schryver, M. Cornelissen, P. Dubruel, "The 3D printing of gelatin methacrylamide cell-laden tissue-engineered constructs with high cell viability", Biomater. 35, 49–62 2014.

55.L.E. Bertassoni, J.C. Cardoso, V. Manoharan, A.L. Cristino, N.S. Bhise, W.A. Araujo, P. Zorlutuna, N.E. Vrana, A.M. Ghaemmaghami, M.R. Dokmeci, A. Khademhosseini, "Direct-write bioprinting of cell-laden methacrylated gelatin hydrogels", Biofabrication. 6, Doi: 10.1088/1758-5082/6/2/ 024105, 2014.

56.Y. Loo, A. Lakshmanan, M. Ni, L.L. Toh, S. Wang, C.A.E. Hauser, "Peptide Bioink: Self-Assembling Nanofibrous Scaffolds for Three-Dimensional Organotypic Cultures", Nano Lett. 15, 6919–6925, 2015.

57.C.F. Marques, G.S. Diogo, S. Pina, J.M. Oliveira, T.H. Silva, R.L. Reis, "Collagen-based bioinks for hard tissue engineering applications: a comprehensive review", J. Mater. Sci. Mater. Med. 30, Doi: 10.1007/s10856-019-6234-x, 2019.

58.M.G. Yeo, G.H. Kim, "A cell-printing approach for obtaining hASC-laden scaffolds by using a collagen/polyphenol bioink", Biofabrication. 9, doi: 10.1088/1758-5090/aa6997, 2017.

59.Y.B. Kim, H. Lee, G.H. Kim, "Strategy to Achieve Highly Porous/Biocompatible Macroscale Cell Blocks, Using a Collagen/Genipin-bioink and an Optimal 3D Printing Process", ACS Appl. Mater. Interfaces. 8, 32230–32240, 2016.

60.N. Diamantides, L. Wang, T. Pruiksma, J. Siemiatkoski, C. Dugopolski, S. Shortkroff, S. Kennedy, L.J. Bonassar, "Correlating rheological properties and printability of collagen bioinks: The effects of riboflavin photocrosslinking and pH", Biofabrication. 9, doi: 10.1088/1758-5090/aa780f, 2017.

61. T.J. Hinton, Q. Jallerat, R.N. Palchesko, J.H. Park, M.S. Grodzicki, H.J. Shue, M.H. Ramadan, A.R. Hudson, A.W. Feinberg, "Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels", Sci. Adv. 1, Doi: 10.1126/sciadv.1500758, 2015.

62.M. C. Echave, L. S. Burgo, J. L. Pedraz, G. Orive, "Gelatin as Biomaterial for Tissue Engineering", Curr. Pharm. Des. 23, Doi: 10.2174/0929867324666170511123101, 2017.

63.E. Hoch, T. Hirth, G.E.M. Tovar, K. Borchers, "Chemical tailoring of gelatin to adjust its chemical and physical properties for functional bioprinting", J. Mater. Chem. B. 1, 5675–5685, 2013.

64.J.W. Nichol, S.T. Koshy, H. Bae, C.M. Hwang, S. Yamanlar, A. Khademhosseini, Cell-laden microengineered gelatin methacrylate hydrogels, Biomate. 31, 5536–5544, 2010.

65.D.B. Kolesky, R.L. Truby, A.S. Gladman, T.A. Busbee, K.A. Homan, J.A. Lewis, "3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs", Adv. Mater. 26, 3124–3130, 2014.

66.W. Liu, Z. Zhong, N. Hu, Y. Zhou, L. Maggio, A. K. Miri, A. Fragasso, X. Jin, A. Khademhosseini, Y. S. Zhang, "Coaxial extrusion bioprinting of 3D microfibrous constructs with cell-favorable gelatin methacryloyl microenvironments", Biofabrication. 10, Doi: 10.1088/1758-5090/aa9d44, 2018.

67.W. Jia, P.S. Gungor-Ozkerim, Y.S. Zhang, K. Yue, K. Zhu, W. Liu, Q. Pi, B. Byambaa, M.R. Dokmeci, S.R. Shin, A. Khademhosseini, "Direct 3D bioprinting of perfusable vascular constructs using a blend bioink", Biomaterials. 106, 58–68, 2016.

68.X. Liu, Y. Zuo, J. Sun, Z. Guo, H. Fan, X. Zhang, "Degradation regulated bioactive hydrogel as the bioink with desirable moldability for microfluidic biofabrication", Carbohydr. Polym. 178, 8–17, 2017.

69.T. Billiet, B. Van Gasse, E. Gevaert, M. Cornelissen, J.C. Martins, P. Dubruel, "Quantitative contrasts in the photopolymerization of acrylamide and methacrylamide-functionalized gelatin hydrogel building blocks", Macromol. Biosci. 13, 1531–1545, 2013.

70.Q. Wang, G. Han, S. Yan, Q. Zhang, "3D printing of silk fibroin for biomedical applications", Materials. 12, 504, 2019.

71.M. Farokhi, F. Mottaghitalab, Y. Fatahi, A. Khademhosseini, D.L. Kaplan, "Overview of Silk Fibroin Use in Wound Dressings", Trends Biotechnol. 36, 907–922, 2018.

72.D. Chouhan, N. Thatikonda, L. Nilebäck, M. Widhe, M. Hedhammar, B.B. Mandal, "Recombinant Spider Silk Functionalized Silkworm Silk Matrices as Potential Bioactive Wound Dressings and Skin Grafts", ACS Appl. Mater. Interfaces. 10, 23560–23572, 2018.

73.S. Mehrotra, S.K. Nandi, B.B. Mandal, "Stacked silk-cell monolayers as a biomimetic three dimensional construct for cardiac tissue reconstruction", J. Mater. Chem. B. 5, 6325–6338, 2017.

74.S. Mehrotra, D. Chouhan, R. Konwarh, M. Kumar, P.K. Jadi, B.B. Mandal, "Comprehensive Review on Silk at Nanoscale for Regenerative Medicine and Allied Applications", ACS Biomater. Sci. Eng. 5, 2054–2078, 2019.

75.C. Guo, J. Zhang, J.S. Jordan, X. Wang, R.W. Henning, J.L. Yarger, "Structural Comparison of Various Silkworm Silks: An Insight into the Structure-Property Relationship", Biomacromolecules, 19, 906–917, 2018.

76.S. Mehrotra, B.A.G. de Melo, M. Hirano, W. Keung, R.A. Li, B.B. Mandal, S.R. Shin, "Nonmulberry Silk Based Ink for Fabricating Mechanically Robust Cardiac Patches and Endothelialized Myocardium-on-a-Chip Application", Adv. Funct. Mater. Doi; 10.1002/adfm.201907436, 2020.

77.S. Reakasame, A.R. Boccaccini, "Oxidized Alginate-Based Hydrogels for Tissue Engineering Applications: A Review", Biomacromolecules. 19, 3–21, 2018.

78.K. Mahmood Zia, M. Zuber, M. Ali, "Algae Based Polymers, Blends, and Composites", Elsevier, 2017.

79.K.Y. Lee, D.J. Mooney, "Alginate: Properties and biomedical applications", Prog. Polym. Sci. 37, 106–126, 2012.

80.S.D. Pasini Cabello, S. Mollá, N.A. Ochoa, J. Marchese, E. Giménez, V. Compañ, "New bio-polymeric membranes composed of alginate-carrageenan to be applied as polymer electrolyte membranes for DMFC", J. Power Sources. 265, 345–355, 2014.

81.O. Gåserød, O. Smidsrød, G. Skjåk-Bræk, "Microcapsules of alginate-chitosan - I. A quantitative study of the interaction between alginate and chitosan", Biomaterials. 19, 1815–1825, 1998.

82.T. Andersen, P. Auk-Emblem, M. Dornish, "3D Cell Culture in Alginate Hydrogels", Microarrays. 4, 133–161, 2015.

83.W. Aljohani, M.W. Ullah, X. Zhang, G. Yang, "Bioprinting and its applications in tissue engineering and regenerative medicine", Int. J. Biol. Macromol. 107, 261–275, 2018.

84.V. Vacharathit, E.A. Silva, D.J. Mooney, "Viability and functionality of cells delivered from peptide conjugated scaffolds", Biomaterials. 32, 3721–3728, 2011.

85.E. Ruvinov, J. Leor, S. Cohen, "The promotion of myocardial repair by the sequential delivery of IGF-1 and HGF from an injectable alginate biomaterial in a model of acute myocardial infarction", Biomaterials. 32, 565–578, 2011.

86.Y. He, F. Yang, H. Zhao, Q. Gao, B. Xia, J. Fu, "Research on the printability of hydrogels in 3D bioprinting", Sci. Rep. 6, 1–13, 2016.

87.T. Gao, G.J. Gillispie, J.S. Copus, A.P.R. Kumar, Y.J. Seol, A. Atala, J.J. Yoo, S.J. Lee, "Optimization of gelatin-alginate composite bioink printability using rheological parameters: A systematic approach", Biofabrication. 10, Doi: 10.1088/1758-5090/aacdc7, 2018.

88.S. Ahn, H. Lee, L. J. Bonassar, G. Kim, "Cells (MC3T3-E1)-laden alginate scaffolds fabricated by a modified solid-freeform fabrication process supplemented with an aerosol spraying", Biomacromolecules. 13, 2997–3003, 2012.

89.B. Roushangar Zineh, M.R. Shabgard, L. Roshangar, "Mechanical and biological performance of printed alginate/methylcellulose/halloysite nanotube/polyvinylidene fluoride bio-scaffolds", Mater. Sci. Eng. C. 92, 779–789, 2018.

90.L. Ouyang, R. Yao, Y. Zhao, W. Sun, "Effect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells", Biofabrication. 8, Doi: 10.1088 /1758-5090/8/3/035020, 2016.

91.M. Di Giuseppe, N. Law, B. Webb, R. A. Macrae, L.J. Liew, T.B. Sercombe, R.J. Dilley, B.J. Doyle, "Mechanical behaviour of alginate-gelatin hydrogels for 3D bioprinting", J. Mech. Behav. Biomed. Mater. 79, 2018.

92.H. Li, Y.J. Tan, K.F. Leong, L. Li, "3D Bioprinting of Highly Thixotropic Alginate/Methylcellulose Hydrogel with Strong Interface Bonding", ACS Appl. Mater. Interfaces. 9, 20086–20097, 2017.

93.M. N. Collins, C. Birkinshaw, "Hyaluronic acid based scaffolds for tissue engineering-A review", Carbohydr. Polym. 92, 1262–1279, 2013.

94.F. Khan, S.R. Ahmad, "Polysaccharides and Their Derivatives for Versatile Tissue Engineering Application", Macromol. Biosci. 13, 395–421, 2013.

95.M. Kesti, M. Müller, J. Becher, M. Schnabelrauch, M. D’Este, D. Eglin, M. Zenobi-Wong, "A versatile bioink for three-dimensional printing of cellular scaffolds based on thermally and photo-triggered tandem gelation", Acta Biomater. 11, 162–172, 2015.

96.H.W. Kang, S.J. Lee, I.K. Ko, C. Kengla, J.J. Yoo, A. Atala, "A 3D bioprinting system to produce human-scale tissue constructs with structural integrity", Nat. Biotechnol. 34, 312–319, 2016.

97. S. Stichler, T. Böck, N. Paxton, S. Bertlein, R. Levato, V. Schill, W. Smolan, J. Malda, J. Teßmar, T. Blunk, J. Groll, "Double printing of hyaluronic acid/poly(glycidol) hybrid hydrogels with poly(ϵ-caprolactone) for MSC chondrogenesis", Biofabrication. 9, 2017.

98. E. Khor, L.Y. Lim, "Implantable applications of chitin and chitosan", Biomaterials. 24, 2339–2349, 2003.

99.Q. Gu, E. Tomaskovic-Crook, R. Lozano, Y. Chen, R.M. Kapsa, Q. Zhou, G.G. Wallace, J.M. Crook, "Functional 3D Neural Mini-Tissues from Printed Gel-Based Bioink and Human Neural Stem Cells", Adv. Healthc. Mater. 5, 1429–1438, 2016.

100.T. L. Sellaro, A. Ranade, D.M. Faulk, G.P. McCabe, K. Dorko, S.F. Badylak, S.C. Strom, "Maintenance of human hepatocyte function in vitro by liver-derived extracellular matrix gels", Tissue Eng. Part A. 16, 1075–1082, 2010.

101.L.T. Saldin, M.C. Cramer, S.S. Velankar, L.J. White, S.F. Badylak, "Extracellular matrix hydrogels from decellularized tissues: Structure and function", Acta Biomater. 49, 1–15, 2017.

102.K.S. Midwood, L.V. Williams, J.E. Schwarzbauer, "Tissue repair and the dynamics of the extracellular matrix", Int. J. Biochem. Cell Biol. 36, 1031–1037, 2004.

103.C. Frantz, K.M. Stewart, V.M. Weaver, "The extracellular matrix at a glance", J. Cell Sci. 123, 4195–4200, 2010.

104.H.C. Ott, B. Clippinger, C. Conrad, C. Schuetz, I. Pomerantseva, L. Ikonomou, D. Kotton, J.P. Vacanti, "Regeneration and orthotopic transplantation of a bioartificial lung", Nat. Med. 16, 927–933, 2010.

105.R.A. Elliott, J.G. Hoehn, "Use of commercial porcine skin for wound dressings", Plast. Reconstr. Surg. 52, 401-405, 1973.

106.G.C. Lantz, S.F. Badylak, A.C. Coffey, L.A. Geddes, W.E. Blevins, "Small intestinal submucosa as a small-diameter arterial graft in the dog", J. Investig. Surg. 3, 217–227, 1990.

107.S.L. Voytik-Harbin, A.O. Brightman, B.Z. Waisner, J.P. Robinson, C.H. Lamar, "Small intestinal submucosa: A tissue-derived extracellular matrix that promotes tissue-specific growth and differentiation of cells in vitro", Tissue Eng. 4, 157–174 , 1998.

108.S.F. Badylak, D.O. Freytes, T.W. Gilbert, "Extracellular matrix as a biological scaffold material: Structure and function", Acta Biomater. 5, 1-13, 2009.

109.F. Pati, J. Jang, D.H. Ha, S. Won Kim, J.W. Rhie, J.H. Shim, D.H. Kim, D.W. Cho, "Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink", Nat. Commun. 5, 2014.

110.P.S. Gungor-Ozkerim, I. Inci, Y.S. Zhang, A. Khademhosseini, M.R. Dokmeci, "Bioinks for 3D bioprinting: An overview", Biomater. Sci. 6, 915–946, 2018.

111.S. Yi, F. Ding, L. Gong, X. Gu, "Extracellular Matrix Scaffolds for Tissue Engineering and Regenerative Medicine", Curr. Stem Cell Res. Ther. 12, 233–246, 2017.

112.A. Athirasala, A. Tahayeri, G. Thrivikraman, C.M. Franca, N. Monteiro, V. Tran, J. Ferracane, L.E. Bertassoni, "A dentin-derived hydrogel bioink for 3D bioprinting of cell laden scaffolds for regenerative dentistry", Biofabrication. 10, 2018.

113.K. Zhang, Q. Fu, J. Yoo, X. Chen, P. Chandra, X.M.-A. Biomaterialia, U., "3D bioprinting of urethra with PCL/PLCL blend and dual autologous cells in fibrin hydrogel: An in vitro evaluation of biomimetic mechanical property and cell growth", Elsevier, 2017.

114.Elsevier B.V, Welcome to Scopus Preview, Scopus. Com. 2020. https://www.scopus.com/home .uri%0 Ahttps :// www.scopus.com/ (accessed December 13, 2020).