مروری بر کاربرد پلیمرهای چاپگر مولکولی در شناسایی آلاینده‌ها: مطالعه موردی تهیه حسگرهای نوری

نوع مقاله : مقاله مروری

نویسندگان

1 گروه پژوهشی محیط زیست و رنگ، پژوهشگاه رنگ

2 دانشیار، الف)گروه پژوهشی مواد رنگزای آلی؛ ب) قطب علمی رنگ، پژوهشگاه رنگ

چکیده

حسگرها و حسگرهای زیستی نوری، پتانسیل بالایی جهت شناسایی کاتیون‌های فلزی، آنیون‌ها، مواد رنگزای آلی، داروها و آفت‌‌کش‌‌ها دارا هستند. این حسگرها به دلیل تهیه آسان، سنجش سریع، حساسیت و انتخاب‌پذیری بالا و همچنین قابلیت سنجش با چشم غیر‌مسلح مورد توجه می‌‌باشند. حسگرهای نوری به دو دسته حسگرهای رنگ‌سنجی و فلورسنت تقسیم می‌‌شوند، که به منظور طراحی آنها از پلیمرهای چاپگر مولکولی، شناساگر، نانو مواد (نانو ذرات فلزی، اکسیدهای فلزی، نقاط کوانتومی) و غیره استفاده می‌‌گردد. استفاده از پلیمرهای چاپگر مولکولی یکی از روش‌های تهیه حسگرهای نوری می‌‌باشد. در این روش که به عنوان روش ایجاد قفل مولکولی برای تطبیق با یک کلید مولکولی از آن یاد می‌‌شود، روشی برای ایجاد پلیمرهای چاپگر (قالب) مولکولی (MIPs) با سایتهای پیوندی سفارشی بوده که در شکل، اندازه و گروه‌‌های عاملی، مکمل مولکول‌‌های الگو می‌‌باشند. این مواد از نظر ساختار و کاربرد، مشابه سامانه‌‌های زیست شناختی بوده و از هم‌پلیمری‌شدن مونومرهای عاملی و عامل شبکه ساز در حضور مولکول هدف بوجود می‌‌آیند. از این پلیمرها برای شناسایی، جداسازی و حذف ترکیبات و آلاینده‌‌های متفاوت با کمترین مقادیر در بسترهای پیچیده استفاده می‌‌شود. برای طراحی حسگرهای بر پایه پلیمرهای چاپگر مولکولی، از مونومرهای عاملی فلورسنت و مواد رنگزایی نظیر کومارین‌‌ها، زانتن‌‌ها، نفتالیمیدها، کربازول‌‌ها، بورون دی پیرومتن‌‌ها، مواد رنگزای آزو، بازهای شیف و غیره استفاده می‌‌گردد. لذا، در این مطالعه، کاربردهای گوناگون پلیمرهای چاپگر مولکولی شامل کاربردهای زیست‌محیطی، دارویی و پزشکی از طریق جداسازی، آزمون‌‌های زیست تقلیدی، تحویل و رهایش پایدار دارو، حوزه‌‌های مصارف جدید و بالاخص کاربرد آن به عنوان حسگر نوری (فرآیند ساخت و سازوکار آن)، بیان خواهد شد. به‌علاوه، به پیشرفت‌های اخیر و تجاری‌سازی پروژه‌‌های مرتبط با پلیمرهای چاپگر مولکولی و حسگرهای بر پایه آن و همچنین معرفی برخی از شرکت‌هایی که در این حوزه فعال هستند، پرداخته خواهد شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A review on the application of molecularly imprinted polymers in the detection of pollutants: A case study of optical sensors

نویسندگان [English]

  • Nargess Yousefi Limaee 1
  • Shohre Rouhani 2
1 Department of Environmental Research, Institute for Color Science and Technology
2 a) Department of Organic Colorants, b) Center of Excellence for Color Science and Technology (CECST), Institute for Color Science and Technology
چکیده [English]

Optical sensors and biosensors have the great potential to detect metal cations, anions, organic dyes, drugs, pesticides and other contaminants. These sensors are considered for their easy preparation, fast sensing, high sensitivity and selectivity, as well as naked eye detection. Optical sensors are divided into two categories of colorimetric and fluorescent sensors. In this regard, molecularly imprinted polymers, indicators, nanomaterials (metal nanoparticles, metal oxides, quantum dots) and etc. are used for the designation of optical sensors. The fabrication of MIP-based optical sensors is one of the considerable methods for the preparation of optical sensors. This method, known as the molecular lock-key method, for creating molecularly imprinted polymers (MIPs) which are complement to template molecules in shape, size, and functional groups. These materials are similar to biological systems in structure and application that result from the copolymerization of functional monomers and crosslinkers in the presence of the target molecule. These polymers are used for the detection, separation and removal of trace amount of various contaminants in complex substrates. For the preparation of MIP-based sensors, fluorescent functional monomers and dyes including coumarins, xanthenes, naphthalimides, carbazoles, boron dipyrromethenes, azo dyes, schiff bases and etc. are used. Therefore, in this study, various applications of MIPs including environmental, pharmaceutical and medical usage through separation, biomimetic assays, sustained delivery and release, new application areas and specially, optical sensors (synthesis process and its mechanism), will be expressed. In addition, recent developments and commercialization of MIPs and MIP based sensors, will be discussed as well as the introduction of some active companies in this field.

کلیدواژه‌ها [English]

  • Molecularly imprinted polymer
  • Optical sensor
  • Dyes
  • Detection
1. م. خواجه مهریزی، ز. شاهی، "مطالعه عوامل مؤثر بر حذف فلزات سنگین از پساب با استفاده از مواد جاذب (زیستی- طبیعی)"، نشریه علمی مطالعات در دنیای رنگ، 9، 26-15، 1398.
2. ا. جلیل‌نژاد، م. علیزاده، س.ف. فخری آذر، "کاربرد روش‌های زیستی در رنگبری پساب‌های حاوی مواد رنگزا آزو"، نشریه علمی مطالعات در دنیای رنگ، 8، 40-27، 1397.
3. Z. Dehghani, M. Akhond, G. Absalan, "Carbon quantum dots embedded silica molecular imprinted polymer as a novel and sensitive fluorescent nanoprobe for reproducible enantioselective quantification of naproxen enantiomers", Microchem. J. 160, 2021.
4. B. Van Dorst, J. Mehta, K. Bekaert, E. Rouah-Martin, W. De Coen, P. Dubruel, R. Blust, J. Robbens, "Recent advances in recognition elements of food and environmental biosensors: a review", Biosens. Bioelectron. 26, 1178-1194, 2010.
5. T. Chen, M. Shao, H. Xu, S. Zhuo, S. Liu, S.-T. Lee, "Molecularly imprinted polymer-coated silicon nanowires for protein specific recognition and fast separation," J. Mater. Chem. 22, 3990-3996, 2012.
[6] I. Chianella, S. Piletsky, I. Tothill, B. Chen, A. Turner, "MIP-based solid phase extraction cartridges combined with MIP-based sensors for the detection of microcystin-LR", Biosens. Bioelectron. 18, 119-127, 2003.
7. پ. علایی، ش. روحانی، ک.ا. قرنجیگ، "مطالعه خواص نوری4- (2- آمینو اتیلن)آمینو- N - آلیل-1،8- نفتالیمید، کوپلیمر تهیه شده بر پایه متیل‌متاکریلات و کاربرد آن به عنوان حسگر فلورسنتیpH "، نشریه علمی علوم و فناوری رنگ، 5، 168-161، 1390.
8. L. Chen, X. Wang, W. Lu, X. Wu, J. Li, "Molecular imprinting: perspectives and applications", Chem. Soc. Rev.          45, 2111-2237, 2016.
9. م. حسنی سعدی، ط. پورصابری، "کاربرد پلیمرهای قالب مولکولی در جداسازی و حذف مواد رنگزا"، نشریه علمی مطالعات در دنیای رنگ، 2، 46-37، 1391.
10. H. Yan, K.H. Row, "Characteristic and Synthetic Approach of Molecularly Imprinted Polymer", Int. J. Mol. Sci. 7, 155-178, 2006.
11. J.E. Lofgreen, G.A. Ozin, "Controlling morphology and porosity to improve performance of molecularly imprinted sol–gel silica", Chem.Soc. Rev. 43, 911-933, 2014.
12. M. Polyakov, "Adsorption properties and structure of silica gel", Zhur. Fiz. Khim., 2, 799-805, 1931.
13. F.H. Dickey, "The preparation of specific adsorbents", Proceedings of the National Academy of Sciences of the United States of America, 35, 227, 1949.
14. V. Patrikeev, A. Balandin, E. Klabunovskii, J. Mardaszew, G. Maksimova, "Selectivity of an adsorbent produced in the presence of bacteria with respect to optical isomers", Dokl. Akad. Nauk SSSR. 850-852, 1960.
15. G. Wulff, "Molecular imprinting in cross‐linked materials with the aid of molecular templates—a way towards artificial antibodies", Angewandte Chem. Int. Ed. 34, 1812-1832, 1995.
16. G. Wulff, "The use of polymers with enzyme-analogous structures for the resolution of racemates", Angrew. Chem. Int. Edit. 11, 341, 1972.
17. T. Takagishi, I.M. Klotz, "Macromolecule‐small molecule interactions; introduction of additional binding sites in polyethyleneimine by disulfide cross–linkages", Biopolym. Orig. Res. Biomol. 11, 483-491, 1972.
18. L. Chen, S. Xu, J. Li, "Recent advances in molecular imprinting technology: current status, challenges and highlighted applications", Chem. Soc. Rev. 40, 2922-2942, 2011.
19. Y. Cao, X. Hu, T. Zhao, Y. Mao, G. Fang, S. Wang, "A core-shell molecularly imprinted optical sensor based on the upconversion nanoparticles decorated with Zinc-based metal-organic framework for selective and rapid detection of octopamine", Sens. Actuators B. Chem. 326, 2021.
20. J.W. Lowdon, H. Diliën, P. Singla, M. Peeters, T.J. Cleij, B. van Grinsven, K. Eersels, "MIPs for commercial application in low-cost sensors and assays – An overview of the current status quo", Sens. Actuators B. Chem. 325, 2020.
21. C. Lafarge, M. Bitar, L. El Hosry, P. Cayot, E. Bou-Maroun, "Comparison of molecularly imprinted polymers (MIP) and sol–gel molecularly imprinted silica (MIS) for fungicide in a hydro alcoholic solution", Mater. Today Commun. 24 , 2020.
22. C. Pizan-Aquino, A. Wong, L. Avilés-Félix, S. Khan, G. Picasso, M.D.P.T. Sotomayor, "Evaluation of the performance of selective M-MIP to tetracycline using electrochemical and HPLC-UV method", Mater. Chem. Phys., 245, 2020.
23. G. Ciardelli, B. Cioni, C. Cristallini, N. Barbani, D. Silvestri, P. Giusti, "Acrylic polymeric nanospheres for the release and recognition of molecules of clinical interest", Biosens. Bioelectron. 20 1083-1090, 2004.
24. H. Sanbe, J. Haginaka, "Uniformly sized molecularly imprinted polymers for bisphenol A and beta-estradiol: retention and molecular recognition properties in hydro-organic mobile phases", J. pharmaceut. biomed. 30, 1835-44, 2003.
25. L. Ye, P.A.G. Cormack, K. Mosbach, "Molecular imprinting on microgel spheres", Anal. Chim. Acta.,435, 187-196, 2001.
26. B. Sellergren, K.J. Shea, "Origin of peak asymmetry and the effect of temperature on solute retention in enantiomer separations on imprinted chiral stationary phases", J. Chromatogr. A. 690, 29-39, 1995.
27. K. Nilsson, J. Lindell, O. Norrlöw, B. Sellergren, "Imprinted polymers as antibody mimetics and new affinity gels for selective separations in capillary electrophoresis", J. Chromatogr. A. 680, 57-61, 1994.
28. J.-M. Lin, T. Nakagama, K. Uchiyama, T. Hobo, "Capillary electrochromatographic separation of amino acid enantiomers using on-column prepared molecularly imprinted polymer", J. pharmaceut. biomed. 15, 1351-1358, 1997.
29. W.M. Mullett, E.P. Lai, "Determination of theophylline in serum by molecularly imprinted solid-phase extraction with pulsed elution", Anal. chem. 70, 3636-3641, 1998.
30. C. Berggren, S. Bayoudh, D. Sherrington, K. Ensing, "Use of molecularly imprinted solid-phase extraction for the selective clean-up of clenbuterol from calf urine", J. Chromatogr. A. 889, 105-110, 2000.
31. B. Sellergren, "Direct drug determination by selective sample enrichment on an imprinted polymer", Anal. chem. 66, 1578-1582,1994.
32. V. Pichon, "Selective sample treatment using molecularly imprinted polymers", J. Chromatog. A. 1152, 41-53, 2007.
33. Y. Hu, J. Pan, K. Zhang, H. Lian, G. Li, "Novel applications of molecularly-imprinted polymers in sample preparation", Trends Analyt. Chem. 43, 37-52, 2013.
34. A. Martín-Esteban, "Recent molecularly imprinted polymer-based sample preparation techniques in environmental analysis", Trends Environ. Anal. Chem. 9, 8-14, 2016.
35. L. Ye, K. Haupt, "Molecularly imprinted polymers as antibody and receptor mimics for assays, sensors and drug discovery", Anal. bioanal. chem. 378, 1887-1897, 2004.
36. Z. Ding, S.A. Bligh, L. Tao, J. Quan, H. Nie, L. Zhu, X. Gong, "Molecularly imprinted polymer based on MWCNT-QDs as fluorescent biomimetic sensor for specific recognition of target protein", Mater. Sci.  Eng. C. 48, 469-479, 2015.
37. M. Moreno-Bondi, M. Benito-Peña, J. Urraca, G. Orellana, "Immuno-like assays and biomimetic microchips, Molecular Imprinting", Springer. 111-164, 2010.
38. S.A. Piletsky, E.V. Piletska, A. Bossi, K. Karim, P. Lowe, A.P. Turner, "Substitution of antibodies and receptors with molecularly imprinted polymers in enzyme-linked and fluorescent assays", Biosens. Bioelectron. 16, 701-707, 2001.
39. M.C. Moreno-Bondi, M.E. Benito-Pena, J.L. Urraca, G. Orellana, "Immuno-like assays and biomimetic microchips", Top. curr. chem. 325, 111-64, 2012.
40. G. Vlatakis, L.I. Andersson, R. Muller, K. Mosbach, "Drug assay using antibody mimics made by molecular imprinting", Nature. 361, 7-645, 1993.
41. K. Haupt, A. Dzgoev, K. Mosbach, "Assay System for the Herbicide 2,4-Dichlorophenoxyacetic Acid Using a Molecularly Imprinted Polymer as an Artificial Recognition Element", Anal. chem. 70, 628-631, 1998.
42. O.C. Farokhzad, R. Langer, "Impact of Nanotechnology on Drug Delivery", ACS Nano. 3, 16-20, 2009.
43. M. Esfandyari-Manesh, B. Darvishi, F.A. Ishkuh, E. Shahmoradi, A. Mohammadi, M. Javanbakht, R. Dinarvand, F. Atyabi, "Paclitaxel molecularly imprinted polymer-PEG-folate nanoparticles for targeting anticancer delivery: Characterization and cellular cytotoxicity", Mater. Sci. Eng. C. Mater. Biol. Appl. 62, 626-33, 2016.
44. N.X. Wang, H.A. von Recum, "Affinity-based drug delivery", Macromol. biosci. 11, 321-32, 2011.
45. B. Sellergren, C.J. Allender, "Molecularly imprinted polymers: a bridge to advanced drug delivery", Adv. Drug. Deliv. Rev. 57, 1733-41, 2005.
46. C. Alvarez-Lorenzo, A. Concheiro, "Molecularly imprinted polymers for drug delivery", J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci. 804, 231-45, 2004.
47. M.C. Norell, H.S. Andersson, I.A. Nicholls, "Theophylline molecularly imprinted polymer dissociation kinetics: a novel sustained release drug dosage mechanism", J. mol. recognit. 11, 98-102, 1998.
48. W.E. Hennink, C.F. van Nostrum, "Novel crosslinking methods to design hydrogels", Adv. Drug Deliv. Rev. 54,13-36, 2002.
49. M. Panagiotopoulou, Y. Salinas, S. Beyazit, S. Kunath, L. Duma, E. Prost, A.G. Mayes, M. Resmini, B. Tse Sum Bui, K. Haupt, "Molecularly Imprinted Polymer Coated Quantum Dots for Multiplexed Cell Targeting and Imaging", Angew. Chem. Int. Ed. 55, 8244-8, 2016.
50. R. Xing, Y. Wen, H. He, Z. Guo, Z. Liu, "Recent progress in the combination of molecularly imprinted polymer-based affinity extraction and mass spectrometry for targeted proteomic analysis", Trends Anal. Chem. 110, 417-428, 2019.
51. J. Liu, Q. Deng, D. Tao, K. Yang, L. Zhang, Z. Liang, Y. Zhang, "Preparation of protein imprinted materials by hierarchical imprinting techniques and application in selective depletion of albumin from human serum", Sci. Rep. 4, 5487, 2014.
52. B. Demir, M.M. Lemberger, M. Panagiotopoulou, P.X. Medina Rangel, S. Timur, T. Hirsch, B. Tse Sum Bui, J. Wegener, K. Haupt, "Tracking Hyaluronan: Molecularly Imprinted Polymer Coated Carbon Dots for Cancer Cell Targeting and Imaging", ACS appl. mater. inter. 10, 3305-3313, 2018.
53. Y. Fuchs, O. Soppera, K. Haupt, "Photopolymerization and photostructuring of molecularly imprinted polymers for sensor applications--a review", Anal. Chim. Acta. 717, 7-20, 2012.
54. P. Rebelo, E. Costa-Rama, I. Seguro, J.G. Pacheco, H.P.A. Nouws, M.N.D.S. Cordeiro, C. Delerue-Matos, "Molecularly imprinted polymer-based electrochemical sensors for environmental analysis", Biosens. Bioelectron. 172, 112719, 2021.
55. S. Suriyanarayanan, P.J. Cywinski, A.J. Moro, G.J. Mohr, W. Kutner, "Chemosensors based on molecularly imprinted polymers", Top. curr. chem. 325, 165-265, 2012.
56. K. Haupt, K. Noworyta, W. Kutner, "Imprinted polymer-based enantioselective acoustic sensor using a quartz crystal microbalance", Anal. Commun. 36, 391-393, 1999.
57. Y. Hao, R. Gao, D. Liu, G. He, Y. Tang, Z. Guo, "Selective extraction and determination of chlorogenic acid in fruit juices using hydrophilic magnetic imprinted nanoparticles", Food chem. 200, 215-22, 2016.
58. V.K. Gupta, M.L. Yola, T. Eren, N. Atar, "Selective QCM sensor based on atrazine imprinted polymer: Its application to wastewater sample", Sens. Actuators B. Chem. 218, 215-221, 2015.
59. V. Pichon, A. Combès, "Selective tools for the solid-phase extraction of Ochratoxin A from various complex samples: immunosorbents, oligosorbents, and molecularly imprinted polymers", Anal. Bioanal. Chem. 408(25), 6983–6999, 2016.
60. H. Zhao, X. Ma, Y. Li, R. Du, Z. Zhang, F. An, B. Gao, "Selective detection of TNT using molecularly imprinted polymer microsphere", Desal. Water Treat. 55, 278-283, 2015.
61. W. Zhang, D. Duan, S. Liu, Y. Zhang, L. Leng, X. Li, N. Chen, Y. Zhang, "Metal-organic framework-based molecularly imprinted polymer as a high sensitive and selective hybrid for the determination of dopamine in injections and human serum samples", Biosens. Bioelectron. 118, 129-136, 2018.
62. P.E. Hande, A.B. Samui, P.S. Kulkarni, "Selective nanomolar detection of mercury using coumarin based fluorescent Hg(II)—Ion imprinted polymer", Sens. Actuators B. Chem. 246, 597-605, 2017.
63. B. Bali Prasad, A. Kumar, R. Singh, "Synthesis of novel monomeric graphene quantum dots and corresponding nanocomposite with molecularly imprinted polymer for electrochemical detection of an anticancerous ifosfamide drug", Biosens. Bioelectron. 94, 1-9, 2017.
64. K. Seiler, W. Simon, "Theoretical aspects of bulk optode membranes", Anal. chim. Acta,. 266(1), 73-87, 1992.
65. W.M. Mullett, E.P. Lai, "Determination of theophylline in serum by molecularly imprinted solid-phase extraction with pulsed elution", Anal. chem. 70, 3636-3641, 1998.
66. N.T. Greene, K.D. Shimizu, "Colorimetric molecularly imprinted polymer sensor array using dye displacement", J. Amer. Chem. Soc. 127, 5695-5700, 2005.
67. D.L. Rathbone, Y. Ge, "Selectivity of response in fluorescent polymers imprinted with N1-benzylidene pyridine-2-carboxamidrazones", Anal. Chim. Acta. 435, 129-136, 2001.
68. A. Rachkov, S. McNiven, A. El’skaya, K. Yano, I. Karube, "Fluorescence detection of β-estradiol using a molecularly imprinted polymer", Anal. Chim. Acta. 405, 23-29, 2000.
69. J.L. Suárez-Rodrı́guez, M.E. Dı́az-Garcı́a, "Flavonol fluorescent flow-through sensing based on a molecular imprinted polymer", Anal. Chim. Acta. 405, 67-76, 2000.
70. R. Wagner, W. Wan, M. Biyikal, E. Benito-Peña, M.C. Moreno-Bondi, I. Lazraq, K. Rurack, B.r. Sellergren, "Synthesis, spectroscopic, and analyte-responsive behavior of a polymerizable naphthalimide-based carboxylate probe and molecularly imprinted polymers prepared thereof", J. org. chem. 78, 1377-1389, 2013.
71. Y. Inoue, A. Kuwahara, K. Ohmori, H. Sunayama, T. Ooya, T. Takeuchi, "Fluorescent molecularly imprinted polymer thin films for specific protein detection prepared with dansyl ethylenediamine-conjugated O-acryloyl L-hydroxyproline", Biosens. Bioelectron. 48, 113-119, 2013.
72. Z. Wang, Y. Zhang, B. Zhang, X. Lu, "Mn2+ doped ZnS QDs modified fluorescence sensor based on molecularly imprinted polymer/sol-gel chemistry for detection of Serotonin", Talanta. 190, 1-8, 2018.
73. A.A. Ensafi, M. Zakery, B. Rezaei, "An optical sensor with specific binding sites for the detection of thioridazine hydrochloride based on ZnO-QDs coated with molecularly imprinted polymer", Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 206, 460-465, 2019.
74. X. Wei, Z. Zhou, T. Hao, H. Li, Y. Yan, "Molecularly imprinted polymer nanospheres based on Mn-doped ZnS QDs via precipitation polymerization for room-temperature phosphorescence probing of 2, 6-dichlorophenol", RSC Advances. 5, 19799-19806, 2015.
75. P. Manesiotis, A.J. Hall, M. Emgenbroich, M. Quaglia, E. De Lorenzi, B. Sellergren, "An enantioselective imprinted receptor for Z-glutamate exhibiting a binding induced color change", Chem. Commun. 20, 2278-2279, 2004.
76. S. Rouhani, F. Nahavandifard, "Molecular imprinting-based fluorescent optosensor using a polymerizable 1, 8-naphthalimide dye as a florescence functional monomer", Sens. Actuators B. Chem. 197, 185-192, 2014.
77. Y. Geng, M. Guo, J. Tan, S. Huang, Y. Tang, L. Tan, Y. Liang, "A fluorescent molecularly imprinted polymer using aptamer as a functional monomer for sensing of kanamycin", Sens. Actuators B. Chem. 268, 47-54, 2018.
78. B. Ren, H. Qi, X. Li, L. Liu, L. Gao, G. Che, B. Hu, L. Wang, X. Lin, "A novel fluorescent functional monomer as the recognition element in core–shell imprinted sensors responding to concentration of 2, 4, 6-trichlorophenol", RSC Advances. 8, 6083-6089, 2018.
79. H. Qiu, L. Gao, J. Wang, J. Pan, Y. Yan, X. Zhang, "A precise and efficient detection of Beta-Cyfluthrin via fluorescent molecularly imprinted polymers with ally fluorescein as functional monomer in agricultural products", Food chem. 217, 620-627, 2017.
80. H. Sun, J.-P. Lai, D.-S. Lin, X.-X. Huang, Y. Zuo, Y.-L. Li, "A novel fluorescent multi-functional monomer for preparation of silver ion-imprinted fluorescent on–off chemosensor", Sens. Actuators B. Chem. 224, 485-491, 2016.
81. S. Uchiyama, K. Takehira, S. Kohtani, K. Imai, R. Nakagaki, S. Tobita, T. Santa, "Fluorescence on–off switching mechanism of benzofurazans", Org. Biomol. Chem. 1, 1067-1072, 2003.
82. J. Li, C. F. Zhang, S. H. Yang, W. C. Yang, G.-F. Yang, "A Coumarin-Based Fluorescent Probe for Selective and Sensitive Detection of Thiophenols and Its Application", Anal. chem. 86, 3037-3042, 2014.
83. D. Liu, Y. Wang, R. Wang, B. Wang, H. Chang, J. Chen, G. Yang, H. He, "Fluorescein-based fluorescent sensor with high selectivity for mercury and its imaging in living cells", Inorg. Chem. Commun. 89, 46-50, 2018.
84. K. Kala, N. Manoj, "A carbazole based “Turn on” fluorescent sensor for selective detection of Hg2+ in an aqueous medium", RSC Advances. 6, 22615-22619, 2016.
85. C. Zhao, Y. Zhou, Q. Lin, L. Zhu, P. Feng, Y. Zhang, J. Cao, "Development of an Indole-Based Boron-Dipyrromethene Fluorescent Probe for Benzenethiols", J.Phys. Chem. B. 115, 642-647, 2011.
86. S. Seraj, S. Rouhani, F. Faridbod, "Fructose recognition using new “Off–On” fluorescent chemical probes based on boronate-tagged 1, 8-naphthalimide", New J. Chem. 42, 19872-19880, 2018.
87. Z. Chen, M. Álvarez-Pérez, F. Navarro-Villoslada, M.C. Moreno-Bondi, G. Orellana, "Fluorescent sensing of “quat” herbicides with a multifunctional pyrene-labeled monomer and molecular imprinting", Sens. Actuators B. Chem. 191, 137-142, 2014.
88. Y. Inoue, A. Kuwahara, K. Ohmori, H. Sunayama, T. Ooya, T. Takeuchi, "Fluorescent molecularly imprinted polymer thin films for specific protein detection prepared with dansyl ethylenediamine-conjugated O-acryloyl L-hydroxyproline", Biosens. Bioelectron. 48, 9-103, 2013.
89. Y. Cheng, P. Jiang, S. Lin, Y. Li, X. Dong, "An imprinted fluorescent chemosensor prepared using dansyl-modified β-cyclodextrin as the functional monomer for sensing of cholesterol with tailor-made selectivity", Sens. Actuators B. Chem. 193, 838-843, 2014.
90. J. Tan, H.-F. Wang, X.-P. Yan, "A fluorescent sensor array based on ion imprinted mesoporous silica", Biosens. Bioelectron. 24, 3316-3321, 2009.
91. A. Tong, H. Dong, L. Li, "Molecular imprinting-based fluorescent chemosensor for histamine using zinc(II)–protoporphyrin as a functional monomer", Anal. Chim. Acta. 466, 31-37, 2002.
92. D. Kriz, O. Ramstroem, A. Svensson, K. Mosbach, "A Biomimetic Sensor Based on a Molecularly Imprinted Polymer as a Recognition Element Combined with Fiber-Optic Detection", Anal. Chem. 67, 2142-2144, 1995.
93. S.A. Piletsky, E.V. Piletskaya, K. Yano, A. Kugimiya, A.V. Elgersma, R. Levi, U. Kahlow, T. Takeuchi, I. Karube, T.I. Panasyuk, A.V. El'skaya, "A Biomimetic Receptor System for Sialic Acid Based on Molecular Imprinting", Anal. Lett. 29, 157-170, 1996.
94. P. Turkewitsch, B. Wandelt, G.D. Darling, W.S. Powell, "Fluorescent Functional Recognition Sites through Molecular Imprinting. A Polymer-Based Fluorescent Chemosensor for Aqueous cAMP", Anal. Chem. 70, 2025-2030, 1998.
95. C.M.-B. Maria, N.-V. Fernando, B.-P. Elena, L.U. Javier, "Molecularly Imprinted Polymers as Selective Recognition Elements in Optical Sensing", Current Anal. Chem. 4, 316-340, 2008.
96. S. Carrasco, V. Canalejas-Tejero, F. Navarro-Villoslada, C.A. Barrios, M.C. Moreno-Bondi, "Cross-linkable linear copolymer with double functionality: resist for electron beam nanolithography and molecular imprinting", J. Mater. Chem. C 2, 1400-1403, 2014.
97. X.A. Ton, V. Acha, K. Haupt, B. Tse Sum Bui, "Direct fluorimetric sensing of UV-excited analytes in biological and environmental samples using molecularly imprinted polymer nanoparticles and fluorescence polarization", Biosens. Bioelectron. 36, 22-8, 2012.
98. E. Benito-Pena, M.C. Moreno-Bondi, S. Aparicio, G. Orellana, J. Cederfur, M. Kempe, "Molecular engineering of fluorescent penicillins for molecularly imprinted polymer assays", Anal. Chem. 78, 2019-27, 2006.
99. J.L. Urraca, M.C. Moreno-Bondi, G. Orellana, B. Sellergren, A.J. Hall, "Molecularly imprinted polymers as antibody mimics in automated on-line fluorescent competitive assays", Anal. Chem. 79, 4915-23, 2007.
100. P. Alaei, S. Rouhani, K. Gharanjig, "A Dual colorimetric and Fluorometric Anion Sensor Based on Polymerizable 1, 8-Naphthalimide Dye", Prog. Color, Color. Coat. 6, 87-96, 2013.
101. R. Wagner, W. Wan, M. Biyikal, E. Benito-Peña, M.C. Moreno-Bondi, I. Lazraq, K. Rurack, B. Sellergren, "Synthesis, Spectroscopic, and Analyte-Responsive Behavior of a Polymerizable Naphthalimide-Based Carboxylate Probe and Molecularly Imprinted Polymers Prepared Thereof", J. Org. Chem. 78, 1377-1389, 2013.
102. M. J. Syu, T. J. Hsu, Z. K. Lin, "Synthesis of recognition matrix from 4-methylamino-N-allylnaphthal-imide with fluorescent effect for the imprinting of creatinine", Anal. chem. 82, 8821-9, 2010.
103. R. Liu, G. Guan, S. Wang, Z. Zhang, "Core-shell nanostructured molecular imprinting fluorescent chemosensor for selective detection of atrazine herbicide", Analyst. 136, 184-90, 2011.
104. S. Li, G. Yin, Q. Zhang, C. Li, J. Luo, Z. Xu, A. Qin, "Selective detection of fenaminosulf via a molecularly imprinted fluorescence switch and silver nano-film amplification", Biosens. Bioelectron. 71, 342-347, 2015.
105. Y. t. Wu, Y. j. Liu, X. Gao, K.-c. Gao, H. Xia, M.-f. Luo, X.-j. Wang, L. Ye, Y. Shi, B. Lu, "Monitoring bisphenol A and its biodegradation in water using a fluorescent molecularly imprinted chemosensor", Chemosphere. 119, 515-523, 2015.
106. H. Niu, Y. Yang, H. Zhang, "Efficient one-pot synthesis of hydrophilic and fluorescent molecularly imprinted polymer nanoparticles for direct drug quantification in real biological samples", Biosens. Bioelectron. 74, 440-6, 2015.
107. Z. Xu, P. Deng, S. Tang, J. Li, "Fluorescent molecularly imprinted polymers based on 1, 8-naphthalimide derivatives for efficiently recognition of cholic acid", Mater. Sci. Eng. C. 58, 558-567, 2016.
108. W. Wan, M. Biyikal, R. Wagner, B. Sellergren, K. Rurack, "Fluorescent sensory microparticles that "light-up" consisting of a silica core and a molecularly imprinted polymer (MIP) shell", Angew. Chem. Int. Ed. Engl. 52, 7023-7, 2013.
109. N. Y. Limaee, S. Rouhani, M. E. Olya, F. Najafi, "Selective 2, 4-dichlorophenoxyacetic acid optosensor employing a polyethersulfone nanofiber-coated fluorescent molecularly imprinted polymer", Polym. 177, 73-83, 2019.
110. N.Y. Limaee, S. Rouhani, M.E. Olya, F. Najafi, "Selective Recognition of Herbicides in Water Using a Fluorescent Molecularly Imprinted Polymer Sensor", J. Fluoresc. 30, 375-387, 2020.
111. S. Wagner, J. Bell, M. Biyikal, K. Gawlitza, K. Rurack, "Integrating fluorescent molecularly imprinted polymer (MIP) sensor particles with a modular microfluidic platform for nanomolar small-molecule detection directly in aqueous samples", Biosens. Bioelectron. 99, 244-250, 2018.
112. A.B. Descalzo, C. Somoza, M.C. Moreno-Bondi, G. Orellana, "Luminescent Core–Shell Imprinted Nanoparticles Engineered for Targeted Förster Resonance Energy Transfer-Based Sensing", Anal. chem. 85(11), 5316-5320, 2013.
113. C.I. Lin, A.K. Joseph, C.K. Chang, Y. Der Lee, "Molecularly imprinted polymeric film on semiconductor nanoparticles: analyte detection by quantum dot photoluminescence", J. Chromatogr. A. 1027, 259-262, 2004.
114. W. Zhang, W. Liu, P. Li, H. Xiao, H. Wang, B. Tang, "A fluorescence nanosensor for glycoproteins with activity based on the molecularly imprinted spatial structure of the target and boronate affinity", Angew. Chem. Int. Ed. Engl. 53, 12489-12493, 2014.
115. H. Feng, N. Wang, L. Yuan, J. Li, Q. Cai, "Surface molecular imprinting on dye–(NH2)–SiO2 NPs for specific recognition and direct fluorescent quantification of perfluorooctane sulfonate", Sens. Actuators B. Chem. 195, 266-273, 2014.
116. S. Xu, H. Lu, J. Li, X. Song, A. Wang, L. Chen, S. Han, "Dummy molecularly imprinted polymers-capped CdTe quantum dots for the fluorescent sensing of 2, 4, 6-trinitrotoluene", ACS appl. mater. interfaces. 5, 8146-8154, 2013.
117. R. Sedghi, S. Ashrafzadeh, B. Heidari, "pH-sensitive molecularly imprinted polymer based on graphene oxide for stimuli actuated controlled release of curcumin", J. Alloys Compd. 157603, 2020.
118. P. Karfa, E. Roy, S. Patra, D. Kumar, R. Madhuri, P.K. Sharma, "RETRACTED: A fluorescent molecularly-imprinted polymer gate with temperature and pH as inputs for detection of alpha-fetoprotein", Biosens. Bioelectron., 78, 454-463, 2016.
119. B. Liu, J. Zhuang, G. Wei, "Recent advances in the design of colorimetric sensors for environmental monitoring", Environ. Sci. Nano. 7, 2195-2213, 2020.
120. H.-C. Hsu, L.-C. Chen, K.-C. Ho, "Colorimetric detection of morphine in a molecularly imprinted polymer using an aqueous mixture of Fe3+ and [Fe (CN) 6] 3−", Anal. chim. Acta. 504,141-147, 2004.
121. Z. Wu, C.a. Tao, C. Lin, D. Shen, G. Li, "Label‐Free Colorimetric Detection of Trace Atrazine in Aqueous Solution by Using Molecularly Imprinted Photonic Polymers", Chem. Eur. J. 14, 11358-11368, 2008.
122. M. Shamsipur, A. Besharati-Seidani, "Synthesis of a novel nanostructured ion-imprinted polymer for very fast and highly selective recognition of copper (II) ions in aqueous media", React. Funct. Polym. 71, 131-139, 2011.
123. M. Behbahani, S. Salimi, H.S. Abandansari, F. Omidi, M. Salarian, A. Esrafili, "Application of a tailor-made polymer as a selective and sensitive colorimetric sensor for reliable detection of trace levels of uranyl ions in complex matrices", RSC Advances. 5, 59912-59920, 2015.
124. T. Sergeyeva, L. Gorbach, E. Piletska, S. Piletsky, O. Brovko, L. Honcharova, O. Lutsyk, L. Sergeeva, O. Zinchenko, A. El'skaya, "Colorimetric test-systems for creatinine detection based on composite molecularly imprinted polymer membranes", Anal. Chim. Acta. 770, 161-168, 2013.
125. Q. Kong, Y. Wang, L. Zhang, S. Ge, J. Yu, "A novel microfluidic paper-based colorimetric sensor based on molecularly imprinted polymer membranes for highly selective and sensitive detection of bisphenol A", Sens. Actuators B. Chem. 243, 130-136, 2017.
126. T. Ye, W. Yin, N. Zhu, M. Yuan, H. Cao, J. Yu, Z. Gou, X. Wang, H. Zhu, A. Reyihanguli, "Colorimetric detection of pyrethroid metabolite by using surface molecularly imprinted polymer", Sens.  Actuators B. Chem. 254, 417-423, 2018.
127. C.K. Kuşçuoğlu, H. Güner, M.A. Söylemez, O. Güven, M. Barsbay, "A smartphone-based colorimetric PET sensor platform with molecular recognition via thermally initiated RAFT-mediated graft copolymerization", Sens. Actuators B. Chem. 296, 126653, 2019.
128. M.-C. Savoy, P.M. Woo, P. Ulrich, A. Tarres, P. Mottier, A. Desmarchelier, "Determination of 14 aminoglycosides by LC-MS/MS using molecularly imprinted polymer solid phase extraction for clean-up", Food Addit. Contam. A. 35, 675-686, 2018.
129. N.W. Turner, C.W. Jeans, K.R. Brain, C.J. Allender, V. Hlady, D.W. Britt, "From 3D to 2D: a review of the molecular imprinting of proteins", Biotechnol. Prog. 22, 1474-1489, 2006.
130. A. Poma, A. Guerreiro, M.J. Whitcombe, E.V. Piletska, A.P. Turner, S.A. Piletsky, "Solid‐phase synthesis of molecularly imprinted polymer nanoparticles with a reusable template–“plastic antibodies”", Adv. funct. mater. 23, 2821-2827, 2013.
131. F. Canfarotta, A. Poma, A. Guerreiro, S. Piletsky, "Solid-phase synthesis of molecularly imprinted nanoparticles", Nat. protoc. 11, 443-455, 2016.
132. C. Yeo, S. Kaushal, D. Yeo, "Enteric involvement of coronaviruses: is faecal–oral transmission of SARS-CoV-2 possible?," Lancet Gastroenterol. hepatol. 5, 335-337, 2020.