مروری بر کاربرد نانوصفحات دوبعدی به عنوان تقویت‏ کننده به منظور افزایش مقاومت به خوردگی پوشش‏ های پلیمری

نوع مقاله : مقاله مروری

نویسندگان

1 استادیار، گروه مواد غیر فلزی، پژوهشگاه نیرو، تهران، ایران، صندوق‌پستی: 14665517.

2 استاد، گروه نانو و مواد کربنی، پژوهشگاه صنعت نفت، تهران، ایران، صندوق‌پستی: 1485733111.

چکیده

پوشش پلیمری مقاوم در برابر آب، به دلیل سمیت کم، ترکیبات آلی فرار کم و مقاومت شیمیایی برجسته، توجه زیادی را به خود جلب کرده است. علی رغم این مزایا، نواقص میکرومتخلخل و کانال‏های قطبی که در طی فرآیند پخت تشکیل می‏شود، منجر به روانه شدن O2، H2O و-Cl به بسترهای فلزی می‏شوند و موجب تاول پوشش و از بین رفتن چسبندگی در پوشش‏ها می‌شود و در نتیجه خصوصیات سد پوششی کاهش می‏یابد. برای مقابله با کاهش نقص پوشش، یک روش مؤثر، مشارکت نانو پرکننده‌ها در رزین پلیمری می‏باشد. به تازگی، زمینه اپوکسی با نانو صفحات لایه‏ای به عنوان تقویت‌کننده باعث جذب چشمگیر هم در تحقیقات علمی و هم کاربردهای عملی شده‏اند که علت آن عملکرد مکانیکی عالی، مانع بودن در برابر عوامل گازی و هدایت حرارتی می‏باشد. به طور کلی عملکرد سدی تقویت شده در محیط خورنده، امکان پیشگیری عالی از خوردگی را فراهم می‏کند. در این راستا، در این مقاله اثرات نانوصفحات اکسید گرافن، گرافن، فلوراید گرافیتی، کربن نیترید، بورنیترید، کربونیترید بور، هیدروکسید لایه مضاعف و مکسن مورد بررسی قرار می‏ گیرد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A Review of the Application of Two-dimensional Nanosheets as a Reinforcement to Increase the Corrosion Resistance of Polymer Coatings

نویسندگان [English]

  • Majid Mirzaee 1
  • Majid Rezaei Abadchi 1
  • Alimorad Rashidi 2
1 Non-Metallic Materials Research Group, Niroo Research Institute, P. O. Box: 14665517, Tehran, Iran.
2 Nanotechnology Research Center, Research Institute of Petroleum Industry (RIPI), P.O. Box: 14857-33111, Tehran, Iran.
چکیده [English]

The water-resistant polymer coating has attracted much attention due to its low toxicity, low volatile organic compounds, and outstanding chemical resistance. Despite these advantages, the microporous defects and polar channels that are formed during the curing process lead to O2, H2O, and Cl- being sent to the metal substrates and cause blistering of the coating and loss of adhesion in the coatings, and as a result, the properties of the barrier coating are reduced. Participating nanofillers in a polymer resin to reduce coating defects is an effective method. Epoxy matrices with layered nano-plates as reinforcement have recently attracted significant attention in scientific research and practical applications due to their excellent mechanical performance, barrier against gas factors, and thermal conductivity. In general, enhanced barrier function in corrosive environments provides excellent corrosion prevention. In this regard, in this article, the effects of graphene oxide nanosheets, graphene, graphite fluoride, carbon nitride, boron nitride, boron carbonitride, LDHs, and Mxene are investigated.

کلیدواژه‌ها [English]

  • Polymer coating
  • Corrosion resistance
  • Two-dimensional nano sheets
  • Barrier effects
1.   Pourhashem S, Rashidi A, Alaei M, Moradi MA, Maklavany DM. Developing a new method for synthesizing amine functionalized gC3N4 nanosheets for application as anti-corrosion nanofiller in epoxy coatings. SN Appl Sci. 2019;1:1-11. https://doi.org/10.1007/s42452-018-0123-7.
2.   Javaherdashti R. How corrosion affects industry and life. Anti-Corros Methods Mater. 2000;47:30-34. 
https://doi.org/10.1108/00035590010310003.
3.   Tiu BDB, Advincula RC. Polymeric corrosion inhibitors for the oil and gas industry: Design principles and mechanism. React Funct Polym. 2015;95:25-45.
https://doi.org/10.1016/j.reactfunctpolym.2015.08.006.
4.   Ranjbar Z, Montazeri S, Jalili M. Optimization of a waterborne epoxy coatings formulation via experimental design. Prog Color Color Coat. 2009;2:23-33. 
https://doi.org/10.30509/pccc.2009.75748.
5.   Olajire AA. Recent advances on organic coating system technologies for corrosion protection of offshore metallic structures. J Mol Liq. 2018;269:572-606. 
https://doi.org/10.1016/j.molliq.2018.08.053.
6.   Hosseinpour A, Abadchi MR, Mirzaee M, Tabar FA, Ramezanzadeh B. Recent advances and future perspectives for carbon nanostructures reinforced organic coating for anti-corrosion application. Surf Interfaces. 2021;23:100994. https://doi.org/10.1016/j.surfin.2021.100994.
7.   Mert BD. Corrosion protection of aluminum by electrochemically synthesized composite organic coating. Corros Sci. 2016;103:88-94.
 https://doi.org/10.1016/j.corsci.2015.11.008.
8.   Sun H, Jiang F, Lei F, Chen L, Zhang H, Leng J, Sun D.Graphite fluoride reinforced PA6 composites: Crystallization and mechanical properties.Mater Today Commun 2018;16:217-225.
 https://doi.org/10.1016/j.mtcomm.2018.06.007 
9.   Mirzaee M, Abadchi MR, Fateh A, Zolriasatein A.Investigation of Corrosion Properties of Modified Epoxy and Polyurethane Organic Coating on Steel Substrate.Prog Color Color Coat 2022;15(1):25-36. 
https://doi.org/10.30509/pccc2021 .166736 .1092. 
10.  Ruhi G, Bhandari H, Dhawan SK.Designing of corrosion resistant epoxy coatings embedded with polypyrrole/SiO2 composite.Prog Org Coat 2014;77(9):1484-1498.
11.  Arunkumar S, Jegatheesh V, Soundharya R, Alka MJ, Mayavan S. BCN based oil coatings for mild steel under aggressive chloride ion environment. Appl Surf Sci. 2018;449:287-294. https://doi.org/10.1016/j.apsusc.2018.01.030.
12.  Huang YC, Lo TY, Chao CG, Whang WT. Anti-corrosion characteristics of polyimide/h-boron nitride composite films with different polymer configurations. Surf Coat Technol. 2014;260:113-117. 
https://doi.org/10.1016/j.surfcoat.2014.09.043.
13.  Cao S, Yu J. g-C3N4-based photocatalysts for hydrogen generation. J Phys Chem Lett. 2014;5(12):2101-2107.
 https://doi.org/10.1002/cctc.201601659.
14.  Song B, Wang T, Sun H, Liu H, Mai X, Wang X, Wang L, Wang N, Huang Y, Guo Z.Graphitic carbon nitride (g-C3N4) interfacially strengthened carbon fiber epoxy composites.Compos Sci Technol 2018;167:515-521. 
https://doi.org/10.1016/j.compscitech.2018.08.031 
15.  Khan A, Puttegowda M, Jagadeesh P, Marwani HM, Asiri AM, Manikandan A, Parwaz Khan AA, Ashraf GM, Rangappa SM, Siengchin S.Review on Nitride compounds and its polymer composites: A multifunctional material.J Mater Res Technol 2022;18:2175-2193.
https://doi.org/10.1016/j.jmrt .2022 .03 .032 
16.  Xia Y, He Y, Chen C, Wu Y, Zhong F, Chen J.Co-modification of polydopamine and KH560 on g-C3N4 nanosheets for enhancing the corrosion protection property of waterborne epoxy coating. React Funct Polym. 2020;146:104405. https://doi.org/10.1016/j.reactfunctpolym .2019 .104405. 
17.  Malav JK, Rathod R, Umare S, Vidyasagar D.Structural, thermal and anticorrosion properties of electroactive polyimide/g-C3N4 composites.Mater Res Express 2018;5:095309. https://doi.org/10 .1088 /2053 -1591 /aad719 
18.  Xia Y, Zhang N, Zhou Z, Chen C, Wu Y, Zhong F, Lv Y, He Y.Incorporating SiO2 functionalized g-C3N4 sheets to enhance anticorrosion performance of waterborne epoxy.Prog Org Coat 2020;147:105768. https://doi.org/10 .1016 /j .porgcoat .2020 .105768 
19.  Pourhashem S, Duan J, Guan F, Wang N, Gao Y, Hou B.New effects of TiO2 nanotube/g-C3N4 hybrids on the corrosion protection performance of epoxy coatings.J Mol Liq 2020;317:114214. 
https://doi.org/10 .1016 /j .molliq .2020 .114214 
20.  Xu JH, Ye S, Ding CD , Tan LH , Fu JJ.Autonomous self-healing supramolecular elastomer reinforced and toughened by graphitic carbon nitride nanosheets tailored for smart anticorrosion coating applications.J Mater Chem A 2018;6(14):5887-5898. https://doi.org/10 .1039 /C7TA09841C
21.  Chen C, He Y, Xiao G, Zhong F, Xia Y, Wu Y. Graphic C3N4-assisted dispersion of graphene to improve the corrosion resistance of waterborne epoxy coating. Prog Org Coat. 2020;139:105448. 
https://doi.org/10.1016/j.porgcoat.2019.105448.
22.  Lei F, Wu B, Sun H, Jiang F, Yang J, Sun D. Simultaneously improving the anticorrosion and antiscratch performance of epoxy coatings with graphite fluoride via large-scale preparation. Ind Eng Chem Res. 2018;5:16709-16717. https://doi.org/10.1021/acs.iecr.8b04405.
23.  Goyenola C, Stafstrom S, Schmidt S, Hultman L, Gueorguiev GK. Carbon fluoride, CFx: Structural diversity as predicted by first principles. J Phys Chem C. 2014;118(12):6514-6521. https://doi.org/10.1021/jp500653c.
24.  Cheng WJ, Sellers RS, Anderson MH, Sridharan K, Wang CJ, Allen TR. Zirconium effect on the corrosion behavior of 316L stainless steel alloy and Hastelloy-N superalloy in molten fluoride salt. Nucl Technol. 2013;183:248-259. https://doi.org/10.13182/NT12-125.
25.  Lei F, Zhang C, Cai Z, Yang J, Sun H, Sun D.Epoxy toughening with graphite fluoride: Toward high toughness and strength. Polym. 2018;150:44-51. https://doi.org/10 .1016 /j .polymer .2018 .07 .084 
26.  Alipanah N, Yari H, Mahdavian M, Ramezanzadeh B, Bahlakeh G.MIL-88A (Fe) filler with duplicate corrosion inhibitive/barrier effect for epoxy coatings: Electrochemical, molecular simulation, and cathodic delamination studies.J Ind Eng Chem 2021;97:200-215. https://doi.org/10 .1016 /j .jiec .2021 .01 .035 
27.  .Sun L , Boo WJ , Clearfield A , Sue HJ , Pham H.Barrier properties of model epoxy nanocomposites.J Membr Sci 2008;318:129-136. 
https://doi.org/10 .1016 /j .memsci .2008 .02 .041 
28.  Maadani M , Jafari H , Saeb MR , Ramezanzadeh B , Najafi F , Puglia D.Studying the corrosion protection behavior of an epoxy composite coating reinforced with functionalized graphene oxide by second and fourth generations of poly(amidoamine) dendrimers (GO-PAMAM-2 , 4).Prog Color Color Coats 2020;13(4):261-273. https://doi.org/10 .30509 /pccc .2020 .81655 
29.  Ricci A , Cataldi A , Zara S , Gallorini M.Graphene-oxide-enriched biomaterials: a focus on osteo and chondroinductive properties and immunomodulation.Mater 2022;15:2229. https://doi.org/10 .3390 /ma1506229 
30.  Li LH , Xing T , Chen Y , Jones R.Boron nitride nanosheets for metal protection.Adv Mater Interfaces 2014;1(8):1300132. 
https://doi.org/10 .1002 /admi .201300132 
31.  Priyadarsini S , Mohanty S , Mukherjee S , Basu S , Mishra M.Graphene and graphene oxide as nanomaterials for medicine and biology application.J nanostructure 2018;8(2):123-137. 
https://doi.org/10 .3390 /nano13061092
32.   Olabi A , Abdelkareem MA , Wilberforce T , Sayed ET.Application of graphene in energy storage device–A review. Renew Sust Energ Rev. 2021;135:110026. https://doi.org/10 .1016 /j .rser .2020 .110026 
33.  .Prasai D, Tuberquia JC, Harl RR , Jennings GK, Bolotin KI.Graphene: corrosion-inhibiting coating.ACS nano 2012;6:1102-1108. https://doi.org/10 .1021 /nn203507y 
34.  George JS , Vijayan P , Paduvilan JK , Salim N , Sunarso J , Kalarikkal N , Hameed N , Thomas S.Advances and future outlook in epoxy/graphene composites for anticorrosive applications. Prog Org Coat.
2022;162:106571. https://doi.org/10 .1016 /j .porgcoat .2021 .106571 
35.  .Pourhashem S , Ghasemy E , Rashidi A , Vaezi MR.A review on application of carbon nanostructures as nanofiller in corrosion-resistant organic coatings.J Coat Technol Res 2019;1:1-37. https://doi.org/10 .1007 /s11998 -019 -00275 -6
36.   Alhumade H , Yu A , Elkamel A , Simon L , Abdala A.Enhanced protective properties and UV stability of epoxy/graphene nanocomposite coating on stainless steel. Express Polym Lett. 2016;10(12):1034-1046.
 https://doi.org/10 .3144 /expresspolymlett .2016 .96 
37.  Monetta T, Acquesta A, Carangelo A, Naddeo C, Guadagno L. Enhancement of photooxidative and corrosion resistance of epoxy/graphene water-based coatings on metallic substrate. Prog Org Coat. 2019;135:7-18. https://10.1016/j.porgcoat.2019.05.031
38.  Pourhashem S, Vaezi MR, Rashidi A, Bagherzadeh MR. Exploring corrosion protection properties of solvent based epoxy-graphene oxide nanocomposite coatings on mild steel. Corros Sci. 2017;115:78-92. 
https://10.1016/j.corsci.2016.11.008
39.  Rajabi M, Rashed G, Zaarei D. Assessment of graphene oxide/epoxy nanocomposite as corrosion resistance coating on carbon steel. Corros Eng Sci Technol. 2015;50(7):509-16. https://10.1179/1743278214Y0000000232
40.  Krishnamoorthy K, Jeyasubramanian K, Premanathan M, Subbiah G, Shin HS, Kim SJ. Graphene oxide nanopaint. Carbon. 2014;72:328-37. 
https://10.1016/j.carbon.2014.02.013
41.  Mo M, Zhao W, Chen Z, Yu Q, Zeng Z, Wu X, et al. Excellent tribological and anti-corrosion performance of polyurethane composite coatings reinforced with functionalized graphene and graphene oxide nanosheets. RSC Adv. 2015;5:56486-97. https://10.1039/C5RA10494G
42.  Zhang Z, Zhang W, Li D, Sun Y, Wang Z, Hou C, et al. Mechanical and anticorrosive properties of graphene/epoxy resin composites coating prepared by in-situ method. Int J Mol Sci. 2015;16(1):2239-51. 
https://10.3390/ijms16012239
43.  Richards C, Glover C, Williams G, McMurray H, Baker J. Evaluation of multi-layered graphene nano-platelet composite coatings for corrosion control part I-contact potentials and gas permeability. Corros Sci. 2018;136:285-91. https://doi.org/10.1016/j.corsci.2018.03.016
44.  Li J, Gan L, Liu Y, Mateti S, Lei W, Chen Y, et al. Boron nitride nanosheets reinforced waterborne polyurethane coatings for improving corrosion resistance and antifriction properties. Eur. Polym. J. 2018;104:57-63. 
https://doi.org/10.1016/j.eurpolymj.2018.04.042
45.  Salunke DR, Gopalan V.Thermal and electrical behaviors of Boron Nitride/Epoxy reinforced polymer matrix composite—A review.Polym Compos 2021;42(4):1659-69. https://doi.org/10.1002/pc.25952
46.  Cui M, Ren S, Qin S, Xue Q, Zhao H,Wang L.Processable poly (2-butylaniline)/hexagonal boron nitride nanohybrids for synergetic anticorrosive reinforcement of epoxy coating.Corros Sci 2018;131:187-98. 
https://doi.org/10.1016/j.corsci.2017.11.022
47.  Lacombre CV,Bouvet G ,Trinh D ,Mallarino S ,Touzain S.Water uptake in free films and coatings using the Brasher and Kingsbury equation: a possible explanation of the different values obtained by electrochemical Impedance spectroscopy and gravimetry.Electrochim Acta 2017;231:162-70. https://doi.org/10.1016/j.electacta .2017 .02 .051.
48.  Miszczyk A,Darowicki K.Water uptake in protective organic coatings and its reflection in measured coating impedance.Prog Org Coat 2018;124:296-302.
 https://doi.org/10 .1016 /j .porgcoat .2018 .03 .002.
49.  Zhang YY ,Pei QX ,Liu HY ,Wei N.Thermal conductivity of a h-BCN monolayer.Phys Chem Chem Phys 2017;19(40):27326-31. https://doi.org/10.1039/C7CP04982J.
50.  Wu Y ,He Y ,Chen C ,Zhong F ,Li H ,Chen J ,et al.Non-covalently functionalized boron nitride by graphene oxide for anticorrosive reinforcement of water-borne epoxy coating.Colloids Surf A Physicochem 2020;587:124337. https://doi.org/10.1016/j.colsurfa.2019.124337.
51.  Huang H ,Huang X ,Xie Y ,Tian Y ,Jiang X ,Zhang X.Fabrication of h-BN-rGO@ PDA nanohybrids for composite coatings with enhanced anticorrosion performance.Prog Org Coat 2019;130:124-31. 
https://doi.org/10.1016/j.porgcoat.2019.01.059.
52.  Liu H, Hao W, Qin Y. In situ preparation and properties of waterborne polyurethane/edge-isocyanated hexagonal boron nitride composite dispersions. J Coat Technol Res. 2020;18:117-27.
https://doi.org/10.1007/S11998-020-00385-6
53.  Wan P, Zhao N, Qi F, Zhang B, Xiong H, Yuan H, et al. Synthesis of PDA-BN@ f-Al2O3 hybrid for nanocomposite epoxy coating with superior corrosion protective properties. Prog Org Coat. 2020;146:105713. https://doi.org/10.1016/j.porgcoat.2020.105713
54.  Wu Y, He Y, Zhou T, Chen C, Zhong F, Xia Y, et al. Synergistic functionalization of h-BN by mechanical exfoliation and PEI chemical modification for enhancing the corrosion resistance of waterborne epoxy coating. Prog Org Coat. 2020;142:105541. 
https://doi.org/10.1016/j.porgcoat.2020.105541
55.  Wu Y, Yu J, Zhao W, Wang C, Wu B, Lu G. Investigating the anti-corrosion behaviors of the waterborne epoxy composite coatings with barrier and inhibition roles on mild steel. Prog Org Coat. 2019;133:8-18.
 https://doi.org/10.1016/j.porgcoat.2019.04.028
56.  Cui M, Ren S, Chen J, Liu S, Zhang G, Zhao H, et al.Anticorrosive performance of waterborne epoxy coatings containing water-dispersible hexagonal boron nitride (h-BN) nanosheets.Appl Surf Sci 2017;397:77-86. https://doi.org/10 .1016 /j .apsusc .2016 .11 .141.
57.  Zhang C, He Y, Li F, Di H, Zhang L, Zhan Y. h-BN decorated with Fe3O4 nanoparticles through mussel-inspired chemistry of dopamine for reinforcing anticorrosion performance of epoxy coatings.J Alloys Compd 2016;685:743-51.
 https://doi.org/10 .1016 /j .jallcom .2016 .06 .220.
58.  Husain E ,Narayanan TN ,Taha-Tijerina J ,Vinod S ,Vajtai R, Ajayan PM. Marine corrosion protective coatings of hexagonal boron nitride thin films on stainless steel.ACS Appl Mater Interfaces 2013;5(10):4129-35.
 https://doi.org/10 .1021 /am400016y.
59.  Sarkar N ,Sahoo G ,Das R ,Prusty G ,Sahu D ,Swain SK.Anticorrosion performance of three-dimensional hierarchical PANI@ BN nanohybrids.Ind Eng Chem Res 2016;55(11):2921-31.
 https://doi.org/10 .1021 /acs .iecr .5b04887.
60.  Cui M ,Ren S ,Qin S ,Xue Q ,Zhao H ,Wang L.Non-covalent functionalized hexagonal boron nitride nanoplatelets to improve corrosion and wear resistance of epoxy coatings.RSC Adv 2017;7(70):44043-53.
 https://doi.org/10 .1039 /C7RA06835B.
61.  Yu J ,Zhao W ,Liu G ,Wu Y ,Wang D.Anti-corrosion mechanism of 2D nanosheet materials in waterborne epoxy coatings.Surf Topogr Metrol Prop 2018;6(3):034019.Available from: https://doi.org/10 .1088 /2051-672X /aad5ab.
62.  Gao X ,Bilal M ,Ali N ,Yun S ,Wang J ,Ni L ,et al.Two-dimensi onal nanosheets functionalized water-borne polyurethane nanocomposites with improved mechanical and anti-corrosion properties.Inorg Nano-Met Chem 2020;50(12):1358-66. 
https://doi.org/10 .1080 /24701556 .2020 .1749656.
63.  Huang Z ,Zhao W ,Zhao W ,Ci X ,Li W.Tribological and anti-corrosion performance of epoxy resin composite coatings reinforced with differently sized cubic boron nitride (CBN) particles.Friction 2020;1:1-15.
 https://doi.org/10 .1007 /s40544-019-0329-8.
64.  Kardar P ,Amini R.Studying the Active Corrosion Inhibition Effect of the Ce3+/2-Mercaptobenzothiazole Loaded NaY Zeolite/Zn-Al LDH Based Containers in a Silane Coating.Prog Color Color Coat 2022;15(1):1-9. https://doi.org/10 .30509 /pccc .2022 .81675.
65.  Karami Z ,Jouyandeh M ,Ali JA ,Ganjali MR ,Aghazadeh M ,Paran SMR ,et al.Epoxy/layered double hydroxide (LDH) nanocomposites: Synthesis, characterization, and Excellent cure feature of nitrate anion intercalated Zn-Al LDH. Prog Org Coat 2019;136:105218. https://doi.org/10 .1016 /j .porgcoat .2019 .105218
66.  Su Y, Qiu S, Yang D, Liu S, Zhao H, Wang L, Xue Q. Active anti-corrosion of epoxy coating by nitrite ions intercalated MgAl LDH. J Hazard Mater. 2020;391:122215. 
https://doi.org/10.1016/j.jhazmat.2020.122215
67.  Zhang Y, Yu P, Wu J, Chen F, Li Y, Zhang Y, Zuo YX, Qi Y. Enhancement of anticorrosion protection via inhibitor-loaded ZnAlCe-LDH nanocontainers embedded in sol–gel coatings. J Coat Technol Res. 2018;15(2):303-313. 
https://doi.org/10.1007/s11998-017-9978-6
68.  Hang TTX, Truc TA, Duong NT, Pébère N, Olivier MG. Layered double hydroxides as containers of inhibitors in organic coatings for corrosion protection of carbon steel. Prog Org Coat. 2012;74(2):343-348. 
https://doi.org/10.1016/j.porgcoat.2011.10.020
69.  Shkirskiy V, Keil P, Hintze-Bruening H, Leroux F, Vialat P, Lefèvre G, et al. Factors affecting MoO42–inhibitor release from Zn2Al based layered double hydroxide and their implication in protecting hot dip galvanized steel by means of organic coatings. ACS Appl Mater Interfaces. 2015;7(45):25180-25192. https://doi.org/10.1021/acsami.5b06702
70.  Mei Y, Xu J, Jiang L, Tan Q. Enhancing corrosion resistance of epoxy coating on steel reinforcement by aminobenzoate intercalated layered double hydroxides. Prog Org Coat. 2019;134:288-296.
https://doi.org/10.1016/j.porgcoat.2019.05.023
71.  Li D, Wang F, Yu X, Wang J, Liu Q, Yang P, et al. Anticorrosion organic coating with layered double hydroxide loaded with corrosion inhibitor of tungstate. Prog Org Coat. 2011;71:302-309.
https://doi.org/10.1016/j.porgcoat.2011.03.023
72.  Yan H, Li W, Li H, Fan X, Zhu M. Ti3C2 MXene nanosheets toward high-performance corrosion inhibitor for epoxy coating. Prog Org Coat. 2019;135:156-167. https://doi.org/10.1016/j.porgcoat.2019.06.013
73.  Ji J, Zhao L, Shen Y, Liu S, Zhang Y. Covalent stabilization and functionalization of MXene via silylation reactions with improved surface properties. FlatChem. 2019;17:100128. https://doi.org/10.1016/j.flatc.2019.100128
74.  Yan H, Cai M, Li W, Fan X, Zhu M. Amino-functionalized Ti3C2Tx with anti-corrosive/wear function for waterborne epoxy coating. J Mater Sci Technol. 2020;54:144-159. https://doi.org/10.1016/j.jmst.2020.05.002
75.  Wang H, Qin S, Yang X, Fei G, Tian M, Shao Y, et al. A waterborne uniform graphene-poly (urethane-acrylate) complex with enhanced anticorrosive properties enabled by ionic interaction. Chem Eng J. 2018;351:939-951.
https://doi.org/10.1016/j.cej.2018.06.151
76.  Wen JG, Geng W, Geng H-Zh, Zhao H, Jing LCh, Yuan XT, et al. Improvement of corrosion resistance of waterborne polyurethane coatings by covalent and noncovalent grafted graphene oxide nanosheets", ACS omega., 4(23), 20265-20274., 2019. 
https://doi.org/10.1021/acsomega.9b02687
77.  Zhang F, Liu W, Wang Sh, Liu Ch, Shi H, Liang L, Pi K, Surface functionalization of Ti3C2Tx and its application in aqueous polymer nanocomposites for reinforcing corrosion protection", Compos B Eng. 217, 108900. 2021.
https://doi.org/10.1016/j.compositesb.2021.108900
78.  Cai M, Fan X, Yan H, Li Y, Song Sh, Li W, et al. In situ assemble Ti3C2Tx MXene@ MgAl-LDH heterostructure towards anticorrosion and antiwear application", Chem Eng J., 419, 130050., 2021. https://doi.org/10.1016/j.cei2021
79.  Li S, Huang H, Chen F, He X, Ma Y, Zhang L, et al. Reinforced anticorrosion performance of waterborne epoxy coating with eco-friendly L-cysteine modified Ti3C2Tx MXene nanosheets. Prog Org Coat. 2021;161:106478. https://doi.org/10.1016/j.porgcoat.2021.106478
80.  Sheng X, Li S, Huang H, Zhao Y, Chen Y, Zhang L, Xie D. Anticorrosive and UV-blocking waterborne polyurethane composite coating containing novel two-dimensional Ti3C2 MXene nanosheets. J Mater Sci. 2021;56:4212-4224.
https://doi.org/10.1007/s10853-020-05525-2