مروری بر آخرین تحقیقات درباره سنتز مواد رنگزای فلورسنس با استفاده از روش ماکروویو

نوع مقاله : مقاله مروری

نویسندگان

1 استادیار، الف)گروه پژوهشی مواد رنگزای آلی؛ ب) قطب علمی رنگ، پژوهشگاه رنگ

2 دانشیار، الف)گروه پژوهشی مواد رنگزای آلی؛ ب) قطب علمی رنگ، پژوهشگاه رنگ

چکیده

روش ماکروویو به عنوان یک فرآیند جدید برای سنتز انواع ترکیبات آلی ازجمله مواد رنگزا مورد توجه قرار گرفته است. این روش دارای مزایای متعددی است که عبارتند از: سهولت انجام، سریع بودن، مقرون به صرفه بودن و بازدهی بالا. مواد رنگزا کاربردهای زیادی در حوزه‌های مختلف دارند. مواد رنگزای آلی دارای ویژگی‌های فوتوفیزیکی و فوتوشیمیایی و کاربردهای زیستی متفاوتی هستند. مهم‌ترین گروه‌های مواد رنگزا که با روش ماکروویو توسعه یافته‌اند عبارتند از: نفتالیمیدها، فنوتیازین‌ها، فلورسئین‌ها، پیریدینیم، سیانین‌ها، کوئینولین‌ها، کومارین‌ها، تری‌آزوکوئینوکسازین‌ها و ترکیبات مونوآزو دیسپرس. عواملی مانند دما، نوع حلال و قدرت تابش بر روی پیشرفت واکنش و بازده نهایی اثر بسزایی دارند. انتقال انرژی توسط فرآیند ماکروویو در محیط واکنش در حدود 9-10 ثانیه است. این مقاله مروری بر کاربرد روش ماکروویو برای سنتز مواد رنگزا با ویژگی‌های فلورسنس، لومینسانس و فوتوفیزیکی است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Review of Recent Research into Synthesis of Fluorescent Dyes Using Microwave Method

نویسندگان [English]

  • Mozhgan Hosseinnezhad 1
  • Shohreh Rouhani 2
1 a) Department of Organic Colorants, b) Center of Excellence for Color Science and Technology, Institute for Color Science and Technology
2 a) Department of Organic Colorants, b) Center of Excellence for Color Science and Technology, Institute for Color Science and Technology
چکیده [English]

The microwave-assisted has been regarded as a new strategy in the synthesis various organic compounds especially organic dye. The technique offers a lot of advantages as it is simple, rapid, economic and efficient. Dyes are effective molecules have pivotal effects in several fields. Organic dyes were endowed with a diverse of photophysical and photochemical and biomedical applications. Novel microwave synthetic method for many types of dyes including naphthalimides, phenothiazines, fluorescein, pyridinones, cyanines, quinolines, coumarins, triazoloquinoxalines and monoazo disperse dyes were demonstrated. Factors like temperature, type of solvent and power control microwave reactions. Microwaves possess the potential to transport energy from one medium to another in a small duration of 10−9 s with every run of electromagnetic energy. This review highlights microwave applications for the synthesis of dyes with fluorescence, luminescence and photophysical properties.

کلیدواژه‌ها [English]

  • Fluorescent dye
  • Microwave
  • Efficiency
  • Synthesis
  • Naphthalimide
  1. L. Perreux, A. Loupy, "A tentative rationalization of microwave effects in organic synthesis according to the reaction medium, and mechanistic considerations", Tetrahedron. 27, 9199-9223, 2001.
  2. S. Rouhani, K. Gharanjig, M. Hosseinnezhad, "Facile synthesis of 4-nitro-N-substituted-1, 8-naphthalimide derivatives using ultrasound in aqueous media", Green Chem. Lett. 7, 174-178, 2014.
  3. A. Loupy, "Microwaves in Organic Synthesis", Wiley-VCH, Weinheim, 2002.
  4. H.M. Kingston, S.J. Haswell, "Microwave-enhanced Chemistry: Fundamentals, Sample Preparation, and Applications", American Chemical Society pub. Washengton, 1997.
  5. J. D. Evans, B. Garai, H. Reinsch, W. Li, S. Dissegna, V. Bon, I. Senkovska, R.A. Fischer, S. Kaskel, C. Janiak, N. Stock, D. Volkmer, "Metal–organic frameworks in Germany: From synthesis to function", Coord. Chem. Rev. 380, 378-418, 2019.
  6. B.L. Hayes, "Microwave Synthesis: Chemistry at the Speed of Light", CEM Publishing, Matthews, NC, 2002.
  7. P. Lidstrom, J.P. Tierney, "Microwave-assisted organic synthesis", Blackwell Publishing, Oxford, 2005.
  8. A. Loupy, "Microwaves in Organic Synthesis", second ed. Wiley-VCH, Weinheim, 2006.
  9. S. Sangeetha, V. Rajendran, "Influence of transition metals distribution on the properties of strontium tartrate trihydrate nonlinear optical single crystals grown in silica gel", J. Alloys Comp. 789, 1008-1014, 2019.
  10. A. K. Rathi, M. B. Gawande, R. Zboril, R. S. Varma, "Microwave assisted synthesiscatalytic application in aqueos media", Coord. Chem. Rev. 290, 68-94, 2015.
  11. N. R. Khan, V. K. Rathod, "Microwave assisted enzymatic synthesis of speciality esters: A mini -review", Proc. Biochem. 75, 89-98, 2018.
  12. S. R. Bansode, V. K. Rathod, R. Zboril, R. S. Varma, "Enzymatic synthesis of Isoamyl butyrate under microwave irradiation", Chem. Eng. Process Intensif. 129, 71-76, 2018.
  13. J. Movahedi, M. Hosseinnezhad, H. Haratizadeh, N. Falah, "Synthesis and investigation of photovoltaic properties of new organic dye in solar cells device", Prog. Color Colorants Coat. 12, 33-38, 2019.
  14. H. Wyler, "Die betalaine", Chem. Unserer Zeit. 3, 146-151, 1969.
  15. H. Musso, "The pigments of fly agaric, Amanita muscaria", Tetrahedron. 35, 2843-2853, 1979.
  16. L. Hsin, C. Cheng, "Spectroscopic investigations of vinylsubstituted-10H-phenothiazine", Dyes Pigm. 83, 230-236, 2009.
  17. E. A. Onoabedje, S.A. Egu, M.A. Ezeokonkwo, U.C. Okoro, "Highlights of molecular structures and applications of phenothiazine & phenoxazine polycycles", J. Mol. Struct. 1175, 956-962, 2019.
  18. T. A. Blank, K.S. Ostras, O.V. Shishkina, O.A. Zhikol, G.V. Palamarchuk, L.P. Eksperiandova, "The nature of bathochromic shift in the solvated chloranilic acid: A quantum chemical approach", J. Mol. Liq. 211, 187-191, 2015.
  19. G. Luiza, T. Ioana, G. Emese, L. Alexandru, B. Cristina, S. Radu, D. Grigore, L. Peter, C. Castelia, S. Luminit, "Microwave assisted synthesis, photophysical and redox properties of (phenothiazinyl)vinyl-pyridinium dyes", Dyes Pigm. 102, 315-325, 2014.
  20. A. Ioana, A. Ana-Maria, C. Castelia, "Phenothiazine-carboxaldehyde-hydrazone derivatives synthesis, characterization and electronic properties", Rev. Roum. Chin. 57, 337-344, 2012.
  21. K. Santosh, D. Joydeep, K. Dutta, "Preparation, characterization and optical property of chitosan-phenothiazine derivative by microwave assisted synthesis", Pure Appl. Chem. 46, 1095-1102, 2009.
  22. C. Queiros, A. Silva, S. Lopes, G. Ivanova, P. Gameiro, M. Rangel, "A novel fluorescein-based dye containing a catechol chelating unit to sense iron (III)", Dye Pigm. 93, 1447-1455, 2012.
  23. F. A. Mohamed, K. Haggag, "Solvent free fluorescein dye and its application use Microwave", Inter. J. Chem. Technol. Res. 7, 164-169, 2015.
  24. M. Clark, S. Hilderbrand, S. Lippard, "Synthesis of fluorescein derivatives containing metal-coordinating heterocycles", Tetrahedron Lett. 45, 7129-7131, 2004.
  25. D. Mijin, M. Baghbanzadeh, C. Reidlinger, O. Kappe, "The microwave-assisted synthesis of 5-arylazo-4,6-disubstituted-3-cyano-2-pyridone dyes", Dyes Pigm. 85, 73-78, 2010.
  26. H. Emtenas, C. Taflin, F. Almqvist, "Efficient microwave assisted synthesis of optically active bicyclic 2-pyridinones via D2-thiazolines", Mol. Divers, 3, 165-169, 2003.
  27. ش. کاظمی‌‌فرد، ل. ناجی، ف. افشارطارمی، "مروری بر مواد رنگزا: انواع پیشرفت و سازوکار عملکرد آن‌‌ها به منظور کاربرد در سلول‌‌های خورشیدی آلی"، نشریه علمی-ترویجی مطالعات در دنیای رنگ، 7، 69-55، 1396.
  28. M. Thelakkat, C. Schmitz, C. Hohle, P. Strohriegl, H.W. Schmidt, U. Hofmann, S. Schloter, D. Haarer, "Novel functional materials based on triarylamines-synthesis and application inelectroluminescent devices and photorefractive systems", Phys. Chem. Chem. Phys. 17, 1693-1698, 2015.
  29. E.V. Verbitskiy, E.M. Cheprakova, J.O. Subbotina, A.V. Schepochkin, P.A. Slepukhin, G.L. Rusinov, V.N. Charushin, O.N. Chupakhin, N.I. Makarova, A.V. Metelitsa, "Synthesis, spectral and electrochemical properties of pyrimidine-containing dyes as photosensitizers for dye-sensitized solar cells", Dye Pigm. 100, 201-214, 2014.
  30. E V. Sharma, F. Chandra, D. Sahoo, A.L. Koner, "Efficient microwave-assisted synthesis of Sonogashira-coupled perylene monoimide derivatives: impact of electron-donating groups on optoelectronic properties", Eur. J. Org Chem. 46, 6901-6905, 2017.
  31. T. Karatsu, M. Yanai, S. Yagai, J. Mizukami, T. Urano, A. Kitamura, "Evaluation of sensitizing ability of barbiturate-functionalized non-ionic cyanine dyes; application for photo induced radical generation system initiated by near IR light", J. Photochem. Photobiol. Chem. 170, 123-129, 2005.
  32. H. Alganzory, M. Arief, M. Amine, E.M. Ebeid, "Microwave-assisted solventfree synthesis and fluorescence spectral characteristics of some monomethine cyanine dyes", J. Chem. Pharmaceut. Res. 6, 143-161, 2014.
  33. X.H. Zhang, L.Y. Wang, Z.X. Nan, S.H. Tan, Z.X. Zhang, "Microwave-assisted solvent-free synthesis and spectral properties of some dimethine cyanine dyes as fluorescent dyes for DNA detection", Dyes Pigm. 79, 205-209, 2008.
  34. F.J. Duarte, L.S. Liao, K.M. Vaeth, A.M. Miller, "Widely tunable green laser emission using the coumarin 545 tetramethyl dye as the gain medium", Opt. A: Pure Appl. Opt. 8, 172-174, 2006.
  35. H. Takano, T. Narumi, W. Nomura, H. Tamamura, "Microwave-Assisted synthesis of azacoumarin fluorophores and the fluorescence characterization", J. Org. Chem. 82, 2739-2744, 2017.
  36. K.A. Ahmed, M.M. El-Molla, M.S.A. Abdel-Mottaleb, S.M. Attia, M.S. El-sayed, "Synthesis and evaluation of novel fluorescent dyes using microwave irradiation", Res. J. Chem. Sci. 3, 3-18, 2013.
  37. G.H. Elgemeie, R. A. Mohamed, "Microwave synthesis of fluorescent and luminescent dyes (1990-2017)", J. Mol. Struc. 1173, 707-742, 2018.
  38. A. Sargenti, G. Farruggia, N. Zaccheroni, C. Marraccini, M. Sgarzi, C. Cappadone, E. Malucelli, A. Procopio, L. Prodi, M. Lombardo, S. Iotti, "Synthesis of a highly Mg2‏-selective fluorescent probe and its application to quantifying and imaging total intracellular magnesium", Nat. Protoc. 12, 461-471, 2017.
  39. S.D. Shinde, G.D. Yadav, "Microwave-assisted lipase catalyzed synthesis of geranyl cinnamate: optimization and kinetic modeling", Appl. Biochem. Biotechnol. 175, 2035-2049, 2015.
  40. C.O. Kappe, A. Stadler, "Microwaves in Organic and Medicinal Chemistry", Wiley-VCH, Weinheim, 2006.
  41. J. Yang, X. Chen, D. Yu, R. Gao, "Microwave-assisted synthesis of butyl galactopyranoside catalyzed by β-galactosidase from Thermotoga naphthophila RKU-10", Proc. Biochem. 51, 53-58, 2016.