مروری بر مواد رنگزای آلی-معدنی برای کاربرد در دیودهای آلی نورتاب

نوع مقاله : مقاله مروری

نویسندگان

1 دانشیار، گروه پژوهشی مواد رنگزای آلی، پژوهشگاه رنگ، تهران، ایران، صندوق پستی: 654-167654.

2 محقق ارشد، دانشکده مهندسی مکانیک، دانشگاه کایوناس، لیتوانی، صندوق پستی 51373.

چکیده

در حوزه های جدید فناوری، دیودهای نورتاب آلی و بهینه‌سازی اجزای آن بسیار مورد توجه می‌‌باشد. کمپلکس‌‌های آلی- معدنی دارای فلزات سنگین بوده که منجر به اختلاط منیفولدهای یگانه و سه گانه‌ شده و بازده انتشار را افزایش می‌‌دهد. برای اینکه دیودهای نورتاب آلی در کاربردهای نمایشگر مفید باشند، انتشار واقعی قرمز، سبز و آبی با بازده نور کافی و رنگی مناسب مورد نیاز است. فلزات واسطه که برای تهیه کمپلکس‌‌های آلی-معدنی نشرکننده مورد استفاده قرار می‌‌گیرد عبارتند از: ایریدیم، پلاتین، اسمیم و روی (II). توسعه این ترکیبات وابسته به استخلاف‌‌ها و واحدهای ساختاری آلی بوده که به عنوان لیگاند، مورد استفاده قرار می‌‌گیرند. تحقیقات نشان می‌‌دهد که پلاتین و ایریدیم بهترین عملکرد را در تهیه کمپلکس‌‌های آلی- معدنی نورتاب دارند. در این مقاله، مروری بر پیشرفت‌‌های اخیر در توسعه ترکیبات آلی-معدنی مورد استفاده در دیودهای نورتاب آلی انجام می‌‌شود. نحوه تهیه ساختار بهینه برای دستیابی به خلوص رنگ و توسعه کاربرد ترکیبات آلی- معدنی نیز مورد بررسی قرار خواهد گرفت.
 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Review on Organometallic Dyes for Light-Emitting Diodes

نویسندگان [English]

  • Mozhgan Hosseinnezhad 1
  • Sohrab Nasiri 2
1 Department of Organic Colorants; Institute for Color Science and Technology, P. O. Box. 16765-654, Tehran, Iran.
2 Faculty of Mechanical Engineering, Kaunas University of Technology, P.O. Box: 51373, Kaunas, Lithuania.
چکیده [English]

In new technology fields, organic light emitting diodes (OLED) and the optimization of its components are of great interest. Organometallic complexes contain heavy metals, leading to the mixing of single and triple manifolds and increasing emission efficiency. For OLEDs to be useful in display applications, true red, green, and blue emissions of sufficient luminous efficiencies and proper chromaticity are required. The transition metals used to prepare emitting organometallic complexes are iridium, platinum, osmium and zinc (II). The development of these compounds depends on substitutions and organic structural units that are used as ligands. The results show that platinum and iridium have the best performance in preparing luminous organometallic complexes. In this article, a review of the recent progress in the development of organometallic compounds used in organic light-emitting diodes is highlighted. The preparation of optimal structure to achieve color purity and the development of the application of organometallic compounds will also be investigated.

کلیدواژه‌ها [English]

  • Organic light-emitting diodes
  • Organometallic emitter
  • Iridium
  • Platinum
  • Display
Ho CL, Li H, Wong WY. Red to near-infrared organometallic phosphorescent dyes for OLED applications. J. Organometal. Chem. 2014; 751(4): 261-285. http://dx.doi.org/10.1016/j.jorganchem.2013.09.035.
2. Hosseinnezhad M, Nasiri S, Gharanjig K., Review on light-emitting organic dyes based on naphthalimide. J. Studies Color World 2023; 13(1): 1-14. https://dorl.net/dor/20.1001.1.22517278.1402.13.1.1 (In Persian)
3. Xiao L, Chen Z, Qu B, Luo J, Kong S, Gong Q, Kido J. Recent progresses on materials for electrophosphorescent organic light‐emitting devices. Adv. Mater. 2011; 23(6): 926-952. https://doi.org/10.1002/adma.201003128.
4. Nasiri S, Palanisamy P, Rabiei M, Hosseinnezhad M, Palevicius A, Vilkauskas A, Janusas G, Nutalapati V. Investigation of the influence of persulfurated benzene derivatives on optical and carrier mobility properties. Mater. Lett. 2023; 342(3): 134323. https://doi.org/10.1016/j.matlet.2023.134323
5. Zhou GJ, Wong WY, Suo S. Recent progress and current challenges in phosphorescent white organic light-emitting diodes (WOLEDs). J. Photochem. Photobio. C Photochem. Rev. 2010; 11(4); 133-250. https://doi.org/10.1016/j.jphotochemrev.2011.01.001.
6. Kalinowski J, Fattori V, Cocchi M, Gareth Williams JA. Light-emitting devices based on organometallic platinum complexes as emitters. Coordinat. Chem. Rev. 2011; 255(6), 2401-2425. https://doi.org/10.1016/j.ccr.2011.01.049
7. Sarma M, Chen LM, Chen YS, Wong KT. Exciplexes in OLEDs: principles and promises. Mater. Sci. Eng. R. Rep. 2022; 150(9): 100689. https://doi.org/10.1016/j.mser.2022.100689.
8. Kalinowski J, Giro G, Cocchi M, Fattori V, Di Marco P. Unusual disparity in electroluminescence and photoluminescence spectra of vacuum-evaporated films of 1,1-bis ((di-4-tolylamino) phenyl) cyclohexane. Appl. Phys. Lett. 2000; 76(6): 2352.  https://doi.org/10.1063/1.126343.
9. Bizzarri C, Spuling E, Knoll DM, Volz D, Bräse S. Sustainable metal complexes for organic light-emitting diodes (OLEDs). Coordin. Chem. Rev. 2018; 373(9): 49-82. https://doi.org/10.1016/j.ccr.2017.09.011
10. Miyata K, Conrad-Burton FS, Geyer FL, Zhu XY. Triplet Pair States in Singlet Fission. Chem. Rev. 2019; 119(9), 4261-4292,. https://doi.org/10.1021/acs.chemrev.8b00572
11. Hosseinnezhad M, Nasiri S. Review on metal-free light-emitting dyes for OLED. J. Studies Color World 2022; 12(4): 105-116 [In Persian]. 
12. Li TY, Wu J, Wu ZG, Zheng YX, Zuo JL, Pan Y. Rational design of phosphorescent iridium(III) complexes for emission color tunability and their applications in OLEDs. Coord. Chem. Rev., 2018; 374(8): 55-92. https://doi.org/10.1016/j.ccr.2018.06.014
13. Ryu CH, Lim J, Kim M, Shin I, Lee JY, Lee KM. 1,2,4-Triazole-Ligand-based Iridium(III) complex and its use in blue phosphorescent organic light-emitting diodes. Dye Pigm. 2023; 218(9): 11508. https://doi.org/10.1016/j.dyepig.2023.111508
14. Mei Q, Liu L, Yang J, Jiang X, Ye S, Zhang L, Tong B. Aza-triptycene-based homoleptic tris-cyclometalated iridium(III) complexes as highly efficient phosphors in green OLEDs. Dye Pigm. 2022; 199(10): 110075. https://doi.org/10.1016/j.dyepig.2021.110075
15. Altinolcek N, Battal A, Tavasli M, Cameron J, Peveler WJ, Yu HA, Skabara PJ, Fairbairn NJ, Hedley GJ. A red-orange carbazole-based iridium(III) complex: Synthesis, thermal, optical and electrochemical properties and OLED application. J. Organometal. Chem., 2021; 951(11): 122004. https://doi.org/10.1016/j.jorganchem.2021.122004.
16. Thiyagarajan MD, Balijapalli U, Leitonas K, Volyniuk D, Simokaitiene J, Keruckas J, Jatautiene E, Pathak M, Kulathi Iyer S, Grazulevicius JV. Human-eyes-friendly white electroluminescence from solution-processable hybrid OLEDs exploiting new iridium (III) complex containing benzoimidazophenanthridine ligand. Dye Pigm. 2020; 174(9): 108068. 
      https://doi.org/10.1016/j.dyepig.2019.108068
17. Hu YX, Xia X, He W, Tang Z, Lv Y, Li X, Zhang DY. Recent developments in benzothiazole-based iridium (II) complexes for application in OLEDs as electrophosphorescent emitters. Org. Electron. 2019; 66(9): 126-135. https://doi.org/10.1016/j.orgel.2018.12.029
18. Song Z, Xu X, Zhao N, Cao C, Zhang Y, Liu L, Mao Y. AIE-active heteroleptic iridium complexes showing piezochromic luminescence. J. Mol. Struct., 2023; 1287(9): 135712. https://doi.org/10.1016/j.molstruc.2023.135712
19. Thejo Kalyani N, Dhoble SJ. Novel materials for fabrication and encapsulation of OLEDs. Renew. Sustain. Energy Rev. 2015; 44(9): 319-347. 
      https://doi.org/10.1016/j.rser.2014.11.070
20. Schwab T, Lussem B, Furno M, Gather MC, Leo K. Handbook of organic materials for optical and Opto-electronic devices. Elsevier Pub., New York, 2013, 508-534. 
21. Williams JAG, Develay S, Rochester DL, Murphy L. Optimising the luminescence of platinum(II) complexes and their application in organic light emitting devices (OLEDs). Coordian. Chem. Rev., 2008; 252(12): 2596-2611. https://doi.org/10.1016/j.ccr.2008.03.014.
22. Stipurin S, Strassner T. Blue emitting phosphorescent platinum(II) complexes with cyclometalated 4,5-dimethylimidazolylidene ligands. J. Organometal. Chem. 2023; 16(7): 29-36.  https://doi.org/10.1016/j.jorganchem.2023.122785
23. Sun Y, Zhu C, Liu S, Wang W, Chen X, Zhou G, Yang X, Wong W. AIE-active Pt(II) complexes based on a three-ligand molecular framework for high performance solution-processed OLEDs. Chem. Eng. J. 2022; 449(14):  137457. https://doi.org/10.1016/j.cej.2022.137457
24. Sun Y, Liu B, Guo Y, Feng Z, Zhou G, Chen Z, Yang X. Triphenylamine-based trinuclear Pt(II) complexes for solution-processed OLEDs displaying efficient pure yellow and red emissions. Org. Electron. 2021; 91(12): 106101. https://doi.org/10.1016/j.orgel.2021.106101
25. Hussain F, Wang X, Wang S. Impact of bidentate N,C-Chelate ligands on the performance of phosphorescent Pt(II) complexes. J. Organometal. Chem. 2020; 880(10): 300-311. https://doi.org/10.1016/j.jorganchem.2018.11.017
26. Tian Z, Yang X, Liu B, Zhong D, Zhou G. Photophysical properties and optical power limiting ability of Pt(II) polyynes bearing fluorene-type ligands with ethynyl units at different positions. J. Organometal. Chem. 2019; 895(14): 23-36.  https://doi.org/10.1016/j.jorganchem.2019.05.022
27. Li H, Lam T, Yan L, Dai L, Choi B, Cho Y, Kwak Y, Che C. Tetradentate platinum(II) emitters: design strategies, photophysics, and OLED applications. Liquid Crystals Display Technol. 2020; 17(9): 1-24.  https://doi.org/10.5772/intechopen.93221