بررسی رفتار ویسکوالاستیک در رزین‌ها، پوشش‌های آلی و نانو کامپوزیت‌ها

نوع مقاله : مقاله مروری

نویسندگان

1 کارشناس ارشد، گروه پژوهشی رزین و افزودنی‌ها، پژوهشگاه رنگ

2 دانشیار، گروه پژوهشی رزین و افزودنی‌ها، پژوهشگاه رنگ

3 استادیار، گروه پژوهشی رزین و افزودنی‌ها، پژوهشگاه رنگ

چکیده

اغلب پوشش‌های آلی به‌دست آمده از تولید محصولات تجاری رنگ و پوشش، ویسکوالاستیک می‌باشند. مطالعه رفتار ویسکوالاستیک این پوشش‌ها بعد از پخت آنها یکی از آزمون‌های مهم است که اطلاعات مفیدی را در مورد عملکرد پوشش پخت شده در اختیار ما قرار می‌دهد. در این مقاله رفتار ویسکوالاستیک رزین‌ها، پوشش‌ها و نانوکامپوزیت‌های آنها با استفاده از دستگاه آنالیز دینامیکی، مکانیکی حرارتی(DMTA)  بررسی شده است. به کمک  DMTA مقادیر مدول ذخیره، مدول اتلاف و همچنین ترم اتلاف به عنوان تابعی از دما یا بسامد بدست می‌آیند. DMTA یک روش مفید برای بررسی ساختار پلیمر مانند متوسط وزن ملکولی بین زنجیرهای شبکه‌ای‌شده، چگالی شبکه‌ای‌شدن، میزان همگن یا ناهمگن بودن رزین‌های شبکه‌ای شده، میزان امتزاج‌پذیری در ترکیب رزین‌ها، میزان نسبی پراکنش نانوذرات در بستر رزین می‌باشد. همچنین کمیت‌های فیزیکی مختلفی مانند نقطه ژل‌شدن، دمای انتقال شیشه‌ای، چگالی شبکه‌ای‌شدن، درصد تبدیل پخت، گرانروی کمینه در حین فرآیند پخت، انرژی فعال‌سازی دمای انتقال شیشه‌ای، ضریب شکنندگی، ضریب جابجایی در رابطه ویلیام- لاندل- فری (WLF) و بررسی انتقال‌های α و β و γ به کمک DMTA مورد بررسی قرار می‌گیرد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigating Viscoelastic Behavior of Resins, Organic Coatings and Nanocomposites

نویسندگان [English]

  • Davood Ghanbari 1
  • Behzad Shirkavand Hadavand 2
  • Malihe Pishvaei 3
1 Department of Resin and Additives, Institute for Color Science and Technology
2 Department of Resin and Additives, Institute for Color Science and Technology
3 Department of Resin and Additives, Institute for Color Science and Technology
چکیده [English]

Most organic coatings obtained from commercial paint and coating products are viscoelastic. The study of the viscoelastic behavior of these coatings after curing is one of the important tests that provide useful information on the performance of the cured coating. In this paper the viscoelastic properties of resins, coatings and their nanocomposites using the dynamic mechanical thermal analysis (DMTA) is investigated. With DMTA, the values of storage modulus, loss modulus and also the loss term as a function of temperature or frequency are obtained. DMTA is a useful method for investigating the polymer structure, such as the average molecular weight of the cross-linked chains, cross-link density, the homogeneity or heterogeneity of the cross-linked resins, the degree of incompatibility in the resin composition, the distribution of nanoparticles in the resin matrix. Also different physical quantities such as gelatinization point, glass transition temperature, cross-link density, curing conversion percentage, minimum viscosity during curing process, energy of activation of glass transition temperature, brittleness coefficient, displacement coefficient in the William-Lundley-Fry (WLF) relation and investigation of α, β and γ transitions are investigated using DMTA.
 

کلیدواژه‌ها [English]

  • Viscoelastic properties
  • DMTA
  • Organic coating
  • Resin
  • Nanocomposite
  1. D. S. Jones, Y. Tian, O. Abu-Diak, G. P. Andrews, "Pharmaceutical applications of dynamic mechanical thermal analysis", Adv. Drug Delivery Rev. 64, 440-448, 2012.
  2. G. Patfoort, "Polymers: An introduction to their physical, mechanical and rheological behavior", Story-Scientia, Gent, 1974.
  3. H. Barnes, J. Hutton, K. Walters, "An introduction to rheology", Elsevier, Amsterdam, 1996.
  4. J. Goodwin, R. Hughes, "Rheology for Chemists: An introduction", Royal Society of Chemistry, Cambridge, UK, 2000.
  5. K. Menard, "Dynamic mechanical analysis", CRC Press, Vol. 9, 1999.
  6. A. Montazeri, K. Pourshamsian, M. Riazian, "Viscoelastic properties and determination of free volume fraction of multi-walled carbon nanotube/epoxy composite using dynamic mechanical thermal analysis", Mater. Des. 36, 408-414, 2012.
  7. K. Menard, "Dynamic mechanical thermal analysis: A practical introduction", CRC Press, Florida, 1999.
  8. S. Bandi, D. Schiraldi, "Glass transition behavior of clay aerogel/poly(vinyl alcohol) composites", Macromol. 39, 6537-6545, 2006.
  9. J. S. Martin, J. M. Laza, M. L. Morra´s, M. Rodrı´guez, L. M. Leon, "Study of the curing process of a vinyl ester resin by means of TSR and DMTA", Polym. 41, 4203-4211, 2000.
  10. PL-DMTA operator’s manual, Polymer Laboratories, UK, 2014.
  11. A. N. Gent, "Engineering with rubber, How to design rubber components", 3rd Edition, Munich, Hanser Publisher, 2012.
  12. S. Zhu, W. Shi, "Combustion behaviour and thermal properties of UV cured methacrylated phosphate/epoxy acrylate blends", Polym. Degrad. Stab. 81, 233-237, 2003.
  13. F. H. Gojny, K. Schulte, "Fuctionalization effect on the thermo-mechanical behavior of multiwall carbon nanotube/epoxy composite", Compos. Sci. Technol. 64, 2303-2308, 2004.
  14. A. T. Seyhan, F. H. Gojny, M. Tanoglu, K. Schulte, "Rheological and dynamic-mechanical behavior of carbon nanotube/vinyl ester-polyester suspensions and their nanocomposites", Eur. Polym. J. 43, 2836-2847, 2007.
  15. L. Hu, W. Shi, "UV-cured organic-inorganic hybrid nanocomposite initiated by trimethoxysilane-modified fragmental photoinitiator", Composites Part A, 42, 631-638, 2011.
  16. R. S. Mishra, A. K. Mishra, K. V. S. N. Raju, "Synthesis and property study of UV-curable hyperbranched polyurethane acrylate/ZnO hybrid coatings", Eur. Polym. J. 45, 960-966, 2009.
  17. Y. Yuan, W. Shi, "A novel LDH nano filler intercalated by silsesquioxane for preparing organic/inorganic hybrid composites", Appl. Clay Sci. 67, 83-90, 2012.
  18. S. Subramani, J. Y. Lee, J. H. Kim, I. W. Cheong, "Crosslinked aqueous dispersion of silylated poly (urethane–urea)/clay nanocomposites", Compos. Sci. Technol. 67, 1561-1573, 2007.
  19. X. E. Cheng, S. Liu, W. Shi, "Synthesis and properties of silsesquioxane-based hybrid urethane acrylate applied to UV-curable flame-retardant coatings", Prog. Org. Coat. 65, 1-9, 2009.
  20. L. Hu, Y. Yuan, W. Shi, "Preparation of polymer/LDH nanocomposite by UV-initiated photopolymerization of acrylate through photoinitiator-modified LDH precursor", Mate. Res. Bull. 46, 244-251, 2001.
  21. Y. Yuan, W. Shi, "Preparation and properties of exfoliated nanocomposites through intercalated a photoinitiator into LDH interlayer used for UV curing coatings", Prog. Org. Coat. 69, 92-99, 2010.
  22. A. Montazeri, N. Montazeri, "Viscoelastic and mechanical properties of multi walled carbon nanotube/epoxy composites with different nanotube content", Mater. Des. 32, 2301-2307, 2011.
  23. O. Zabihi, A. Khodabandeh, S. M. Mostafavi, "Preparation, optimization and thermal characterization of a novel conductive thermoset nanocomposite containing polythiophene nanoparticles using dynamic thermal analysis", Polym. Degrad. Stab. 97, 3-13, 2012.
  24. A. R. Kannurpatti, K. J. Anderson, J. W. Anseth, C. N. Bowman. "Use of Living radical polymerizations to study the structural evolution and properties of highly crosslinked polymer networks", J. Polym. Sci. B Polym. Phys. 35, 2297-307, 1997.
  25. A. R. Kannurpatti, J. W. Anseth, C. N. Bowman, "A study of the evolution of mechanical properties and structural heterogeneity of polymer networks formed by photopolymerizations of multifunctional (meth)acrylates" Polym. 39, 2507-2513, 1998.
  26. T. F. Scott, W. D. Cook, J. S. Forsythe, "Effect of the degree of cure on the viscoelastic properties of vinyl ester resins", Eur. Polym. J. 44, 3200-3212, 2008.
  27. H. Shahrajabian, "polymer stracture", viewed 14 June 2019, http://research.iaun.ac.ir/pd/shahrajabian/pdfs/UploadFile_2506.pdf.
  28. J. P. Pascault, H. Sautereau, J. Verdu, R. J. J. Williams, "Thermosetting polymers", New York, Marcel Dekker, 2002.
  29. G. Williams, D. C. Watts, "Non-symmetrical dielectric relaxation behaviour arising from a simple empirical decay function", Trans. Faraday Soc. 66, 80-85, 1970.
  30. A. R. Kannurpatti, K. J. Anderson, J. W. Anseth, C. N. Bowman, "Use of Living radical polymerizations to study the structural evolution and properties of highly crosslinked polymer networks" J. Polym. Sci. B Polym. Phys. 35, 2297-307, 1997.
  31. A. R. Kannurpatti, J. W. Anseth, C. N. Bowman, "A study of the evolution of mechanical properties and structural heterogeneity of polymer networks formed by photopolymerizations of multifunctional (meth)acrylates", Polym. 39, 2507-2513, 1998.
  32. W. D. Cook, J. S. Forsythe, N. Irawati, T. F. Scott, W. Z. Xia, "Cure kinetics and thermomechanical properties of thermally stable photopolymerized dimethacrylates", J. Appl. Polym. Sci. 90, 3753-3766, 2003.
  33. W. D. Cook, T. F. Scott, S. Quay-Thevenon, J. S. Forsythe, "Dynamic mechanical thermal analysis of thermally stable and thermally reactive network polymers" J. Appl. Polym. Sci. 93, 1348-1359, 1993.
  34. J. S. Young, A. R. Kannurpatti, C. N. Bowman, "Effect of comonomer concentration and functionality on photopolymerization rates, mechanical properties and heterogeneity of the polymer", Macromol. Chem. Phys. 199, 1043-1049, 1998.
  35. L. Nielsen, "Mechanical properties of polymers and composites", Second Edithion, CRC Press, New York, 1993.
  36. D. J. O’Brien, N. R. Sottos, S. R. White, "Cure-dependent viscoelastic poison’s ratio of epoxy", Experim. Mech. 46, 237-249, 2007.
  37. K. Shibayama, Y. Suzuki. "Effect of cross linking density on the viscoelastic properties unsaturated polysters", J. Polym. Sci. 3, 2637-2651, 1965.
  38. J. P. Pascault, J. Verdu, R. Williams. "Thermosetting polymers", Basel (Switzerland): Eastern Hemisphere Distribution, 2002.
  39. A. Montazeri, A. Khavandi, J. Javadpour, A. Tcharkhtchi, "The effect of curing cycle on the mechanical properties of MWNT/epoxy nanocomposite", Int. J. Polym. Anal. Charact. 15, 182-190, 2010.
  40. A. Tcharkhtchi, A. S. Lucas, J. P. Trotignon, J. Verdu."Viscoelastic properties of epoxy networks in the glass transition region", Polym. 39, 1223-1235, 1998.
  41. M. L. Williams, R. F. Landel, J. D. Ferry, "The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids", J. Am. Chem. Soc. 77, 3701-3707, 1955.
  42. J. D. Ferry, "Viscoelastic properties of polymers" Second Edition, New York, John Wiley, 1970.
  43. C. G. Robertson, "Dynamic mechanical properties", Encyclopedia of Polymeric Nanomaterials, Springer-Verlag Berlin, Heidelberg, 2014.
  44. A. Montazeri, A. Khavandi, J. Javadpour, A. Tcharkhtchi, "Viscoelastic properties of multi-walled carbon nanotube/epoxy composites using two different curing cycles", Mater. Des. 31, 3383-3388, 2010.
  45. R. Jeziorska, B. Cewierz-Motysia, A. Szadkowska, B. Marciniec, H. Maciejewski, M. Dutkiewicz, I. Leszczynska, "Effect of POSS on morphology, thermal and mechanical properties of polyamide 6", Polimery, 56, 809-816, 2011.