مروری بر نقش نانومواد در بهبود خواص مقاومت به خوردگی پوشش‏های غنی از روی

نوع مقاله : مقاله مروری

نویسندگان

1 کارشناسی ارشد ، دانشکده علوم پایه، گروه شیمی، دانشگاه گیلان

2 استادیار ، دانشکده علوم پایه، گروه شیمی

3 دانشیار ، دانشکده علوم پایه، گروه شیمی، دانشگاه گیلان

چکیده

پوشش‏های غنی از روی، یکی از پرمصرف‏ترین پوشش‏های مقاوم به‏خوردگی در صنایع مختلف به‏شمار می‏روند. در این پوشش‏ها اغلب از درصدهای بالای پودر روی (بالای 90% وزنی در فیلم خشک) به‏منظور حفاظت کاتدی موثر استفاده می‏شود که خود منجر به بروز مشکلات زیادی در این پوشش‏ها از جمله کاهش چسبندگی پوشش به بستر فلز، کاهش خواص فیزیکی و مکانیکی و افزایش گرانروی رنگ می‌شود. به‎منظور کاهش مشکلات یادشده، محققان سعی کرده‏اند تا با جایگزینی مقادیر کمی از پودر روی با نانومواد (2/0 تا  5 درصد وزنی)، هم‏زمان با کاهش درصد پودر روی در این پوشش‏ها، دوره‏ حفاظت کاتدی و همچنین خاصیت حفاظت سدی- فیزیکی را در این پوشش‏ها افزایش دهند. در این مقاله، نانومواد مورد استفاده در پوشش‏های غنی از روی، به 5 دسته کلی طبقه‏بندی شدند و نقش و سازوکار عملکرد هر دسته مورد بررسی قرار گرفت. نانومواد رسانای فلزی (شامل نانوذرات آلومینیم، منیزیم و روی) با افزایش پیوندهای الکتریکی و بهبود محصولات خوردگی عمل می‏کنند. نانومواد رسانای پایه کربنی (شامل نانوذرات کربن سیاه و نانولوله‏های کربنی) موجب افزایش هر دو ویژگی حفاظت کاتدی و حفاظت سدی-فیزیکی در پوشش می‏شوند. پلیمرهای رسانا از جمله پلی‏آنیلین اغلب به‏صورت ترکیب با سایر نانومواد موجب کاهش تخلخل و افزایش رسانایی پوشش می‏شوند. نانومواد نارسانا (شامل نانو رس و نانوهیدروکسیدهای لایه‏ای مضاعف) که تاثیر آنها به‏دلیل افزایش خاصیت سدکنندگی پوشش است و در نهایت، گرافن و مشتقات آن به‏دلیل خواص منحصر به‏فرد خود علاوه بر افزایش رسانایی و خاصیت سدکنندگی، موجب افزایش قابل توجه چسبندگی و مقاومت به جدایش کاتدی می‏شوند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A Review on the Role of Nanoparticles in Improvement of Anti-corrosion Properties of Zinc Rich Coatings

نویسندگان [English]

  • Mona Ehsanjoo 1
  • somayeh mohammadi 2
  • Naz Chaibakhsh Langroodi 3
1 Department of Chemistry, Faculty of Science, University of Guilan
2 Department of Chemistry, Faculty of Science, University of Guilan
3 Department of Chemistry, Faculty of Science, University of Guilan
چکیده [English]

Zinc-rich paints are one of the most widely used coatings in various industries. In these coatings, high percentages of zinc powder (over 90% by weight in dry film) uses to provide effective cathodic protection, which can lead to many problems in these coatings: reducing the adhesion of the coating to the metal substrate, reducing the physical and mechanical properties and increasing the viscosity of the paint. In order to reduce the above problems, researchers have tried to replace small amounts of zinc powder with nanomaterials, simultaneously with the reduction of the percentage of zinc powder in these coatings, increase the cathodic protection period as well as the physical- barrier protection properties in these coatings. In this paper, the used nanomaterials in zinc-rich coatings were classified into five general categories and the role and mechanism of performance in each category were investigated. Metallic conductive nanomaterials (including aluminum, magnesium and zinc nanoparticles) with increasing electrical connections and improving corrosion products. Carbon-based conductive nanomaterials (including carbon black nanoparticles and carbon nanotubes) that enhance both cathodic protection and physical-barrier protection properties. Conductive polymers, including polyaniline, are often combined with other nanomaterials, reducing porosity and increasing the conductivity of the coating. Nonconductive nano materials (including nano-clay and layered double hydroxide) that their effect is due to the increased barrier properties of the coating and finally, graphene and its derivatives, due to their unique properties in addition to increasing the conductivity and the barrier properties, significantly increase the adhesion and cathodic delamination resistance.
 

کلیدواژه‌ها [English]

  • Nanomaterials
  • Zinc-rich coating
  • Cathodic protection
  • Barrier protection
  • Carbon steel
. ن. نطقی طاهری، ب. رمضان زاده، م. مهدویان احدی، "مروری بر عملکرد ضدخوردگی پلی‏آنیلین در پوشش اپوکسی"، نشریه علمی ترویجی مطالعات در دنیای رنگ، 8، 14-1، 1397.
2. M.Gh. Hosseini, K. Aboutalebi, "Electrochemical evaluation of corrosion protection performance of epoxy/polyaniline-imidazole modified ZnO nanocomposite coating on mild steel", Prog. Color Colorants Coat. 10, 181-192, 2017.
3. م. داودی، ا. قاسمی، ب. رمضان‏زاده، م. مهدویان احدی، "مروری بر ترکیبات آلی-معدنی حاوی بازدارنده‏های خوردگی: بررسی روش‏های ساخت و ساز و کار حفاظت"، نشریه علمی ترویجی مطالعات در دنیای رنگ، 8، 38-25، 1397.
4.م. یگانه، س.م. مرعشی، ن. محمدی، "پوشش‏های هوشمند ضدخوردگی: انواع و سازوکارهای حفاظت از خوردگی"، نشریه علمی ترویجی مطالعات در دنیای رنگ، 7، 46-29، 1396.
5. H. Marchebois, S. Joiret, C. Savall, J. Bernard, S. Touzain, "Characterization of zinc-rich powder coatings by EIS and Raman spectroscopy", Surf. Coat. Technol. 157, 151-161, 2002.
6. S. Walkner, A. W. Hassel, "Combined chemical and EIS study of the reaction of zinc coatingsunder alkaline conditions", Electrochim. Acta. 131, 130–136, 2014.
7. K. Schaefer, A. Miszczyk, "Improvement of electrochemical action of zinc rich paints by addition of nanoparticulate zinc", Corros. Sci. 66, 380-391, 2013.
8. S. Shreepathi, P. Bajaj, B. Mallik, "Electrochemical impedance spectroscopy investigations of epoxy zinc rich coatings:Role of Zn content on corrosion protection mechanism", Electrochim Acta. 55, 5129-5134, 2010.
9. M. Arianpouya, M. Nematollahi, N. Arianpouya, M. Shishesaz,"Novel properties of a conductive polymeric coating with an insulating nanoadditive", Prog. Org. Caot. 90, 369–379, 2016.
10. C.G. Munger, L.D. Vincent, "Corrosion Prevention by Protective Coatings", 2th ed, England, Natl Assn of Corrosion Engineers , 1999.
11. R.N.Jagtap, P.P. Patil, S.Z. Hassan, "ffect of zinc oxide in combating corrosion in zinc-rich primer", Prog. Org. Coat, 63, 389–394, 2008.
12. A.H.Sofian, K. Noda, "Corrosion resistance and mechanism of zinc rich paint in corrosive media", J. Electrochem. Soc. 58, 29-37, 2014.
13. H. Marchebois, S. Touzain, S. Joiret, J. Bernard, C. Savalla,"Zinc-rich powder coatings corrosion in sea water:influence of conductive pigments", Prog. Org. Coat. 45, 415–421, 2002.
14. H. Marchebois, C. Savall, J. Bernard, S. Touzain, "lectrochemical behavior of zinc-rich powder coatings in artificial sea water", Electrochimica Acta. 49, 2945–2954, 2004.
15. A. Meroufel, S. Touzain, "EIS characterisation of new zinc-rich powder coatings", Prog. Org. Coat. 59, 197–205, 2007.
16. H.E. Townsend, J. C. Zoccola, "Atmospheric corrosion resistance of 55% Al–Zn coated sheet steel: 13-year test results", Mater.Perform, 18, 13-20, 1979.
17. H.E. Townsend, L. Allegra, R.J. Dutton and S.A. Kriner, "Hot- dip  coated sheet steels- A review", Mater. Perform, 25, 36-46, 1986.
18. H.E. Townsend, A.R Borzillo, "Twenty-year atmospheric corrosion tests of hot-dip coated sheet steel", Mater. Perform, 26, 37-41, 1987.
19. G. Krauss, D.K. Matlock, "Zinc-based steel coating systems: Metallurgy and Performance", illustrated, Minerals, Metals & Materials Society, 1990.
20. P.R. Sere, M. Zapponi, C.I. Elsner, A.R Di Sarli, "Comparative corrosion behaviour of 55 Aluminium–zinc alloy and zinc hot-dip coatings deposited on low carbon steel substrates", Corros. Sci. 40, 1711-1723, 1998.
21. W. Chen, P. Chen, H.Y. Chen, J. Wu, W. Tsai, "Development of Al-containing zinc-rich paints for corrosion resistance”, Appl. Surf. Sci. 187, 154-164, 2002.
22. S.Y. Arman, B. Ramezanzadeh, S. Farghadani, M. Mehdipour, A. Rajabi, "Application of the electrochemical noise to investigate the corrosion resistance of an epoxy zinc-rich coating loaded with lamellar aluminum and micaceous iron oxide particles", Corros. Sci. 77, 118-127, 2013.
23. A.Gergely, I.Bertoti, T.Torok, E.Pfeifer, E.Kalman, "Corrosion protection with zinc-rich epoxy paint coatings embedded with various amounts of highly dispersed polypyrrole-deposited alumina monohydrate particles", Prog. Org. Coat. 76,17– 32, 2013.
24. M. Jalili , M. Rostami, B. Ramezanzadeh, "An Investigation of the Electrochemical Action of the Epoxy Zinc-rich Coatings Containing Surface Modified Aluminium Nanoparticle", Appl. Surf. Sci. 328, 95-108, 2015.
25. A. Gergely, É. Pfeifer, I. Bertóti, T. Török, E. Kálmán, "Corrosion protection of cold-rolled steel by zinc-rich epoxy paint coatings loaded with nano-size alumina supported polypyrrole", Corros. Sci. 53, 3486–3499, 2011.
26. J. H. Park, T. H.Yun, K. Y. Kim, Y. K. Song, J. M. Park, "The improvement of anticorrosion properties of zinc-rich organic coating by incorporating surface-modified zinc particle", Prog. Org. Coat. 74, 25– 35, 2012.
27. A. Anandhi, S. Palraj, G. Subramanian, M. Selvaraj, "Corrosion resistance and improved adhesion properties of propargylalcohol impregnated mesoporous titanium dioxide built-in epoxy zincrich primer", Prog. Org. Coat. 97, 10–18, 2016.
28. M. N. Kakaei, I. Danaee, D. Zaarei, "Investigation of corrosion protection afforded by inorganic anticorrosive coatings comprising micaceous iron oxide and zinc dust", Corros. Eng. Sci. Techn. 48, 194-198, 2013.
29. . X. Zhao, Y. Qi, Zh. Zhang, K. Li, Zh. Li, "Electrochemical Impedance Spectroscopy Investigation on the Corrosive Behaviour of Waterborne Silicate Micaceous Iron Oxide Coatings in Seawater",  Coat. 9, 417-432, 2019.
30. C.N. Cao, J.Q. Zhang, "Introduction to Electrochemical Impedance Spectroscopy", Science Press, Beijing, China, 2002.
31. H. Liu, , F.  Liang,  J. Zhang, C. CaoShuqin, X.U. H .Lin, J. Dong,, Z. Cai, "Investigation of effect of aluminium powder on performance of epoxy coatings by breakpoint frequency method", Corros. Sci. Prot. Technol. 4, 144–149, 1992.
32. S. Park, M. Shon, "Effects of multi-walled carbon nano tubes on corrosion protection of zinc rich epoxy resin coating", J. Ind. Eng. Chem. 21, 1258-1264, 2015.
33. Y. Cubides, H. Castaneda, "Corrosion protection mechanisms of carbon nanotube and zinc-rich epoxy primers on carbon steel in simulated concrete pore solutions in the presence of chloride ions", Corros. Sci. 107, 145-161, 2016.
34. A. Meroufel, C. Deslouis, S. Touzain, "Electrochemical and anticorrosion performances of zinc-rich and polyaniline powder coatings", Electrochimica Acta. 53, 2331–2338, 2008.
35. E. Armelin, M. Martí, F.Liesa, José I. Iribarren, C. Alemán, "Partial replacement of metallic zinc dust in heavy duty protective coatings by conducting polymer", Prog. Org. Coat. 69, 26–30, 2010.
36. E. Akbarinezhad, "Synthesis of conductive polyaniline-graphite nanocomposite in supercritical COand its application in zinc-rich epoxy primer", J. Supercrit. Fluids. 94, 8-16, 2014.
37. E. Akbarinezhad, "Electrochemical evaluations of zinc-rich epoxy primers modified with polyaniline and exfoliated, polyaniline graphite nanocomposite", Corros. Eng. Sci. Techn. 54, 389-401, 2019.
38. QL .Thu, GP. Bierwagen, S. Touzain, "EIS and ENM measurements for three different organic coatings on aluminum". Prog. Org. Coat. 42,179–187, 2001.
39. E. Akbarinezhad, M. Ebrahimi, F. Sharif, M.M. Attar, H.R. Faridi, "Synthesis and evaluating corrosion protection effects of emeraldine base PAni/clay nanocomposite as a barrier pigment in zinc-rich ethyl silicate primer", Prog. Org. Coat. 70, 39–44, 2011.
40. N. Arianpouya, M. Shishesaz , M. Arianpouya , M. Nematollahi, "Evaluation of synergistic effect of nanozinc/nanoclay additives on the corrosion performance of zinc-rich polyurethane nanocomposite coatings using electrochemical properties and salt spray testing", Surf. Coat. Technol. 216, 199–206, 2013.
41. F. Tohidi Shirehjini, I. Danaee, H. Eskandari , D. Zarei, "Effect of Nano Clay on Corrosion Protection of Zinc-rich Epoxy Coatings on Steel 37", Mater. Sci. Technol. 32, 1152–1160, 2016.
42. S.P. Newman, W. Jones, "Synthesis, characterization and applications of layered double hydroxides containing organic guests", New J. Chem, 22. 105-115, 1998.
43. J. Lin, C. Hsia, J. Uan, "Characterization of Mg, Al-hydrotalcite conversion film on Mg alloy and Cl− and anion-exchangeability of the film in a corrosive environment", Scr. Mater. 56, 927-930, 2007.
44. J. Vega, N. Granizo, D. De La Fuente, J. Simancas, M. Morcillo,"Corrosion inhibition of aluminum by coatings formulated with Al–Zn–vanadate hydrotalcite" Prog. Org. Coat. 70, 213-219, 2011.
45. R.G. Buchheit, H. Guan, S. Mahajanam, F. Wong, "Active corrosion protection and corrosion sensing in chromate-free organic coatings", Prog. Org. Coat. 47, 174-182, 2003
46. M. Kendig, M. Hon, "A hydrotalcite-like pigment containing an organic anion corrosion inhibitor", Electrochem. Solid State, 8, 10-11, 2005.
47. D.G. Shchukin, M. Zheludkevich, H. Möhwald, "eedback active coatings based on incorporated nanocontainers", J. Mater. Chem. 16, 4561-4566, 2006.
48. F. Uddin, Clays, "nanoclays, and montmorillonite minerals", Metall. Mater. Trans. 39, 2804-2814, 2008.
49. P. Benito, F. Labajos, J. Rocha, V. Rives,"Influence of microwave radiation on the textural properties of layered double hydroxides" Micropor. Mesopor. Mat. 94, 148-158, 2006.
50. H. Hayatdavoudi, M. Rahsepar, "Smart inhibition action of layered double hydroxide nanocontainers in zinc-rich epoxy coating for active corrosion protection of carbon steel substrate", J. Alloys Compd. 711, 560-567, 2017.
51. H. Hayatdavoudi, M. Rahsepar, "A mechanistic study of the enhanced cathodic protection performance of graphene reinforced zinc rich nanocomposite coating for corrosion protection of carbon steel substrate", J.Alloys Compd. 727, 1148-1156, 2017.
52. H. Marchebois, S. Touzain, S. Joiret, J. Bernard, C. Savall, "Zinc-rich powder coatings corrosion in sea water: influence of conductive pigments", Prog. Org. Coat. 45, 415-421, 2002.
53. N. Hammouda, H. Chadli, G. Guillemot, K. Belmokre,"The corrosion protection behaviour of zinc rich epoxy paint in 3% NaCl solution" Adv. Chem. Engineer. Sci. 1, 51, 2011.
 54. J. Liu, T. Liu , Zh. Guo, N. Guo, Y. Lei, X. Chang,  Y. Yin, "Promoting Barrier Performance and Cathodic Protection of Zinc-Rich Epoxy Primer via Single-Layer Graphene", Polym. J, 10, 591, 2018.
55. L. Shen, Li. Y, Zhao. W, Miao. L, Xie. W, Lu. H, Wang. K, "Corrosion Protection of Graphene-Modified Zinc-Rich Epoxy Coatings in Dilute NaCl Solution", ACS Appl. Nano Mater. 2, 180-190, 2018.
56. L. Cheng, Ch. Liu , D. Han, Sh. Ma, W. Guo, H. Cai,  X. Wang, "Effect of graphene on corrosion resistance of waterborne inorganic zinc-rich coatings", J. Alloys Compd. 774, 255-264, 2019.
57. Y. Lei, Zh. Qiu, J. Liu, D. Li, N. Tan, T. Liu, Y. Zhang, X. Chang, Y. Gu,"Effect of conducting polyaniline/graphene nanosheet content on the corrosion behavior of zinc-rich epoxy primers in 3.5% NaCl solution", Polym. 11, 850, 2019.
58. Sh. Teng, Y. Gao, F. Cao, D. Kong, X. Zheng, X. Ma, L. Zhi, "Zinc-reduced graphene oxide for enhanced corrosion protection of zinc-rich epoxy coatings", Prog. Org. Coat.123, 185–189, 2018.
59. B. Ramezanzadeh, M.H. Mohamadzadeh Moghadam, N. Shohani, M. Mahdavian, "Effects of Highly Crystalline and Conductive Polyaniline/Graphene Oxide Composites on the Corrosion Protection Performance of a Zinc-Rich Epoxy Coating", Chem. Eng. J. 320,363-375, 2017.
60. F.Xiao, Ch.Qian, M. Guo, J. Wang, X. Yan, H. Li, L.Yue, "Anticorrosive durability of zinc-based waterborne coatings enhanced by highly dispersed and conductive polyaniline/graphene oxide composite", Prog. Org. Coat. 125, 79–88, 2018.
61. S. Mohammadi, H.Roohi, "Influence of functionalized multi-layer graphene on adhesion improvement and corrosion resistance performance of zinc-rich epoxy primer", Corros Eng Sci Techn. 53, 422-430, 2018.
62. X. Cao, F. Huang, Huang. C, J. Liu, Y.F. Cheng, "Preparation of graphene nanoplate added zinc-rich epoxy coatings for enhanced sacrificial anode-based corrosion protection", Corros. Sci. 2019.