بررسی حذف مواد رنگزا از پساب با استفاده از نانوجاذب‌های کامپوزیت آلومینا

نوع مقاله : مقاله مروری

نویسندگان

1 دانشجوی دکترا، آزمایشگاه تحقیقاتی صنایع شیمیایی معدنی، دانشکده مهندسی شیمی، دانشگاه علم و صنعت ایران،

2 استاد، آزمایشگاه تحقیقاتی صنایع شیمیایی معدنی، دانشکده مهندسی شیمی، دانشگاه علم و صنعت ایران

3 دانشجوی دکترا، آزمایشگاه تحقیقاتی صنایع شیمیایی معدنی، دانشکده مهندسی شیمی، دانشگاه علم و صنعت ایران

چکیده

فرآیند جذب سطحی یک روش موثر است که به دلیل ساد‌گی، در دسترس‌بودن، آسانی فرآیند و قیمت مناسب آن به صورت گسترده برای حذف مواد رنگزا از پساب استفاده می‌شود.نانوجاذب‌ها با خواص منحصر به فرد نظیر مساحت سطح بزرگ‌تر، فعل و انفعالات در روی سطح و بهبود واکنش‌پذیری فرصت‌های جدیدی برای حذف آلاینده‌ها با استفاده از یک روش کارآمد و مقرون به صرفه در مقایسه با سایر روش‌ها فراهم می‌کنند. در این میان،  گروهی از نانوکامپوزیت‌های آلومینا به صورت جاذب به دلیل مساحت سطح بالا، خواص مکانیکی خوب و مقاومت مناسب در مقابل تخریب حرارتی مورد توجه قرار گرفته‌اند. نانوکامپوزیت‌ها شامل حداقل دوفاز هستند که یکی در دیگری پراکنده ‌شده و یک شبکه سه‌بعدی ایجاد می‌شود. نانوکامپوزیت‌ها خواصی متفاوت از مواد سازنده اولیه خودشان دارند. در این تحقیق به‌بررسی ظرفیت جذب نانوجاذب‌های کامپوزیت آلومینا شامل آلومینا- نانولوله‌های کربنی، کربن فعال، اکسیدهای فلزی، پلیمر و کیتوسان پرداخته شده است. در ادامه، حذف مواد رنگزا و ترکیبات آلی توسط نانوجاذب‌های کامپوزیت آلومینا و عوامل موثر بر جذب بررسی شده‌ است. تاثیر عوامل مختلف بر ظرفیت جذب نانوجاذب‌های کامپوزیت آلومینا و سازوکار جذب نشان می‌دهد که کلیه‌ نانوجاذب‌های کامپوزیت آلومینا دارای ظرفیت جذب بهتری برای حذف مواد رنگزا نسبت به نانوجاذب آلومینای ساده هستند. بررسی‌ها نشان می‌دهند که، کامپوزیت آلومینا/ نانولوله‌های کربنی (CNT) به‌عنوان جاذب برای حذف مواد رنگزا استفاده می‌شود. آلومینا می‌تواند بر روی مقاومت فشاری، آب‌دوستی، تخلخل و ظرفیت جذب CNT اثر بگذارد. کامپوزیت آلومینا/ CNT می‌تواند ظرفیت جذب را چند برابر افزایش دهد. کامپوزیت آلومینا/ کربن فعال می‌تواند جذب‌سطحی را افزایش دهد زیرا فرآیند جذب‌سطحی به‌صورت فیزیکی و شیمیایی رخ می‌دهد. کربن فعال حفراتی دارد که می‌تواند جذب را انجام و آلومینا گروه‌های عاملی دارد که می‌تواند با ماده رنگزا واکنش دهد. کیتوسان شامل گروه‌های عاملی OH - و آمینو NH2- می‌باشد که می‌تواند با ماده رنگزا اتصال یابد. اما کیتوسان تمایل زیادی به تجمع‌یافتن و تشکیل ژل دارد و مقدار زیادی گروه‌های عاملی آن توانایی واکنش‌دادن با ماده رنگزا از دست می‌دهند. کامپوزیت آلومینا/ کیتوسان مکان‌های اتصال و پایداری مکانیکی را بهبود می‌دهد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigation on the Removal of Dyes from Wastewater Using Alumina Composite Nano Adsorbent

نویسندگان [English]

  • zahra karimi 1
  • Ali Allahverdi 2
  • Fateme Oshani 3
1 Research Laboratory of Inorganic Chemical Process Technologies, School of Chemical Engineering, Iran University of Science and Technology
2 Research Laboratory of Inorganic Chemical Process Technologies, School of Chemical Engineering, Iran University of Science and Technology
3 Research Laboratory of Inorganic Chemical Process Technologies, School of Chemical Engineering, Iran University of Science and Technology
چکیده [English]

The adsorption process is an effective method that is widely applied to remove dyes from wastewater due to its simplicity, availability, ease of process and reasonable price. Nano adsorbents with unique properties such as larger surface area, surface interactions and improved reactivity are providing new opportunities for removal of pollutants using an efficient and cost-effective method compared to other methods. In the meanwhile, a group of alumina nanocomposites have been considered as adsorbents owing to their high surface area, good mechanical properties and great resistance to thermal degradation. Nanocomposites consist of at least two phases that are dispersed into each other to form a three-dimensional network.  Nanocomposites display different properties of bulk material. In this study, the adsorption capacity of alumina-based composite Nano adsorbents, including alumina-carbon nanotubes, activated carbon, metal oxides, polymer and chitosan has been investigated. In the following, the removal of dyes and organic compounds by alumina-based composite Nano adsorbents and adsorption influencing factors has been reviewed. The effect of various factors on the adsorption capacity of alumina-based composite Nano adsorbents and the adsorption mechanism show that all alumina-based composite Nano adsorbents exhibit excellent adsorption capacity for dye removal.  Reviews indicate that Alumina/ Carbon nanotube (CNT) composite is used as an adsorbent to remove dyes. Alumina can affect compressive strength, hydrophilicity, porosity and CNT adsorption capacity. Alumina/CNT composite can multiply the adsorption capacity. Alumina / activated carbon composite can increase the adsorption owing to occurring adsorption process physically and chemically. Activated carbon possespore that can adsorb and alumina has functional groups in order to react with the dye.Chitosan contains functional groups -OH and amino -NH2 that can bind to the dye. Still, chitosan has a strong tendency to agglomerate and form a gel, so many of its functional groups lose the ability to react with the dye. Alumina/chitosan composite improves binding sites and mechanical stability.

کلیدواژه‌ها [English]

  • Alumina Composite
  • Adsorption
  • Nano adsorbent
  • Dye removal
  1. ف. اوشنی، ع. اله‌وردی، "غشاهای سرامیکی و کاربرد آن در تصفیه پساب‌های حاوی مواد رنگزا"، نشریه علمی مطالعات در دنیای رنگ، ۸، ۳، ۱۳۹۷.
  2. Z. Carmen, and S. Daniel, "Textile Organic Dyes – Characteristics, Polluting Effects and Separation/Elimination Procedures from Industrial Effluents – A Critical Overview", Organic pollutants ten years after the stockholm convention - environmental and analytical update, In techopen, 2012.
  3. A. R. Prany, D. Monal, S. Sonali, Alumina-carbon composite as an effective adsorbent for removal of Methylene Blue and Alizarin Red-s from aqueous solution, Indian J. Chem. Technol. 20, 15-20, 2013.
  4. ا. سهولی، ف. شه‌دوست فرد، ف. نظریان، "ارزیابی کارایی مهمترین روش‌های حذف مواد رنگزا"، نشریه علمی مطالعات در دنیای رنگ، ۸ْ، ۴، ۱۳۹۷.
  5. T. Sasaki, A. Iizuka, M. Watanabe, T. Hongo, A. Yamasaki, "Preparation and performance of arsenate (V) adsorbents derived from concrete wastes", Waste Manag. 34, 1829-1835, 2014.
  6. K. Mostafa, L.Sophie, D. Kamran, "Nanoadsorbents: Classification, Preparation, and Applications (with Emphasis on Aqueous Media)", Chem. Rev. 113, 7728–7768, 2013.
  7. C. Baudín, "Processing of alumina and corresponding composites", Comprehensive Hard Materials, Vol. 2. Ceramics, Amsterdam, Elsevier Ltd 31-72, 2014.
  8. M. Malakootiana, H. Jafari, "Evaluating the efficacy of alumina/ carbonnanotube hybrid adsorbents in removing AzoReactive Red 198 and Blue 19 dyes from aqueous solutions", Process. Saf. Environ, 96, 125–137, 2015.
  9. A. Pertti, "Mechanical and physical properties of engineering alumina ceramics", Technical research centre of finland, VTT Tiedotteita, 1996.
  10. D. Karen, "Material review: alumina (Al2O3)", European Union J.6, 109-114, 2010.
  11. S. Nurudeen, S. A. Abdulkarim, A. H. Al Muhtaseb, D. Mohammed Saidu, Baba M.W, A. S. Jamal, "Synthesis, characterization and adsorption study of nano-sized activated alumina synthesized from kaolin using novel method", Powder Technol. 280, 266–272, 2015.
  12. M. Lucy Camacho, A. Torres, D. Saha, S. Deng, "Adsorption equilibrium and kinetics of fluoride on sol–gel-derived activated alumina adsorbents", J. Colloid Interface Sci. 349, 370–313, 2010.
  13. W. Wei, W. Zhijian, C. Wan, Z. Mingming, Z. Dongke, "Synthesis of mesoporous alumina with tunable structural properties", Microporous Mesoporous Mater. 217, 12-20, 2015.
  14. B. Sushmita, D. Shikha, K. G.Ravindra, M. C.Chattopadhyaya, "Adsorption characteristics of alumina nanoparticles for the removal of hazardous dye, Orange G from aqueous solutions", Arabian J. Chem. 12, Doi: 10.1016/j.arabjc.2016.12.016, 2017.
  15. "BE-202 Alumina Composite Adsorbent", http:// activealumina.com/2-2-alumina-based-adsorbent.html.
  16. L. Lei, L. Junfeng, Y. Xingzhong, "Facile synthesis of alumina-decorated multi-walled carbon nanotubes for simultaneous adsorption of cadmium ion and trichloroethylene", Chem. Eng. J. 373, 101–110, 2015.
  17. K. Gupta, Sh. Agarwal , A. Saleh , "Synthesis and characterization of alumina-coated carbon nanotubes and their application for lead removal", J. Hazard. Mater. 185, 17–23, 2011.
  18. T. A. Saleh, V. K. Gupta, Characterization of the chemical bonding between Al2O3 and nanotube in MWCNT/Al2O3 nanocomposite, Curr. Nanosci. 8, 739-743, 2012.
  19. P. Loekitowati Hariani, F. Muryati, "Synthesis alumina-activated carbon compositeusing sol-gel method as adsorption for methylene blue Dye", J. Phys. DOI: 10.1088/1742-6596/1095/1/012026, 2018.
  20. A. R. Prany, D. Monal, S. Sonali, "Alumina-carbon composite as an effective adsorbent for removal of Methylene Blue and Alizarin Red-s from aqueous solution", Indian J. Chem. Technol. 20, 15-20, 2013.
  21. P. L. Hariani, F. Zulfikar, "Alumina-Activated Carbon Composite as Adsorbent for Adsorption of Procion Red Dye from Wastewater Songket Industry", J. Pure App. Chem. Res. 4, 25-33, 2015.
  22. S. H. Jin, S. Liang, J. S. Wey, "Synthesis of hierarchically structured metal oxides and their application in heavy metal Ion removal", Adv. Mater. 20, 2977–2982, 2008.
  23. A. Mahapatra, B. G. Mishra, G. Hotan, "Adsorptive removal of Congo red dye from wastewater by mixed iron oxide–alumina nanocomposites", Ceram. Int. 39, 5443–5451, 2013.
  24. M. Wawrzkiewicz, M. Wi sniewska, A. Wołowicz, V. M. Gun'ko, V. I. Zarko, "Mixed silica-alumina oxide as sorbent for dyes and metal ions removal from aqueous solutions and wastewaters", Microporous Mesoporous Mater. 250, 128-141, 2017
  25. A. Ngomsik, A. Bee,  M. Draye, G. Cote,  V. Cabuilb, "Magnetic nano- and microparticles for metal removal and environmental applications: a review", CR Chim. 8, 963–970, 2005.
  26. W. J. Kyung, H. Ch Brian, H. A.Kyu, H. L.Sang, "Synthesis of a novel magnetic Fe3O4/Al2O3 hybrid composite using electrode-alternation technique for the removal of an azo dye", Appl. Surf. Sci. 423, 383-393, 2017.
  27. S. Mallakpour, E. Khadem, "Recent development in the synthesis of polymer nanocomposites based on nano-alumina", Prog. Polym, 51, 74-93, 2015.
  28. L. Truong, Å. Larsen, B. Holme, S. Diplas, FK. Hansen, J. Roots, S. Jørgensen, "Dispersibility of silane-functionalized alumina nanoparticles in syndiotactic polypropylene", Surf. Interface Anal. 42, 1046-1049, 2010.
  29. G. Kickelbick, "Concepts for the incorporation of inorganic building blocks into organic polymers on a nanoscale", Prog. Polym. Sci. 28, 83-89, 2003.
  30. R. Ahmad, R. Kumar, "Adsorption of amaranth dye onto alumina reinforced polystyrene, clean – soil, air", Water. 39, 74–82, 2011.
  31. H. Javadian, M. Torabi Angaji, M. Naushad, "Synthesis and characterization of polyaniline/g-alumina nanocomposite: A comparative study for the adsorption of three different anionic dyes", J. Ind. Eng. Chem. 20, 3890-3900, 2014.
  32. L. Enli, Zh. Xudong, X. Xuechao, Zh. Fusheng, L. Enxiu, W. Yuanyuan, "Preparation of diethylenetriamine-modified magnetic chitosan nanoparticles for adsorption of rare-earth metal ions", New J. Chem. 41, 7739-7750, 2017.
  33. V. Natrayasamy, S. Meenakshi, "Enriched fluoride sorption using alumina/chitosan composite", J. Hazard. Mater. 178, 226-232, 2010.
  34. Z. Siamak, Z. Mahmoud, D. Farshad, A. Hasan, "As(III) adsorption and antimicrobial properties of Cu–chitosan/alumina nanocomposite", Chem. Eng. J. 273, 610-621, 2015.
  35. J. Zhang, Q. Zhou, L. Ou, "Kinetic, isotherm, and thermodynamic Studies of the adsorption of methyl Orange from aqueous solution by chitosan/alumina composite", J. Chem. Eng. Data, 57, 412−419, 2012.
  36. T. Bahareh, A. Ali, L. Manu, S. Mika, "Preparation and characterization of a novel chitosan/Al2O3/magnetite nanoparticles composite adsorbent for kinetic, thermodynamic and isotherm studies of Methyl Orange adsorption", Chem. Eng. J. 259, 1–10, 2015.
  37. M. M. Ibrahim, Cr2O3 / Al2O3 as adsorbent: Physicochemical properties and adsorption behaviors towards removal of Congo red dye from water, J. Environ. Chem. Eng. Doi: 10.1016/j.jece.2018.102848, 2018.