الکترونیک چاپی بر پایه نانولوله‌های کربنی و نانوصفحات گرافن

نوع مقاله : مقاله مروری

نویسندگان

1 استادیار، گروه پژوهشی علوم و فناوری چاپ، پژوهشگاه رنگ

2 استاد، گروه پژوهشی سطح و خوردگی، پژوهشگاه رنگ

چکیده

در سال‌های اخیر، الکترونیک چاپی، از هر دو بعد پژوهشی و تجاری مورد توجه گسترده‌ای قرار گرفته است. این توجه از آن جهت بوده است که با بهره‌گیری از الکترونیک چاپی، می‌توان قطعات الکترونیکی را در مقیاس گسترده، قیمت پایین، بر روی بسترهای گوناگون و حتی با قابلیت انعطاف‌پذیری تولید نمود. جز عملگر اصلی در جوهرهای الکترونیک چاپی، نانوذرات رسانای موجود در آنها است. از میان انواع ساختارهای رسانا که می‌توانند در جوهرهای چاپ استفاده شوند، بهره‌گیری از نانوذرات فلزی، نانوسیم‌های فلزی، نانوصفحات گرافن، نانولوله‌های کربنی و پلیمرهای رسانا متداول‌تر است. نانوذرات گرافن و نانولوله‌های کربنی، به واسطه‌ی برخورداری از خواص ویژه‌ و قیمت مناسبی که دارند، ظرفیت خوبی برای استفاده در انواع کاربردهای الکترونیکی نظیر حسگرها، نیمه‌رساناها، الکترودهای شفاف و مدارهای انعطاف‌پذیر دارند. در این مقاله، جنبه‌های مختلف الکترونیک چاپی و آخرین پیشرفت‌های این حوزه، با تاکید بر بهره‌گیری از نانوذرات گرافن و نانولوله‌های کربنی در جوهرهای چاپ مرور گردیده‌اند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Printed Electronics, Based on Carbon Nanotubes and Graphene Nanosheets

نویسندگان [English]

  • Mohsen Mohammad Raei Nayini 1
  • Mojtaba Jalili 1
  • Zahra Ranjbar 2
1 Department of Printing Science and Technology, Institute for Color Science and Technology
2 Department of Surface Coating &Corrosion, Institute for Color Science and Technology
چکیده [English]

Printed electronics has attracted great consideration in recent years, both scientifically and commercially. The attention to printed electronics is attributed to the fact that they facilitate the production of low cost, flexible electronics on various substrates and in large scales. The main functional component of printed electronic inks, is the conductive nanoparticles that are incorporated into them. Among different conductive components that can be incorporated into printing inks, metal nano particles, metal nano wires, graphene nanosheets, carbon nanotubes and conductive polymers are more common. The reasonable properties and relatively low cost of graphene nanosheets and carbon nanotubes, provide them a considerable capability to be used in electronic applications such as sensors, semiconductors, transparent electrodes and flexible and printed electronics. Herein, different aspects and recent developments in printed and flexible electronics has been overviewed with the emphasize on utilizing graphene nanosheets and carbon nanotubes in printing inks. 

کلیدواژه‌ها [English]

  • Printed electronics
  • Flexible electronics
  • Graphene
  • Carbon nanotubes
  • Conductive ink
  1. A. Kamyshny, S. Magdassi, "Conductive nanomaterials for 2D and 3D printed flexible electronics", Chem. Soc. Rev. 48, 1712-1740, 2019.
  2. M. Singh, H. M. Haverinen, P. Dhagat, G. E. Jabbour. "Inkjet printing—process and its applications", Adv. Mater. 22, 673-685, 2010.
  3. A. Kamyshny, S. Magdassi. "Conductive Nanomaterials for Printed Electronics", Small. 10, 3515-35, 2014.
  4. S. J. Benight, C. Wang, J. B. H. Tok, Z. Bao. "Stretchable and self-healing polymers and devices for electronic skin". Prog Polym Sci. 38, 1961-1977, 2013.
  5. K. D. Harris, A. L. Elias, H. J. Chung. "Flexible electronics under strain: a review of mechanical characterization and durability enhancement strategies". J. Mater. Sci. 51, 2771-2805, 2016.
  6. W. Zeng, L. Shu, Q. Li, S. Chen, F. Wang, X. M. Tao. "Fiber-Based Wearable Electronics: A Review of materials, fabrication, devices, and applications", Adv. Mater. 26, 5310-5336, 2014.
  7. W. Wu. "Inorganic nanomaterials for printed electronics: a review". Nanoscale. 9, 7342-72, 2017.
  8. V. B. Nam, D. Lee. "Copper nanowires and their applications for flexible, transparent conducting films: a review", Nano Mater. 6, 47, 2016.
  9. B. H. Nguyen, V. H. Nguyen. "Promising applications of graphene and graphene-based nanostructures". Adv Nat Sci: Nanosci. Nanotechnol, 7, 023002, 2016.
  10. H. Jang, Y. J. Park, X. Chen, T. Das, M.-S. Kim, J.-H. Ahn. "Graphene-Based Flexible and Stretchable Electronics", Adv. Mater, 28, 4184-202, 2016.
  11. T. Kim, M. Cho, K. J. Yu. "Flexible and stretchable bio-integrated electronics based on carbon nanotube and graphene", Mater. 11, 1163, 2018.
  12. W. Dang, V. Vinciguerra, L. Lorenzelli, R. Dahiya. "Printable stretchable interconnects", Flexible Printed Electron. 2, 13003, 2017.
  13. Y. Farraj, M. Grouchko, S. Magdassi. "Self-reduction of a copper complex MOD ink for inkjet printing conductive patterns on plastics". Chem. Commun. 51, 1587-90, 2015.
  14. S. K. Tam, K. Y. Fung, G. S. H. Poon, K. M. Ng. "Product design: Metal nanoparticle-based conductive inkjet inks", AlChE J. 62, 2740-53, 2016.
  15. Y. F. Liu, M. H. Tsai, Y. F. Pai, W. S. Hwang. "Control of droplet formation by operating waveform for inks with various viscosities in piezoelectric inkjet printing". Appl. Phys. A. 111, 509-516, 2013.
  16. J. Li, F. Ye, S. Vaziri, M. Muhammed, M. C. Lemme, M. Östling. "Efficient inkjet printing of graphene". Adv. Mater. 25, 3985-3992, 2013.
  17. S. Wünscher, R. Abbel, J. Perelaer, U. S. Schubert. "Progress of alternative sintering approaches of inkjet-printed metal inks and their application for manufacturing of flexible electronic devices", J. Mater. Chem. C. 2. 10232-102361, 2014.
  18. L. Hu, D. S. Hecht, G. Grüner. "Carbon Nanotube Thin films: fabrication, properties, and applications", Chem. Rev. 110, 5790-844, 2010.
  19. H. Stahl, J. Appenzeller, R. Martel, P. Avouris, B. Lengeler. "Intertube coupling in ropes of single-wall carbon nanotubes", Phys Rev Lett. 85, 5186-5189, 2000.
  20. A. P. Graham, G. S. Duesberg, W. Hoenlein, F. Kreupl, M. Liebau, R. Martin, "How do carbon nanotubes fit into the semiconductor roadmap?", Appl. Phys. A. 80, 1141-51, 2005.
  21. G. D. Nessim. "Properties, synthesis, and growth mechanisms of carbon nanotubes with special focus on thermal chemical vapor deposition", Nanoscale. 2, 1306-23, 2010.
  22. M. Rogala, I. Wlasny, P. Dabrowski, P. J. Kowalczyk, A. Busiakiewicz, W. Kozlowski,  "Graphene oxide overprints for flexible and transparent electronics", Appl. Phys. Lett. 106, 041901, 2015.
  23. A. Stern, S. Azoubel, E. Sachyani, G. I. Livshits, D. Rotem, S. Magdassi, "Conductivity enhancement of transparent 2D carbon nanotube networks occurs by resistance Reduction in all junctions", J. Phys. Chem. C. Nanomater Interfaces. 122, 14872-6, 2018.
  24. S. Logothetidis. "flexible organic electronic devices: Materials, process and applications". Mater Sci Eng B Solid State Mater Adv Technol, 152, 96-104, 2008.
  25. S. Ghoshal. "Polymer/carbon nanotubes (CNT) nanocomposites processing using additive manufacturing (three-dimensional printing) technique: An overview", Fibers. 5, 40, 2017.
  26. J. Perelaer, A. W. De Laat, C. E. Hendriks, U. S. Schubert. "Inkjet-printed silver tracks: low temperature curing and thermal stability investigation", J Mater Chem. 18, 3209-3215, 2008.
  27. A. Barhoum, P. Samyn, T. Öhlund, A. Dufresne. "Review of recent research on flexible multifunctional nanopapers", Nanoscale. 9, 15181-15205, 2017.
  28. S. Park, S. Jayaraman. "Smart textiles: wearable electronic systems". MRS Bull. 28, 585-591, 2011.
  29. Q. Huang, Y. Zhu. "Printing conductive nanomaterials for flexible and stretchable electronics: A Review of Materials, Processes, and Applications", Adv. Mater. Technol. 4, 1800546, 2019.
  30. M. L. Allen, M. Aronniemi, T. Mattila, A. Alastalo, K. Ojanperä, M. Suhonen,  "Electrical sintering of nanoparticle structures", Nanotechnol. 19, 175201, 2008.
  31. S. Wünscher, S. Stumpf, J. Perelaer, U. S. Schubert. "Towards single-pass plasma sintering: temperature influence of atmospheric pressure plasma sintering of silver nanoparticle ink". J. Mater. Chem. C. 2, 1642-1649, 2014.
  32. F. M. Wolf, J. Perelaer, S. Stumpf, D. Bollen, F. Kriebel, U. S. Schubert, "Rapid low-pressure plasma sintering of inkjet-printed silver nanoparticles for RFID antennas", J. Mater. Res. 28, 1254, 2013.
  33. J. Perelaer, M. Klokkenburg, C. E. Hendriks, U. S. Schubert. "Microwave flash sintering of inkjet‐printed silver tracks on polymer substrates", Adv Mater. 21, 4830-4834, 2009.
  34. Y. Farraj, M. Bielmann, S. Magdassi. "Inkjet printing and rapid ebeam sintering enable formation of highly conductive patterns in roll to roll process", RSC Adv. 7, 15463-15467, 2017.
  35. Z. Hui, Y. Liu, W. Guo, L. Li, N. Mu, C. Jin,  "Chemical sintering of direct-written silver nanowire flexible electrodes under room temperature", Nanotechnol. 28, 285703, 2017.
  36. M. J. Coutts, M. B. Cortie, M. J. Ford, A. M. McDonagh. "Rapid and controllable sintering of gold nanoparticle inks at room temperature using a chemical agent", J Phys Chem C Nanomater Interfaces. 113, 1325-1328, 2009.
  37. S. M. Bidoki, J. Nouri, A. A. Heidari. "Inkjet deposited circuit components". J Micromech Microeng, 20, 055023, 2010.
  38. S. A. Odom, T. P. Tyler, M. M. Caruso, J. A. Ritchey, M. V. Schulmerich, S. J. Robinson, "Autonomic restoration of electrical conductivity using polymer-stabilized carbon nanotube and graphene microcapsules", Appl Phys Lett. 101, 043106, 2012.
  39. Q. Zhang, L. Liu, C. Pan, D. Li, "Review of recent achievements in self-healing conductive materials and their applications", J. Mater. Sci. 53, 27-46, 2018.
  40. G. Grau, J. Cen, H. Kang, R. Kitsomboonloha, W. J. Scheideler, V. Subramanian. "Gravure-printed electronics: recent progress in tooling development, understanding of printing physics, and realization of printed devices", Flexible Printed Electron. 1, 023002, 2016.
  41. S. Kholghi Eshkalak, A. Chinnappan, W. A. D. M. Jayathilaka, M. Khatibzadeh, E. Kowsari, S. Ramakrishna. "A review on inkjet printing of CNT composites for smart applications", Appl. Mater. Today. 9, 372-386, 2017.
  42. J.-U. Park, M. Hardy, S. J. Kang, K. Barton, K. Adair, D. kishore Mukhopadhyay, "High-resolution electro hydrodynamic jet printing", Nat. Mater. 6, 782-789, 2007.
  43. M. S. Onses, E. Sutanto, P. M. Ferreira, A. G. Alleyne, J. A. Rogers. "Mechanisms, capabilities, and applications of high‐resolution electrohydrodynamic jet printing", Small. 11, 4237-4266, 2015.
  44. E. B. Secor. "Principles of aerosol jet printing". Flexible Printed Electron, 3, 035002, 2018.
  45. N. J. Wilkinson, M. A. A. Smith, R. W. Kay, R. A. Harris. "A review of aerosol jet printing—a non-traditional hybrid process for micro-manufacturing", Int J Adv Manuf Tech. 105, 4599-4619, 2019.
  46. F. Torrisi, T. Hasan, W. Wu, Z. Sun, A. Lombardo, T. S. Kulmala,  "Inkjet-printed graphene electronics", ACS Nano. 6, 2992-3006, 2012.
  47. T. Hasan, F. Torrisi, Z. Sun, D. Popa, V. Nicolosi, G. Privitera,  "Solution‐phase exfoliation of graphite for ultrafast photonics", Physica. status solidi. 247, 2953-2957, 2010.
  48. E. B. Secor, S. Lim, H. Zhang, C. D. Frisbie, L. F. Francis, M. C. Hersam. "Gravure Printing of Graphene for Large-area Flexible Electronics", Adv. Mater. 26, 4533-4538, 2014.
  49. E. B. Secor, P. L. Prabhumirashi, K. Puntambekar, M. L. Geier, M. C. Hersam. "Inkjet printing of high conductivity, flexible graphene patterns", J. Phys. Chem. Lett. 4, 1347-1351, 2013.
  50. J. Li, M. C. Lemme, M. Östling. "Inkjet Printing of 2D Layered Materials", Chem. Phys. Chem. 15, 3427-3434, 2014.
  51. B. Nazari, Z. Ranjbar, A. R. Moghaddam, G. Momen, B. Ranjbar. "Dispersing graphene in aqueous media: Investigating the effect of different surfactants", Colloids Surf. Physicochem. Eng. Aspects. 582, 123870, 2019.
  52. E. B. Secor, B. Y. Ahn, T. Z. Gao, J. A. Lewis, M. C. Hersam. "Rapid and Versatile Photonic Annealing of Graphene Inks for Flexible Printed Electronics", Adv. Mater. 27, 6683-6688, 2015.
  53. E. B. Secor, T. Z. Gao, A. E. Islam, R. Rao, S. G. Wallace, J. Zhu, "Enhanced Conductivity, Adhesion, and Environmental Stability of Printed Graphene Inks with Nitrocellulose". Chem Mater. 29, 2332-2334, 2017.
  54. C.-L. Lee, C.-H. Chen, C.-W. Chen. "Graphene nanosheets as ink particles for inkjet printing on flexible board", Chem. Eng. J. 230, 296-302, 2013.
  55. E. O. Polat, H. B. Uzlu, O. Balci, N. Kakenov, E. Kovalska, C. Kocabas. "Graphene-Enabled Optoelectronics on Paper", ACS. Photonics. 3, 964-971, 2016.
  56. Z. Huang, L. Li, Y. Wang, C. Zhang, T. Liu. "Polyaniline/graphene nanocomposites towards high-performance supercapacitors: A review", Compos Commun. 8, 83-91, 2018.
  57. L. K. Putri, W. J. Ong, W. S. Chang, S. P. Chai. "Heteroatom doped graphene in photocatalysis: A review", Appl. Surf. Sci. 358, 2-14, 2015.
  58. N. I. Zaaba, K. L. Foo, U. Hashim, S. J. Tan, W. W. Liu, C. H. Voon. "Synthesis of graphene oxide using modified hummers method: solvent influence", Procedia Engineering. 184, 469-477, 2017.
  59. Y. Su, J. Du, D. Sun, C. Liu, H. Cheng. "Reduced graphene oxide with a highly restored π-conjugated structure for inkjet printing and its use in all-carbon transistors", Nano Res. 6, 842-852, 2013.
  60. I. Wlasny, M. Rogala, P. Dabrowski, P. J. Kowalczyk, A. Busiakiewicz, W. Kozlowski, "Finding optimal HBr reduction of inkjet printed graphene oxide for flexible electronics", Mater. Chem. Phys. 181, 409-414, 2016.
  61. M. Mohammad Raei Nayini, S. Bastani, Z. Ranjbar. "Synthesis and characterization of functionalized carbon nanotubes with different wetting behaviors and their influence on the wetting properties of carbon nanotubes/polymethylmethacrylate coatings", Prog Org Coat. 77, 1007-14, 2014.
  62. H. Okimoto, T. Takenobu, K. Yanagi, Y. Miyata, H. Shimotani, H. Kataura, "Tunable Carbon Nanotube Thin-Film Transistors Produced Exclusively via Inkjet Printing", Adv. Mater. 22, 3981-3986, 2010.
  63. P. Beecher, P. Servati, A. Rozhin, A. Colli, V. Scardaci, S. Pisana,  "Ink-jet printing of carbon nanotube thin film transistors", J. Appl. Phys. 102, 043710, 2007.
  64. J. Yu, N. Grossiord, C. E. Koning, J. Loos. "Controlling the dispersion of multi-wall carbon nanotubes in aqueous surfactant solution", Carbon. 45, 618-23, 2007.
  65. R. Rastogi, R. Kaushal, S. K. Tripathi, A. L. Sharma, I. Kaur, L. M. Bharadwaj. "Comparative study of carbon nanotube dispersion using surfactants", J. Colloid. Interface. Sci. 328, 421-428, 2008.
  66. H. Wang, W. Zhou, D. L. Ho, K. I. Winey, J. E. Fischer, C. J. Glinka, "Dispersing single-walled carbon nanotubes with surfactants:  A Small Angle Neutron Scattering Study", Nano Lett. 4, 1789-93, 2004.
  67. S. Azoubel, S. Shemesh, S. Magdassi. "Flexible electroluminescent device with inkjet-printed carbon nanotube electrodes". Nanotechnology. 23, 344003, 2012.
  68. R. P. Tortorich, J.-W. Choi. "Inkjet Printing of Carbon Nanotubes". Nanomater. 3, 453-68, 2013.
  69. A. Denneulin, J. Bras, F. Carcone, C. Neuman, A. Blayo. "Impact of ink formulation on carbon nanotube network organization within inkjet printed conductive films", Carbon. 49, 2603-14, 2011.
  70. V. A. Davis, A. N. G. Parra-Vasquez, M. J. Green, P. K. Rai, N. Behabtu, V. Prieto, "True solutions of single-walled carbon nanotubes for assembly into macroscopic materials", Nature Nanotechnol. 4, 830-834, 2009.
  71. W. J. Hyun, E. B. Secor, M. C. Hersam, C. D. Frisbie, L. F. Francis. "High-resolution patterning of graphene by screen printing with a silicon stencil for highly flexible printed electronics", Adv. Mater. 27, 109-115, 2015.
  72. D. W. Zhang, X. D. Li, H. B. Li, S. Chen, Z. Sun, X. J. Yin, "Graphene-based counter electrode for dye-sensitized solar cells", Carbon. 49, 5382-5388, 2011.
  73. X. Cao, H. Chen, X. Gu, B. Liu, W. Wang, Y. Cao,  "Screen printing as a scalable and low-Cost approach for rigid and flexible thin-Film transistors using separated carbon nanotubes", ACS. Nano. 8, 12769-76, 2014.
  74. J. Li, L. Liu, D. Zhang, D. Yang, J. Guo, J. Wei. "Fabrication of polyaniline/silver nanoparticles/multi-walled carbon nanotubes composites for flexible microelectronic circuits". Synth. Met. 192, 15-22, 2014.
  75. K. Arapov, E. Rubingh, R. Abbel, J. Laven, G. de With, H. Friedrich. "Conductive screen printing inks by gelation of graphene dispersions". Adv. Funct. Mater. 26, 586-93, 2016.
  76. D. Kim, Y. Jung, J. Sun, C. Yeom, H. Park, D. G. Jung,  "Fully gravure printed complementary carbon nanotube TFTs for a clock signal generator using an epoxy-imine based cross-linker as an n-dopant and encapsulant", Nanoscale. 8, 19876-81, 2016.
  77. S. Kim, H. Sojoudi, H. Zhao, D. Mariappan, G. H. McKinley, K. K. Gleason, "Ultrathin high-resolution flexographic printing using nanoporous stamps". Sci. Adv. 2, 2016.
  78. J. Baker, D. Deganello, D. T. Gethin, T. M. Watson. "Flexographic printing of graphene nanoplatelet ink to replace platinum as counter electrode catalyst in flexible dye sensitised solar cell", Mater. Res. Innovations. 18, 86-90, 2014.
  79. K. Higuchi, S. Kishimoto, Y. Nakajima, T. Tomura, M. Takesue, K. Hata, "High-Mobility, Flexible Carbon Nanotube Thin-Film Transistors Fabricated by Transfer and High-Speed Flexographic Printing Techniques", Appl. Phys. Express. 6, 2013.