مروری بر پوشش‌های مورد استفاده در لوله‌های خنک‌کننده

نوع مقاله : مقاله مروری

نویسندگان

1 دانشجوی کارشناسی ارشد، گروه مواد و متالورژی، دانشکده مهندسی مکانیک و انرژی، دانشگاه شهید بهشتی، تهران، ایران، صندوق پستی: 1719-16765.

2 استادیار، گروه مواد و متالورژی، دانشکده مهندسی مکانیک و انرژی، دانشگاه شهید بهشتی، تهران، ایران، صندوق پستی: 1719-16765.

3 دانشیار، گروه نانوفناوری رنگ، پژوهشگاه رنگ، تهران، ایران، صندوق پستی: 654-16765.

چکیده

پدیده چگالش در بسیاری از کاربردهای صنعتی نظیر شیرین‏سازی آب، وصول آب، تولید انرژی و مدیریت حرارتی وجود دارد. در فرآیندهای تولید انرژی و مدیریت حرارتی پدیده چگالش سبب تغییر در بازده‌ انتقال حرارت فرآیند می‌گردد. پدیده فوق به دو صورت چگالش فیلم آب و چگالش قطره‌ای رخ می‌دهد. یکی از سیستم‏های تبدیل انرژی که در آن پدیده چگالش، بازده سیستم را بشدت تحت تاثیر قرار می‏دهد، لوله‌های خنک‌کننده می‏باشند. در صورتیکه انرژی سطحی لوله خنک‌کننده بالا باشد، فیلم آب بر روی سطح لوله تشکیل گردیده، که این پدیده مانع از انتقال حرارت و در نتیجه اتلاف انرژی و کاهش بازده انتقال حرارت خنک‌کننده می‌شود. جهت رفع این مشکل، لازم است که با کاهش انرژی سطح لوله، چگالش قطره‏ای جایگزین چگالش فیلم گردد. بنابراین، امروزه از پوشش‌های مختلفی جهت کاهش انرژی سطح، افزایش آب‌گریزی و بهبود انتقال حرارت سطح لوله‌های خنک‌کننده استفاده می‌شود. باتوجه به اهمیت پدیده چگالش درلوله‌های خنک‌کننده، در این پژوهش، ابتدا به بیان اهمیت مساله ترشوندگی و مکانیزم انتقال حرارت در لوله‌های خنک‌کننده پرداخته، سپس پوشش‌های مختلف مورد استفاده جهت ایجاد چگالش قطره‌ای آب، کاربردها و پتانسیل‌های بهبود هر یک از این پوشش‌ها با توجه به هزینه، استحکام، دوام و کارایی معرفی می ‏گردد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

An Overview of the Coatings Used in Condenser Tubes

نویسندگان [English]

  • Mohammad Ghorbannejad 1
  • Asal Hosseini Monazzah 2
  • Mehran Rostami 3
1 Department of Materials and Metallurgy, Faculty of Mechanical and Energy Engineering, Shahid Beheshti University, P. O. Box:16765-1719, Tehran, Iran
2 Department of Materials and Metallurgy, Faculty of Mechanical and Energy Engineering, Shahid Beheshti University, P. O. Box:16765-1719, Tehran, Iran.
3 Department of Nano Materials and Nano Coatings, Institute for Color Science & Technology, P. O. Box: 16765-654, Tehran, Iran.
چکیده [English]

Condensation may occur during various industrial applications, including water collection, desalination, energy generation, and thermal management. This phenomenon affects heat transfer efficiency during energy generation and heat management processes. Film-wise and dropwise condensation were the two types of condensation based on their formation manner. Condenser tubes are one of the energy conversion systems in which the condensation phenomenon dramatically affects the system's efficiency. The high surface energy of the condenser tube results in water film formation on the tube surface, which hinders heat transfer. Therefore, the heat transfer efficiency of the condenser is reduced due to further energy loss. The film-wise condensation should be altered to dropwise ones by reducing the surface energy of the tube to eliminate this issue. Hence, different coatings are applied to increase the condenser tubes' hydrophobicity and heat transfer capacity. In this study, the importance of wettability and heat transfer mechanisms in condenser tubes was determined primarily. Afterward, different coatings used to create dropwise condensation were introduced. Eventually, the applications and attributes of the mentioned coatings based on their cost, strength, durability, and efficiency were introduced.

کلیدواژه‌ها [English]

  • Condenser tubes
  • Surface coatings
  • Hydrophobic coating
  • Dropwise condensation
  • Water film-wise condensation
  • Heat transfer
1.   A. D. Khawaji, I. K. Kutubkhanah,  J. Wie, "Advances in seawater desalination technologies", Desalination. 221,47–69, 2008.
2.   K. Rykaczewski, H. J. Scott, S. Rajauria, J. Chinn, M. Chinn, "Three dimensional aspects of droplet coalescence during dropwise condensation on superhydrophobic surfaces",Soft Matter.19, 8749–8752, 2011.
3.   X. Chen, J. Wu, R. Ma, M. Hua, N. Koratkar, Sh. Yao,   Z.wang. "Nanograssed micropyramidal architectures for continuous dropwise condensation", Adv. Funct. Mater. 21, 4617–4623, 2011.
4.   I. Tanasawa, "Advances in condensation heat transfer", Adv. Heat Transf. 21, 55–139, 1991.
5.   Q. Zhao, B. M. Burnside, "Dropwise condensation of steam on ion implanted condenser surfaces", Heat Recovery Syst. CHP.14, 525–534, 1994.
6.   C. A. Depew, R. L. Reisbig, "Vapor condensation on a horizontal tube using teflon to promote dropwise condensation", Ind. Eng. Chem. Process Des. Dev. 3, 365–369, 1964.
7.   S. Lee , K. Cheng , V. Palmre , M.D.H.M  Bhuiya , K. J. Kim ,  B. J.  Zhang, "Heat transfer measurement during dropwise condensation using micro/nano-scale porous surface", Int. J. Heat Mass Transfer. 65, 619–626, 2013.
8.   R. W. Bonner, "Dropwise condensation life testing of self assembled monolayers", 14th Int. Heat Transf. Conf. IHTC, 221–226, USA, 2010.
9.   A. Phadnis, K. Rykaczewski, "Dropwise condensation on soft hydrophobic coatings", Langmuir. 33,43,12095–12101, 2017.
10.  A. Ullah, E. O. Alzahrani, Z. Shah, M. Ayaz, S. Islam, "Nanofluids thin film flow of Reiner-Philippoff fluid over an unstable stretching surface with Brownian motion and thermophoresis effects",Coat. 9, 1, 2018.
11.  X. Zhao, X. Chen, Li. Zhang, Q. Liu, Y. Wang, W. Zhang, J. Zhang, "Preparation of nano-hydroxyapatite coated carbon nanotube reinforced hydroxyapatite composites", Coat. 8, 10, 8–10, 2018.
12.  S. Zarei, H. R.T. Bahrami, H. Saffari, "Effects of geometry and dimension of micro/nano-structures on the heat transfer in dropwise condensation: A theoretical study", Appl. Therm. Eng. 137, 440–450, 2018.
13.  R. A. Erb, "Dropwise condensation on gold - Improving heat transfer in steam condensers", Gold Bulletin. 6, 2–6, 1973.
14.  S. Khan, "Hydrophobicity of rare-earth oxide ceramics and their application in promoting sustained dropwise condensation and corrosion and fouling mitigation in hydropower systems", B.A.Sc, University of Toronto. 2015.
15.  R. Enright, N. Miljkovic, J. L. Alvarado, K. Kim, J. W. Rose, "Dropwise condensation on micro-and nanostructured surfaces", Nanoscale Microscale Thermophys. Eng.18, 3, 223–250, 2014.
16.  G. Pang, J. D. Dale, D. Y. Kwok, "An integrated study of dropwise condensation heat transfer on self-assembled organic surfaces through Fourier transform infra-red spectroscopy and ellipsometry", Int. J. Heat Mass Transfer. 48, 2, 307–316, 2005.
17.  M. Donati, C.W.E. Lam, A. Milionis, Ch.Sh. Sharma, A. Tripathy, A. Zendeli, D. Poulikakos,"Sprayable Thin and Robust Carbon Nanofiber Composite Coating for Extreme Jumping Dropwise Condensation Performance", Adv. Mater. Interfaces.8, 2001176, 2020.
18.  P. Kim, L. Shi, A. Majumdar, P. L. Mceuen, "Thermal transport measurements of individual multiwalled nanotubes", Phys. Rev. Lett.87, 215502-1-215502–4, 2001.
19.  D. J. Preston, D. L. Mafra, N. Miljkovic, J. Kong, E. N. Wang, "Scalable graphene coatings for enhanced condensation heat transfer", Nano Lett.15, 5, 2902–2909, 2015.
20.  U. Thiele and D. Que, "Wetting of textured surfaces", Colloids Surf. A. 206, 41–46, 2002.
21.  N. Durand, D. Mariot, B. Am, B. Boutevin I. C. Gerhardt, "Tailored covalent grafting of hexafluoropropylene oxide oligomers onto silica nanoparticles : toward thermally stable , hydrophobic , and oleophobic nanocomposites", Langmuir. 27, 4057–4067, 2011.
22.  X. Du and J. He, "A Self-templated etching route to surface-rough silica nanoparticles for superhydrophobic coatings", ACS Appl. Mater Interfaces. 3, 1269–1276, 2011.
23.  S. S. Gh. Barati Darband, M. Aliofkhazraei, S. Khorsand, Kaboli. "Science and Engineering of Superhydrophobic Surfaces Review of Corrosion Resistance, Chemical and Mechanical Stability", Arabian J. Chem. 13,1763–1802, 2018.
24.  W. Yue, H. Li, T. Xiang, H. Qin, S. Sun, "Grafting of zwitterion from polysulfone membrane via surface-initiated ATRP with enhanced antifouling property and biocompatibility", J. Memb. Sci. 446, 79–91, 2013.
25.  I. Tlili, T. A. Alkanhal, " Nanotechnology for water purification: Electrospun nanofibrous membrane in water and wastewater treatmen ", J. Water Reuse Desalin. 9, 232-247, 2019.
26.  M. Alwazzan, K. Egab, B. Peng, J. Khan, C. Li, " Condensation on hybrid-patterned copper tubes ( I ): characterization of condensation heat transfer", Int. J. Heat Mass Transf.112,991–1004, 2017.
27.  D. Attinger,  Ch. Frankiewicz, A.R. Betz, T. M.Schutzius, R. Ganguly, A. Das, "Surface engineering for phase change heat transfer : A review", MRS Energy & Sustainability. 1–40, 2014.
28.  Th. Young, "An essay on the cohesion of fluids", Royal Society. 95, 523, 1805.
29.  R. N. Wenzel, "Resistance of solid surfaces to wetting by water", Ind. Eng. Chem. 28, 988–994, 1936.
30.  A. B. D. Cassie, S. Baxter, "Wetting of porous surfaces", Trans. Faraday Soc. 40, 546–551, 1944.
31.  A. Lafuma, D. Quéré, "Superhydrophobic states", Nat. Mater. 2,457–460, 2003.
32.  R. Xiao, N. Miljkovic, R. Enright, and E. N. Wang, "Immersion Condensation on Oil-Infused Heterogeneous Surfaces for Enhanced Heat Transfer", Sci. Rep. 3, 2013.
33.  H. J. Butt , M. Kappl, "Surface and Interfacial Forces", 6th ed, Germany, WILEY-VCH, 2010.
34.  S. Ebnesajjad, "Surface Tension and Its Measurement", Adhesives Technology Handbook", 21–36, 2009.
35.  K. K. Chawla, "Composite Materials Science and Engineering", 3rd ed, U.S.A, Springer, 2012.
36.  Y. Yoon, D. Kim , J.-B. Lee, "Hierarchical micro/nano structures for super-hydrophobic surfaces and super-lyophobic surface against liquid metal", Micro Nano Syst. Lett. 2, 2-18, 2014.
37.  T. Onda, S. Shibuichi, N. Satoh, and K. Tsujii, "Super-water-repellent fractal surfaces", Langmuir. 12, 2125–2127, 1996.
38.  M. Ma, R. M. Hill, "Superhydrophobic surfaces", Curr. Opin. Colloid Interface Sci. 11, 193–202, 2006.
39.  A. Irzh, L. Ghindes, A. Gedanken, "Rapid deposition of transparent super-hydrophobic layers on various surfaces using microwave plasma", ACS Appl. Mater. Interfaces. 3, 4566–4572, 2011.
40.  C. Oehr, "Plasma surface modification of polymers for biomedical use", Nucl. Instrum. Methods Phys. Res., Sect. B. 208,40–47, 2003.
41.  L.Y. Cui, H.P. Liu, W.L. Zhang, Z.Z. Han, M.X. Deng, R.Ch. Zeng, Sh. QiLi, Zh. Wang, "Corrosion resistance of a superhydrophobic micro-arc oxidation coating on Mg-4Li-1Ca alloy". J. Mater. Sci. Technol. 33, 1263-1271, 2017.
42.  M. Guo, Z. Kang, W. Li, J. Zhang, "A facile approach to fabricate a stable superhydrophobic film with switchable water adhesion on titanium surface", Surf. Coat. Technol.239, 227–232, 2014.
43.  X. Chen, Y. Gong, D. Li, and H. Li, "Robust and easy-repairable superhydrophobic surfaces with multiple length-scale topography constructed by thermal spray route", Colloids Surf. A. 492,19–25, 2016.
44.  G. B. Gore, N. V Sali,  A. B. Ghodake, "of Dropwise Condensation Heat Transfer Enhancement on Silver Coated Copper Surface using n-Heptane as Surfactant Additive", 2nd International Conference on Advances in Mechanical Engineering, 291–294, Sangamne, 2016.
45.  G. M. Amit Goswami , C. Suresh, B. Pillai, "Surface modifications to enhance dropwise condensation", Surf. Interfaces. 25, 101143, 2021.
46.  A. Leipertz, A.P. Fröba, "Improvement of condensation heat transfer by surface modifications", Heat Transfer Eng. 29, 343–356, 2008.
47.  G. Koch, D. C. Zhang,  A. Leipertz, "Condensation of steam on the surface of hard coated copper discs", Heat Mass Transfer. und Stoffuebertragung. 32, 3,149–156, 1997.
48.  R. A. Erb, "Wettability of metals under continuous condensing conditions", J. Phys. Chem. 69, 1306–1309, 1965.
49.  K. Mori, N. Fujita, H. Horie, S. Mori, T. Miyashita, M. Matsuda, "Heat transfer promotion of an aluminum-brass cooling tube by surface treatment with triazinethiols", Langmuir.7,1161–1166, 1991.
50.  S. Wang, J. Zhang, X. Yu, Y. Zhang, "Condensed dewdrops self-ejecting on sprayable superhydrophobic CNT/SiO2 composite coating", RSC Adv. 2, 27574–27577, 2017.
51.  K. M. Holden, A. S. Wanniarachchi, P. J. Marto, D. H. Boone, J. W. Rose, "The use of organic coatings to promote dropwise condensation of steam", J. Heat Transfer. 109,768–774, 1987.
52.  D. G. Wilkins, L. A. Bromley, S. M. Read, "Dropwise and filmwise condensation of water vapor on gold", AIChE J.19,119–123, 1973.
53.  S. A. Khan, F. Tahir, A. A. B. Baloch, M. Koc, "Review of micro-nanoscale surface coatings application for sustaining dropwise condensation", Coatings. 9,117-144, 2019.
54.  D. W. Woodruff, J. W. Westwater, "Steam Condensation on Various Gold Surfaces", Am. Soc. Mech. Eng.103,685–692, 1981.
55.  M. Ge, S. Wang, J. Zhao, Y. Zhao, L. Liu, "Effects of extended surface and surface gold plating on condensation characteristics of steam with large amount of CO2", Exp. Therm Fluid Sci. 92, 13-19, 2017.
56.  G. A. O’neill,  J. W. Westwater, "Dropwise condensation of steam on electroplated silver surfaces", Int. J. Heat Mass Transfer.27,1539–1549, 1984.
57.  W. C. Bigelow, D. L. Pickett, W. A. Zisman, "Oleophobic monolayers. I. Films adsorbed from solution in non-polar liquids", J. Colloid Sci.1,513–538, 1946.
58.  G. Azimi, R. Dhiman, H. Kwon, A. T. Paxson,  K. K. Varanasi, "Hydrophobicity of rare-earth oxide ceramics", Nat. Mater.12, 315–320, 2013.
59.  S. Khan, G. Azimi, B. Yildiz, K. K. Varanasi, "Role of surface oxygen-to-metal ratio on the wettability of rare-earth oxides", Appl. Phys. Lett. 106, 061601, 2015.
60.  D. J. Preston, N. Miljkovic, J. Sack, R. Enright, J. Queeney, E. N. Wang, "Effect of hydrocarbon adsorption on the wettability of rare earth oxide ceramics" Appl. Phys. Lett. 105, 0–5, 2014.
61.  R. Lundy, C. Byrne, J. Bogan, K. Nolan, M. N. Collins, E. Dalton, R. Enright, "Exploring the Role of Adsorption and Surface State on the Hydrophobicity of Rare Earth Oxides", ACS Appl. Mater. Interfaces. 9, 13751–13760, 2017.
62.  S. Yasmeen, M.R. Khan, K. Park, Y. Cho, J.W. Choi, H. S. Moon, "Preparation of a hydrophobic cerium oxide nanoparticle coating with polymer binder via a facile solution route", Ceram. Int. 8, 12209–12215, 2020.
63.  F. Pedraza, S.A. Mahadik, B. Bouchaud, "Synthesis of ceria based superhydrophobic coating on Ni20Cr substrate via cathodic electrodeposition", Phys. Chem. Chem. Phys. 17, 31750-31757, 2015.
64.  K. Nakayama, T. Hiraga, C. Zhu, E. Tsuji, Y. Aoki, H. Habazaki, "Facile preparation of self-healing superhydrophobic CeO2 surface by electrochemical processes", Appl. Surf. Sci. 423, 968–976, 2017.
65.  P. Xu, G. Meng, L. Pershin, J. Mostaghimi, T. W.Coyle,  "Control of the hydrophobicity of rare earth oxide coatings deposited by solution precursor plasma spray by hydrocarbon adsorption", J. Mater. Sci. Technol. 62, 107–118, 2021.
66.  J. Shim, D. Seo, S. Oh, J. Lee, Y. Nam, "Condensation heat-transfer performance of thermally stable superhydrophobic cerium-oxide surfaces", ACS Appl. Mater. Interfaces. 10, 31765–31776, 2018.
67.  G. Azimi, H.M. Kwon, K.K. Varanasi, "Superhydrophobic surfaces by laser ablation of rare-earth oxide ceramics", MRS Commun. 4, 95–99, 2014.
68.  X. Ma, J. Chen, D. Xu, J. Lin, and C. Ren, "Influence of processing conditions of polymer film on dropwise condensation heat transfer", Int. J. Heat Mass Transfer. 45,3405–3411, 2002.
69.  S. Hemmati, F. Najafi, B. Sh.Hadavand, "A review on fluoropolymers coatings", J. Stud. Color World. 10,1–10, 2020.
70.  H. E.Dehaghani, M. Nazempour, "Smart Nanoparticles Technology – Thermal Conductivity of Nanoparticles Filled Polymers",1st ed, China, IntechOpen, 2012.
71.  D. J. Huang, T. S. Leu, "Condensation heat transfer enhancement by surface modification on a monolithic copper heat sink",  Appl. Therm. Eng. 75, 908–917, 2015.
72.  X. Ji, D. Zhou, C. Dai, and J. Xu, "Dropwise condensation heat transfer on superhydrophilic-hydrophobic network hybrid surface", Int. J. Heat Mass Transfer. 132, 52–67, 2019.
73.  I. Orkan Uçar and H. Y. Erbil, "Droplet condensation on polymer surfaces: A review", Turk. J. Chem. 37, 643–674, 2013.
74.  R. Enright, N. Miljkovic, J. L. Alvarado, K. Kim, " Dropwise condensation on micro-and nanostructured surfaces ", Nanoscale Microscale Thermophys. Eng. 18, 223–250, 2014.
75.  H. Kind, J.M. Bonard, C. Emmenegger, "Patterned films of nanotubes using microcontact printing of catalysts", Adv. Mater. 11,1285–1289, 1999.
76.  S. Vemuri , K.J. Kim , B.D. Wood , S. Govindaraju, "Long term testing for dropwise condensation using self-assembled monolayer coatings of n-octadecyl mercaptan", Appl. Therm. Eng. 26, 421–429, 2006.
77.  A. Chandekar, S. K. Sengupta, and J. E. Whitten, "Applied Surface Science Thermal stability of thiol and silane monolayers : A comparative study", Appl. Surf. Sci.256, 2742–2749, 2010.
78.  J. B. Boreyko, C. H. Chen, "Self-propelled dropwise condensate on superhydrophobic surfaces", Phys. Rev. Lett. 103, 18, 2009.
79.  R. Wang, K. Jakhar, S. Ahmed, D. S. Antao, "Elucidating the mechanism of condensation-mediated degradation of organofunctional silane self-assembled monolayer coatings", ACS Appl. Mater. Interfaces. 13, 34923−34934, 2021.
80.  . Chen, D. Akinwande, K.J. Lee, G.F. Close "Fully integrated graphene and carbon nanotube interconnects for gigahertz high-speed CMOS electronics", IEEE Trans. Electron Devices. 57, 3137–3143, 2010.
81.  K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, A. K. Geim, "Two-dimensional atomic crystals", Phys. Today. 58, 9–9, 2005.
82.  X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, "Transfer of large-area graphene films for high-performance transparent conductive electrodes", Nano Lett. 9, 4359–4363, 2009.
83.  H. Malekpour, K.H. Chang, J.C. Chen, C.Y. Lu, D.L. Nika, "Thermal conductivity of graphene laminate", Nano Letters, 14, 5155–5161, 2014.
84.  C. H. Chen, Q. Cai, C. Tsai, C.L. Chen, G. Xiong, "Dropwise condensation on superhydrophobic surfaces with two-tier roughness",  Appl. Phys. Lett. 90, 1–4, 2007.
85.  Q. Shi, A. Zhu , "Interface regulation of graphene/carbon nanotube on the thermal conductivity and anticorrosion performance of their nanocomposite", Prog. Org. Coat. 140, 105480, 2020.
86.  F. Raoufi, Z. Ranjbar, S. Rategar, E. Nowak, and B. Nazari, "Wettability study of super-hydrophobic silica aerogel powders", Prog. Color. Color. Coatings.13,75–83, 2020.
87.  A. Goswami, S. C. Pillai, G. Mcgranaghan, "Surface modifications to enhance dropwise condensation", Surf. Interfaces , 25, 101143, 2021.
88.  M. Campo, S. G. Prolongo, C. Escet, and C. Tulipán, "Barrier properties of thermal and electrical conductive hydrophobic multigraphitic / epoxy coatings", J. Appl. Polym. Sci. 137,1–8, 2020.
89. M. Clausi, S. Grasselli, A. Malchiodi, I. S. Bayer, "Applied Surface Science Thermally conductive PVDF-graphene nanoplatelet ( GnP ) coatings", Appl. Surf. Sci.529, 147070, 2020