مروری بر ساختار، خواص نوری، روش‌های سنتز و کاربردها نقاط کوانتومی

نوع مقاله : مقاله مروری

نویسندگان

1 کارشناسی ارشد، گروه مهندسی مواد، دانشکده فنی و مهندسی، دانشگاه بین المللی امام خمینی (ره)، قزوین، ایران، کدپستی: ٣٤١٤٨٩٦٨١٨.

2 دانشیار، گروه مهندسی مواد، دانشکده فنی و مهندسی، دانشگاه بین المللی امام خمینی (ره)، قزوین، ایران، کدپستی: ٣٤١٤٨٩٦٨١٨.

3 استاد، گروه مهندسی مواد، دانشکده فنی و مهندسی، دانشگاه بین المللی امام خمینی (ره)، قزوین، ایران، کدپستی: ٣٤١٤٨٩٦٨١٨.

چکیده

نقاط کوانتومی گرافن عضو جدیدی از خانواده مواد کربنی هستند و به علت داشتن خواص الکتروشیمیایی، نوری و ساختاری برتر در میان سایر اعضای این گروه مورد توجه بسیاری از پژوهشگران واقع شده‌اند. نقاط کوانتومی گرافن نانوساختارهای صفر بعدی از جنس صفحات گرافن هستند که اندازه آن‌ها کمتر از 100 نانومتر بوده و شامل یک یا چندلایه گرافن هستند. یکی از ویژگی‌های مهم این مواد، وجود ساختار گرافن در آن است که بلورینگی زیاد با یک ساختار کربنی چندگانه از نوع SP2 را برای آن به ارمغان می‌آورد. اثر محدودیت کوانتومی و اثر لبه‌ها خواصی چون نورتابی قابل تنظیم، هدایت الکتریکی و سطح ویژه بالا را برای این ماده به ارمغان می‌آورد و نقاط کوانتومی گرافن را تبدیل به ماده‌ای مهم در کاربردهای مختلف از جمله پزشکی، کاتالیست، سلول خورشیدی و ابرخازن می‌کند. در این مقاله خواص، ساختار، روش‌های ساخت و کاربردهای GQDs مرور می‌شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

An Overview of the Structure, Optical Properties, Synthesis Methods and Applications of Graphene Quantum Dots

نویسندگان [English]

  • Sahand Kavand 1
  • Arman Sedqi 2
  • Saeed Baghshahi 3
  • Morteza Saghafi 2
1 Department of Materials Engineering, Faculty of Engineering and Technology, Imam Khomeini International University, P. O. Box: 3414896818, Qazvin, Iran.
2 Department of Materials Engineering, Faculty of Engineering and Technology, Imam Khomeini International University, P. O. Box: 3414896818, Qazvin, Iran.
3 Department of Materials Engineering, Faculty of Engineering and Technology, Imam Khomeini International University, P. O. Box: 3414896818, Qazvin, Iran.
چکیده [English]

Graphene quantum dots (GQDs) are considered a new member of the carbon family and shine amongst other members thanks to their superior electrochemical, optical, and structural properties. Graphene quantum dots are zero-dimensional nanostructures of less than 100 nm graphene sheets and contain one or more graphene layers. One of the essential features of these materials is the presence of graphene structure, which brings high crystallinity with a multiple carbon structure of SP2 type. The characteristics of adjustable luminescence, electrical conductivity, and high specific surface area are all quantum confinement and edge effects. These properties make graphene quantum dots important in various applications such as medicine, catalyst, solar cell, and supercapacitor. This article reviews graphene quantum dots' properties, structure, synthesis methods, and applications.

کلیدواژه‌ها [English]

  • Graphene quantum dots
  • Photoluminescence
  • Quantum confinement effect
  • Bottom-up
  • Top-down
1.   K. Patel, R. Singh, H. Kim, "Carbon-based nanomaterials as an emerging platform for Theranostics", Mater. Horizons. 6, ,434–469, 2014. https://doi.org/10.1039/C8MH00966J.
2.   XT. Zheng, A. Ananthanarayanan, KQ. Luo, P. Chen, "Glowing graphene quantum dots, and carbon dots: Properties, syntheses, and biological applications", Small. 11, 1620–1636, 2015. https://doi.org/10.1002/smll.201402648.
3.   YR. Kumar, K. Deshmukh, KK. Sadasivuni, SK. Pasha, "Graphene quantum dot based materials for sensing, bio-imaging and energy storage applications: a review", RSC. Adv. 10, 23861-23898, 2010.  https://doi.org/10.1039/D0RA03938A.
4.   F. Liu, Y. Sun, Y. Zheng, N. Tang, M. Li, W. Zhong, "Gram-scale synthesis of high-purity graphene quantum dots with multicolor photoluminescence", RSC. Adv. 5, 103428–103432, 2015. https://doi.org/10.1039/C5RA19219F.
5.   X. Yan, X. Cui, B. Li, LS. Li, "Large, solution-processable graphene quantum dots as light absorbers for photovoltaics", Nano. Lett. 10, 1869–1873, 2010. https://doi.org/10.1021/nl101060h.
6.   X. Yan, X. Cui, LS. Li, "Synthesis of large, stable colloidal graphene quantum dots with tunable size", J. Am. Chem. Soc. 132, 17, 5944–5955, 2010. https://doi.org/10.1021/ja1009376.
7.   H. Sun, L. Wu, W. Wei, X. Qu, "Recent advances in graphene quantum dots for sensing", Mater. Today. 16, 11, 433–442, 2013. https://doi.org/10.1186/s12951-020-00698-z.
8.   D. Pan, J. Zhang, Z. Li, M. Wu, "Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots", Adv. Mater. 22, 6, 734–738, 2010. https://doi.org/ 10.1002/adma.200902825.
9.   R. Liu, D. Wu, X. Feng, K. Müllen, "Bottom-up fabrication of photoluminescent graphene quantum dots with uniform morphology", J. Am. Chem. Soc. 133, 39, 15221–15223, 2011. https://doi.org/10.1021/ja204953k.
10.  MHM. Facure, R. Schneider, LA. Mercante, DS. Correa, "A review on graphene quantum dots and their nanocomposites: From laboratory synthesis towards agricultural and environmental applications”, Environ. Sci Nano. 7, 3710–3734, 2020. https://doi.org/10.1039/D0EN00787K.
11.  X. Hai, J. Feng, X. Chen, J. Wang, "Tuning the optical properties of graphene quantum dots for biosensing and bio imaging", J. Mater. Chem B. 6, 3219–3234, 2018. https://doi.org/10.1039/C8TB00428E.
12.  MA. SK, A. Ananthanarayanan, L. Huang, KH. Lim, P Chen, "Revealing the tunable photoluminescence properties of graphene quantum dots", J. Mater. Chem. C. 2, 6954–6960, 2014. https://doi.org/10.1039/C4TC01191K.
13.  Y. Li, H. Shu, S. Wang, J. Wang, "Electronic and optical properties of graphene quantum dots: The role of many-body effects", J .Phys .Chem .C. 119, 4983–4989, 2015. https://doi.org/10.1021/jp506969r.
14.  M. Su, P. Chen, Y. Dong, H. Sun, "Chemiluminescence of graphene quantum dots induced by acidic potassium permanganate and its application to quenchometric flow-injection assays of hydroquinone in water", J. Lumin. 177, 204–208, 2016. 
https://doi.org/10.1016/j.jlumin.2016.04.051.
15.  KA. Ritter, JW. Lyding, "The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons”, Nat. Mater. 8, 235–242, 2009. https://doi.org/10.1038/nmat2378.
16.  S. Zhu, Y. Song, X. Zhao, J. Shao, J. Zhang & B. Yang, "The Photoluminescence Mechanism in Carbon Dots (Graphene Quantum Dots, Carbon Nano Dots, and Polymer Dots): Current State and Future Perspective" , Nano Res. 8, 355–381, 2015. https://doi.org/10.1007/s12274-014-0644-3.
17.  M. Bacon, SJ. Bradley, T. Nann, "Graphene quantum dots", Part. Syst. Charact. 31, 415–428, 2014.  https://doi.org/10.1002/ppsc.201300252.
18.  MW. Lee, J. Kim, JS. Suh, "Characteristics of graphene quantum dots determined by edge structures: Three kinds of dots fabricated using thermal plasma jet", RSC. Adv. 5, 67669–67675, 2015. https://doi.org/10.1039/C5RA12223F.
19.  H. Li, Z. Kang, Y. Liu, ST. Lee, "Carbon Nanodots: Synthesis, properties, and applications", J. Mater. Chem. 22, 46, 24230–24353, 2012. https://doi.org/10.1039/C2JM34690G.
20.  K. Li, W. Liu, Y. Ni, D. Li, D. Lin, Z. Su, "Technical synthesis and biomedical applications of graphene quantum dots", J. Mater. Chem. B. 5, 25, 4811–4826, 2017. https://doi.org/10.1039/C7TB01073G.
21.  M. Ozhukil Valappil, V.K. Pillai, S. Alwarappan, "Spotlighting graphene quantum dots and beyond: Synthesis, properties, and sensing applications", Appl. Mater. Today. 9, 350–371, 2017. https://doi.org/10.1016/j.apmt.2017.09.002.
22.  S. Kundu, VK. Pillai. "Synthesis and characterization of graphene quantum dots", Phys. Sci. Rev. 5, 35-51, 2020. https://doi.org/10.1515/psr-2019-0013.
23.  M. Buzaglo, M. Shtein, O. Regev. "Graphene Quantum Dots Produced by Microfluidization", Chem. Mater. 28, 21–24, 2016. https://doi.org/10.1021/acs.chemmater.5b03301.
24.  J. Shen, Y. Zhu, X. Yang, J. Zong, J. Zhang, C. Li. "One-pot hydrothermal synthesis of graphene quantum dots surface-passivated by polyethylene glycol and their photoelectric conversion under near-infrared light", New. J. Chem. 36. 97–101, 2012. https://doi.org/10.1039/C1NJ20658C.
25.  P. Luo, X. Guan, Y. Yu, X. Li, F. Yan. "Hydrothermal synthesis of graphene quantum dots supported on three-dimensional graphene for supercapacitors", Nanomater. 9, 2019. https://doi.org/10.3390/nano9020201.
26.  S. Zhu, J. Zhang, C. Qiao, S. Tang, Y. Li, W. Yuan. "Strongly green-photoluminescent graphene quantum dots for bioimaging applications", Chem. Commun. 47, 6858–6860, 2016. https://doi.org/10.1039/C1CC11122A.
27.  L. Lin, M. Rong, F. Luo, D. Chen, Y. Wang, X. Chen, "Luminescent graphene quantum dots as new fluorescent materials for environmental and biological applications", TrAC – Trends. Anal. Chem. 54, 83–102, 2014. https://doi.org/10.1016/j.trac.2013.11.001.
28.  J. Lu, J. Yang, J. Wang, A. Lim, S. Wang, KP. Loh, "One-Pot Synthesis of Fluorescent Carbon Graphene by the Exfoliation of Graphite in Ionic Liquids", ACS. Nano. 3, 2367–2375, 2009. https://doi.org/10.3390/molecules27155027.
29.  Y. Li, Y. Hu, Y. Zhao, G. Shi, L. Deng, Y. Hou, "An electrochemical avenue to green-luminescent graphene quantum dots as potential electron-acceptors for photovoltaics”, Adv. Mater. 23, 776–780, 2011. https://doi.org/10.1002/adma.201003819.
30.  AK. Narasimhan, SB. Lakshmi, TS. Santra, MSR. Rao, G. Krishnamurthi, "Oxygenated graphene quantum dots (GQDs) synthesized using laser ablation for long-term real-time tracking and imaging", RSC. Adv. 7, 85, 53822–53829, 2017. https://doi.org/10.1039/C7RA10702A.
31.  S. Kang, JH. Ryu, B. Lee, KH. Jung, KB. Shim, H. Han, "Laser wavelength modulated pulsed laser ablation for selective and efficient production of graphene quantum dots”, RSC. Adv. 9, 13658–13663, 2019. https://doi.org/10.1039/C9RA02087J.
32.  L. Li, G. Wu, G. Yang, J. Peng, J. Zhao, JJ. Zhu, "Focusing on luminescent graphene quantum dots: Current status and future perspectives”, Nanoscale. 5, 4015–4039, 2013. https://doi.org/10.1039/C3NR33849E.
33.  J. Wen, M. Li, J. Xiao, C. Liu, Z. Li, Y. Xie, "Novel oxidative cutting graphene oxide to graphene quantum dots for electrochemical sensing application", Mater. Today. Commun. 8, 127–133,  2016.  https://doi.org/10.1016/j.mtcomm.2016.07.006.
34.  KS. Samra, M. Manpreet, A. Singh, "Facile synthesis of graphene quantum dots and their optical characterization", Fullerenes Nanotubes Carbon Nanostructures. 29, 638–642, 2011. https://doi.org/10.1080/1536383X.2021.1878152.
35.  S. Kavand, A.Sedghi, S. Baghshahi, "Investigating the Effect of Temperature on the Synthesis of Graphene Quantum Dots by Thermal Pyrolysis Method and Its Effect on Photoluminescent Properties", J. Stud. Color world, 12, 283-291, 2022. 
https://dorl.net/dor/20.1001.1.22517278.1401.12.3.6.5 (In Persian). 
36.  Y. Dong, J. Shao, C. Chen, H. Li, R. Wang, Y. Chi, X. Lin, G. Chen, "Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid", Carbon. 50. 4738 –4743, 2012. https://doi.org/10.1016/j.carbon.2012.06.002.
37.  L. Tang, R. Ji, X. Cao, J. Lin, H. Jiang, X. Li, K. Teng, M. Luk, S. Zeng , J. Hao, S. Lau, "Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots", ACS. Nano. 6, 5102–5110, 2012. https://doi.org/10.1021/nn300760g. 
38.  L. Yunhai, S. Huabing, N. Xianghong, W. Jinlan,"Electronic and optical properties of edge-functionalized graphene quantum dots and the underlying mechanism", J. Phys. Chem. C. 119, 24950-24957, 2015. https://dorl.net/dor/10.1021/acs.jpcc.5b05935
39.  V. Bressi, A. Ferlazzo, D. Iannazzo, C. Espro, "Graphene quantum dots by eco-friendly green synthesis for electrochemical sensing: Recent advances and future perspectives", Nanomater. 11, 5, 2021. https://dorl.net/dor/10.3390/nano11051120.
40.  W. Wang, Z. Wang, J. Liu, Y. Peng, X. Yu, W. Wang. "One-pot facile synthesis of graphene quantum dots from rice husks for fe3+ sensing", Ind. Eng. Chem. Res. 28, 9144–9150, 2018. https://doi.org/10.1021/acs.iecr.8b00913.
41.  S. Zhou, H. Xu, W. Gan, Q. Yuan. "Graphene quantum dots: recent progress in preparation and fluorescence sensing applications", RSC. Adv. 6, 110775–110788, 2016. https://doi.org/10.1039/C6RA24349E.
42.  W. Shang, X. Zhang, M. Zhang, Z. Fan, Y. Sun, M. Han, "The uptake mechanism and biocompatibility of graphene quantum dots with human neural stem cells", Nanoscale. 6, 11, 5799–5806, 2014. https://doi.org/10.1039/C3NR06433F.
43.  X. Wu, F. Tian, W. Wang, J. Chen, M. Wu, JX. Zhao, "Fabrication of highly fluorescent graphene quantum dots using L-glutamic acid for in vitro/in vivo imaging and sensing”, J. Mater. Chem. C. 1, 31, 4676–4684, 2013. https://doi.org/10.1039/C3TC30820K.
44.  Q. Lu, W. Wei, Z. Zhou, Y. Zhang, S. Liu. "Electrochemiluminescence resonance energy transfer between graphene quantum dots and gold nanoparticles for DNA damage detection", Analyst. 139, 10, 2404–2410, 2014. https://doi.org/10.1039/C4AN00020J.
45.  Y. Lei, C. Yang, J. Hou, F. Wang, S. Min, X. Ma, "Strongly coupled CdS/graphene quantum dots nano hybrids for highly efficient photocatalytic hydrogen evolution: Unraveling the essential roles of graphene quantum dots", Appl. Catal. B. Environ. 216, 59–69, 2017.  https://doi.org/10.1016/j.apcatb.2017.05.063.
46.  Y. Liu, LP. Xu, W. Dai, H. Dong, Y. Wen, X. Zhang. "Graphene quantum dots for the inhibition of β amyloid aggregation", Nanoscale. 7, 19060–19065, 2015. https://doi.org/10.1039/C5NR06282A.
47.  D. Kim, JM. Yoo, H. Hwang, J. Lee, SH. Lee, SP. Yun, "Graphene quantum dots prevent α-synucleino pathy in Parkinson’s disease", Nat. Nanotechnol. 13, 812–818, 2018. https://doi.org/10.1038/s41565-018-0179-y.
48.  J. Li, J. Qu, R. Yang, L. Qu, P. A.  Harrington, "Sensitive and selective electrochemical sensor based on graphene quantum dot/gold nanoparticle nanocomposite modified electrode for the determination of quercetin in biological samples", Electroanalysis. 28, 1322–1330, 2016.  https://doi.org/10.1002/elan.201500490.
49.  S. Salmani, F. Daneshmand, A. Divsalar, S. Mousavi, "Synthesis of solution graphene quantum dots for diagnostic diabetes mellitus by exhaled breath", Nanoscale. 5, 225-234, 2018. https://doi.org/20.1001.1.24235628.1397.5.3.5.7.
50.  V. Chabot, D. Higgins, A. Yu, X. Xiao, Z. Chen, J. Zhang, "A review of graphene and graphene oxide sponge: Material synthesis and applications to energy and the environment", Energy. Environ. Sci. 7, 1564–1596, 2014.  https://doi.org/10.1039/C3EE43385D.
51.  H. Yoon, M. Park, J. Kim, TG. Novak, S. Lee, S. Jeon. "Toward highly efficient luminescence in graphene quantum dots for optoelectronic applications", Chem. Phys. Rev. 2, 031303, 2021. https://doi.org/10.1063/5.0049183.
52.  CO. Kim, SW. Hwang, S. Kim, DH. Shin, SS. Kang, JM. Kim, "High- performance graphene-quantum-dot photodetectors", Sci. Rep. 4, 2014. https://doi.org/10.1002/adom.202201889.
53.  Q. Li, S. Zhang, L. Dai, Li. LS,  "Nitrogen-doped colloidal graphene quantum dots and their size-dependent electrocatalytic activity for the oxygen reduction reaction" , J. Am. Chem. Soc, 34, 18932–18935, 2012.https://doi.org/10.1021/ja309270.
54.  C. Hoang, K. Dave, V. Gomes, "Carbon Quantum Dot-Based Composites for Energy Storage and Electrocatalysis: Mechanism, Applications, and Prospects", Nano. Energy. 66, 6104093, 2019.https://doi.org/10.1016/j.nanoen.2019.104093.
55.  W. Yuanguo, Z. Xingbao, J. Xin, L. Weilong, W. Weihua, W. Yu, P. Xingyu, L. Zhe, "Graphene quantum dots as a highly efficient electrocatalyst for lithium–oxygen batteries", J. Mater. Chem. A. 8, 22356-22368, 2020. https://doi.org/10.1039/D0TA07587F.
56.  Y. Yan, J. Chen, N. Li, J. Tian, K. Li, J. Jiang, "Systematic bandgap engineering of graphene quantum dots and applications for photocatalytic water splitting and co2 reduction", ACS. Nano. 12, 4, 3523–3532, 2018. https://doi.org/10.1021/acsnano.8b00498.
57.  C. Chuang, PR. Brown, V. Bulović, MG. Bawendi, "Improved performance and stability in quantum dot solar cells through band alignment engineering", Nat. Mater. 13, 8, 796–801, 2014. https://doi.org/10.1038/nmat3984.
58.  Y. Deng, D. Zhao, X. Chen, F. Wang, H. Song, D. Shen, "Long lifetime pure organic phosphorescence based on water soluble carbon dots", Chem. Commun. 49, 5751–5453, 2013. https://doi.org/10.1039/C3CC42600A. 
59.  W. Wu, H. Wu, M. Zhong, S. Guo, "Dual role of graphene quantum dots in active layer of inverted bulk heterojunction organic photovoltaic devices", ACS. Omega. 4, 14, 16159–16565, 2019. https://doi.org/10.1021/acsomega.9b02348.
60.  Y. Wang, A. Hu, "Carbon quantum dots: Synthesis, properties, and applications", J. Mater. Chem. C. 34, 6921–6939, 2014. https://doi.org/10.1007/978-3-319-43911-2.
61.  J. Jiang, Y. Li, Liu. J, X. Huang, C. Yuan, X. Lou, "Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage", Adv. Mater. 24, 38, 5166–5180, 2012. https://doi.org/10.1002/adma.201202146.
62. Z. Zhang, J. Zhang, N. Chen, L. Qu, "Graphene quantum dots: An emerging material for energy-related applications and beyond", Energy. Environ. Sci. 5, 8869–8890, 2012. https://doi.org/10.1039/C2EE22982J