بررسی پیشرفت‌های اخیر در ساخت سلول‌های خورشیدی پروسکایت

نوع مقاله : مقاله مروری

نویسندگان

1 دانشجوی دکتری، گروه مهندسی شیمی، دانشکده فنی، دانشگاه گیلان، رشت، ایران، کد‌پستی: ۴۱۹۹۶۱۳۷۷۶.

2 دانشیار، گروه مهندسی شیمی، دانشکده فنی، دانشگاه گیلان، رشت، ایران، کد‌پستی: ۴۱۹۹۶۱۳۷۷۶.

3 استاد، گروه انرژی، پژوهشگاه پلیمر و پتروشیمی ایران، تهران، ایران، کد‌پستی: 112-14975.

چکیده

در سال‌های اخیر، سلول‌های خورشیدی پروسکایت به دلیل افزایش راندمان تبدیل توان، فرآیند ساخت ساده، مواد کم‌هزینه و خواص منحصر به فردی همچون گاف نواری قابل تنظیم، دامنه جذب نور بالا، انرژی پیوند اکسایتون کم و تحرک زیاد الکترون و حفره مورد توجه قرار گرفته‌اند. اخیراً بازده سلول‌های خورشیدی پروسکایت با توجه به کیفیت بالای فیلم پروسکایت، روش‌های سنتز، لایه نشانی و مواد الکترود مناسب، از ۲۵ درصد فراتر رفته است. در این مقاله با هدف ایجاد درک بهتر و دستیابی به بینش کامل‌تر در خصوص سلول‌های خورشیدی مبتنی بر مواد پروسکایت، پیشرفت‌های اخیر سلول‌های خورشیدی پروسکایت، ساختار و انواع روش‌های لایه نشانی مورد بررسی قرار می‌گیرد. در ادامه برخی از انواع پروسکایت‌ها، لایه‌های انتقال‌دهنده حفره و الکترون با یکدیگر مقایسه شده و تأثیر آن‌ها بر بازده سلول خورشیدی گزارش می‌شود. در نهایت انواع روش‌های پوشش‌دهی پروسکایت با مساحت بزرگ و کوچک مورد بحث قرارگرفته و چالش‌ها و فرصت‌های تجاری‌سازی پیشنهاد شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A Review of Recent Progress in Fabrication of Perovskite Solar Cells

نویسندگان [English]

  • Samira Fallahdoust Moghadam 1
  • Neda Gilani 2
  • Ali akbar Yousefi 3
1 Department of Chemical Engineering, University of Guilan, P. O. Box: 4199613776, Rasht, Iran.
2 Department of Chemical Engineering, University of Guilan, P. O. Box: 4199613776, Rasht, Iran.
3 Energy Division , Iran Polymer and Petrochemical Institute, P. O. Box: 14975-112, Tehran, Iran.
چکیده [English]

In recent years, perovskite solar cells have attracted attention due to their increased power conversion efficiency, simple manufacturing process, low-cost materials, and unique properties such as band tunability, high electron and hole mobility, and low exciton binding energy. Also, the efficiency of perovskite solar cells has exceeded 25 % due to the high quality of perovskite film, synthesis methods, coating, and appropriate electrode materials. This article examines the recent progress of perovskite solar cells, structure, and types of coating methods to understand better and gain complete insight into perovskite solar cells. In the following, some types of perovskites, holes, and electron transfer layers are compared, and their effect on solar cell efficiency is reported. Finally, the types of perovskite coating methods with large and small areas are discussed, and the challenges and opportunities of perovskite solar cell commercialization are suggested.

کلیدواژه‌ها [English]

  • Photovoltaic
  • Solar cell
  • Perovskite
  • Coating
  • Conversion efficiency
1.   Shaikh JS, Shaikh NS, Mali SS, Patil JV, Pavar KK, Kanjanaboos P, Hung CK. Nanoarchitectures in dye-sensitized solar cells: metal oxides, oxide perovskites and carbon material. Soc Chem. 2018;4987–5034.
https://doi.org/10.1039/C7NR08350E.
2.   Hoseinnezhad M. Review on Metal-based Complex Dyes for Dye-sensitized Solar Cells. J Stud Color World. 2021;3:45-54. https://dorl.net/20.1001.1.22517278.1400. 11.3.4.6 (In Persian).
3.   Yousefi AA, Mohebbi A, Fallahdoust Moghadam S. Polymer Solar Cells: Components, Production, Applications, and the Market, Polymerization. Polymer. 2019;4:65-78. https://doi.org/10.22063/basparesh.2018. 2027.1381 (In Persian).
4.   Hosseinnezhad F, Naji L. Solar cells are a big step towards using renewable energies. Green Chem Tech. 2018;2:84-96. https://dorl.net 10/1298/106328.html (In Persian).
5.   Rathore N, Panwar NL, Yettou F, Gama A. A comprehensive review of different types of solar photovoltaic cells and their applications. Int J Amb Energy. 2019;9:1–18. https://doi.org/10.1080/01430750.2019.1592774.
6.   Gao Y, Zhang J. Chitosan modified zeolite molecular sieve particles as a filter for ammonium nitrogen removal from water.Int J Mol Sci . 2020;21(7). 
https://doi.org/10.3390/ijms21072383.
7.   Berendjchi A, Yousefi AA, Fallahdoost Moghadam S.Economic Estimation of Polymer Solar Cells Fabrication.Polymerization . 2021;4:69-85.
https://doi.org/10.22063/basparesh.2018.2027.1381 (In Persian). 
8.   Rouhani S, Hosseinnezhad M, Nasiri S, Gharanjig K, Salem A,Ranjbar Z. Investigation of the Effect of rGO/TiO2 on Photovoltaic Performance of DSSCs Devices. Prog Color Colorants Coat. 2022;15:123-131.
 https://doi.org/10.30509/pccc .2021 .166738 .1094.
9.   Kojima A, Teshima K, Shirai Y. Novel Photo- electrochemical Cell with Mesoscopic Electrodes Sensitized by Lead-Halide Compounds. Meet Abstr. 2006;2:397. https://doi.org/10.1149/ma2007-02/8/352.
10.  Roy A, Ghosh A, Bhandari S, Sundaram S, Mallick TK. Perovskite solar cells for bipv application: A review. Build. 2020;10:1–33. https://doi.org/10.3390/buildings10070129.
11.  Liang Z, Zhang S, Xu X, Wang N. A large grain size perovskite thin film with a dense structure for planar heterojunction solar cells via spray deposition under ambient conditions. RSC Adv. 2015;5:60562–60569. https://doi.org/10.1039/c5ra09110a.
12.  Müller A, Ghosh M, Sonnenschein R, Woditsch P. Silicon for photovoltaic applications. Mater Sci Eng B Solid-State Mater Adv Technol. 2006;134(2-3):257–262. 
https://doi.org/10.1016/j.mseb.2006.06.054.
13.  Song Z, Watthage SC, Phillips AB, Heben MJ. Pathways toward high-performance perovskite solar cells: review of recent advances in organo-metal halide perovskites for photovoltaic applications.J Photo Energy . 2016;6(2):21-30. https://doi.org/10.1117/1.jpe .6 .022001. 
14.  Maleki E, Ranjbar M, Kahani SA.The Effect of Antisolvent Dropping Delay Time on the Morphology and Structure of the Perovskite Layer in the Hole Transport Material Free Perovskite Solar Cells. Prog Color Colorant Coat. 2021;14:47–54.
 https://doi.org/10.30509/pccc .2021 .81671. 
15.  Miyata A, Mitiaglo A, Polochocka P, Portogall O, Wang W.Direct Measurement of the Exciton Binding Energy and Effective Masses for Charge carriers in an Organic-Inorganic Tri-halide Perovskite.Chem. 2015;1–22.
 https://doi.org/10.1038/nphys3357. 
16.  Mitzi DB, Chondroudis K, Kagan CR.Organic-inorganic electronics.IBM J Res Dev. 2001;45(1):29–45.
https://doi.org/10.1147/rd .451 .0029. 
17.  Gholipour S, Saliba M.From Exceptional Properties to Stability Challenges of Perovskite Solar Cells.Phys . 2018;1–10 . https://doi.org/10.1002/smll .201802385. 
18.  Zhou D, Zhou T, Tian Y, Zhu X, Tu Y.Perovskite-based solar cells : materials, methods , and future perspectives.Sol Energy Mater Sol Cells. 2018;8:45-51.
 https://doi.org/10.1155/2018/8148072. 
19.  Valverde-Chávez DA.second charge generation dynamics in single crystal CH3NH3PbI3.Energy Environ Sci. 2015;8(12):3700–3707. https://doi.org/10.1039/c5ee02503f. 
20.  Roy P, Kumar Sinha N, Tiwari S, Khare A.A review on perovskite solar cells: evolution of architecture, fabrication techniques, commercialization issues and status.Sol Energy . 2020;198:665–688. https://doi.org/10.1016/j.solener .2020 .01 .080. 
21.  Liang K, Mitzi DB, Prikas MT.Synthesis and Characterization of Organic-Inorganic Perovskite Thin Films Prepared Using a Versatile Two-Step Dipping Technique. Chem Mater. 2013;4756(8):403–411.
 https://doi.org/10.1021/cm970568f. 
22.  Kojima A, Teshima K, Shirai Y,Miyasaka T.Organometal halide perovskites as visible-light sensitizers for photovoltaic cells.J Am Chem Soc . 2009;131(17):6050–6051. https://doi.org/10.1021/ja809598r CCC:.
23.  Im JH, Lee CR, Lee JW, Park SW, Park NG. 6.5% Efficient Perovskite Quantum-Dot-Sensitized Solar Cell. Nanoscale. 2011;3(10):4088–4093.
 https://doi.org/10.1039/c1nr10867k.
24.  Kim HS. lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci Rep. 2012;2:1–7.
 https://doi.org/10.1038/srep00591.
25.  Burscha J. equential deposition as a route to high-performance perovskite-sensitized solar cells. Nature. 2013;499(7458):316–319. https://doi.org/10.1038/nature12340.
26.  Giordano F, Lim S, Wang W. Enhanced electronic properties in mesoporous TiO2 via lithium doping for high-efficiency perovskite solar cells. Nat Commun. 2016;7:1–6. https://doi.org/10.1038/ncomms10379.
27.  NREL improves efficiency and stability of perovskite solar cell (Internet). Energy Monitor; 2020 (cited 2023 Apr 12). Available from: https://www. energymonitor .ai/tech/ renewables/nrel-improves-efficiency-and-stability-of-perovskite-solar-cell/.
28.  Yang IS, Park NG. Dual Additive for Simultaneous Improvement of Photovoltaic Performance and Stability of Perovskite Solar Cell. Adv Funct Mater. 2021;20:1–7. https://doi.org/10.1002/adfm .202100396. 
29.  Zhou Y, Wang F, Fang HH.Distribution of bromine in mixed iodide-bromide organolead perovskites and its impact on photovoltaic performance.J Mater Chem A . 2016;41:16191–16197.https://doi.org/10 .1039/c6ta07647e. 
30.  Eggers H.Inkjet-Printed Micrometer-Thick Perovskite Solar Cells with Large Columnar Grains.Adv Energy Mater . 2020;6 . https://doi.org/10 .1002/aenm .201903184. 
31.  Bati ASR, Zhong YL, Burn PL, Nazeeruddin MK, Shaw PE, Batmunkh M.Next-generation applications for integrated perovskite solar cells.Commun Mater . 2023;4(1):1–24. 
https://doi.org/10.1038/s43246-022-00325-4. 
32.  Deepa M, Salado M, Calio L, Kazim S, Shivaprasad SM, Ahmad S.Cesium power: Low Cs+ levels impart stability to perovskite solar cells.Phys Chem Chem Phys . 2017;5:4069–4077. https://doi.org/10 .1039/c6cp08022g. 
33.  Maqsood A,Lin Y,Meng J.perovskite Solar Cells Based on Compact , Exceeding 22 %.Chem . 2020;10:292-310 . https://doi.org/12 .1019/j.chik .2020 .07 .021. 
34.  Targhi FF, Jalili YS, Kanjouri F.MAPbI3 and FAPbI3 perovskites as solar cells: Case study on structural, electrical and optical properties.Results Phys. 2018;10:616–627. https://doi.org/10 .1016/j.rinp .2018 .07 .007. 
35.  Najafi M.Highly Efficient and Stable Flexible Perovskite Solar Cells with Metal Oxides Nanoparticle Charge Extraction Layers.Small. 2018;14(12):1–10.  https://doi.org/10 .1002/smll .201702775. 
36.  Im JH, Jang IH, Pellet N, Grätzel M,Park NG.Growth of CH3 NH3 PbI3 cuboids with controlled size for high-efficiency perovskite solar cells.Nat Nanotechnol . 2014;11:927–932. https://doi.org/10 .1038/nnano .2014 .181. 
37.  Gong J, Darling SB, You F.Perovskite photovoltaics: Life-cycle assessment of energy and environmental impacts.Energy Environ Sc. 2015;7:1953–1968. https://doi.org/10 .1039/c5ee00615e. 
38.  Jiang Q.Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2 PbI3-based perovskite solar cells.Nat Energy. 2017;2(1). https://doi.org/10 .1038/nenergy .2016 .177.
39.  Zhang J, Gao X, Deng Y, Zha Y, Yuan C. Comparison of life cycle environmental impacts of different perovskite solar cell systems. Sol Energy Mater Sol Cells. 2017;166:9–17. https://doi.org/10.1016/j.solmat.2017.03.008.
40.  Zhao Y, Cheng J, Hung W. Perovskite seeding growth of formamidinium-lead-iodide-based perovskites for efficient and stable solar cells. Nat Commun. 2018;9(1):1–10. https://doi.org/10.1038/s41467-018-04029-7.
41.  Cho KT, Grancini G, Lee Y, Oveisi E, Ryu J, Tschumi M, Schouwink A, Seo G, Heo S, Park J, Jang JY, Paek S. Selective growth of layered perovskites for stable and efficient photovoltaics. Energy Environ Sci. 2018;1(4):952–959. https://doi.org/10.1039/c7ee03513f.
42.  Chen B, Wang S, Zhang X, Zhu W, Cao Z, Hao F. Reducing the interfacial voltage loss in tin halides perovskite solar cells. Chem Eng J. 2022;445:136769. https://doi.org/10.1016/j.cej .2022 .136769. 
43.  Salhi B, Wudil YS, Hossain MK, Al-Ahmed A, Al-Sulaiman FA.Review of recent developments and persistent challenges in stability of perovskite solar cells.Renew Sustain Energy Rev . 2018;90:210–222 . https://doi.org/10 .1016/j.rser .2018 .03 .058. 
44.  Hima A, Lakhdar N, Benhaoua B, Saadoune A.Superlattices and Microstructures An optimized perovskite solar cell designs for high conversion efficiency Front contact.Superlattices Microstruct . 2019;129:240–246 . https://doi.org/10 .1016/j.spmi .2019 .04 .007. 
45.  Muradov A, Frolushkina D, Samusenkov V, Zhamanbayeva G, Kot S.Methods of Stability Control of Perovskite Solar Cells for High Efficiency.Energies . 2021;14:2918 . https://doi.org/10 .3390/en14102918 2021. 
46.  Sanchez-diaz J, Rafael S,Masi S.Supplemental information Tin perovskite solar cells with > 1 , 300 h of operational stability in N2 through a synergistic chemical engineering approach.Joule. 2022;6:2012. https://doi.org/10.1016/j. joule .2022 .02 .014. 
47.  Ullah S,Bou Z.Mesoporous SnO2 Nanoparticle-Based Electron Transport Layer for Perovskite Solar Cells.ACS Appl Nano Mater. 2022;245-341. https://doi.org/10 .1021/acsanm .2c00840. 
48.  Bai S,Li P,Wang C,Yuan Z,Fu Z,Kawecki F,Liu M,Sakai X,Wang N,Huettner JT,Buecheler S,Fahlman M,Gao M,Snaith F,Huang H.Planar perovskite solar cells with long-term stability using ionic liquid additives.Nature. 2019;571(7764):245–250 . https://doi.org/10 .1038/s41586-019-1357-2. 
49.  Rong B,Jin S,Chen X,Wei Y,Fang Y,Zhao Y,Guo Q,Huang Y,Fan L,Wu J.Improving the efficiency of perovskite solar cells by additive engineering with ditetrabutylammonium dichromate.Org Electro. 2020;5:105845 . https://doi.org/10 .1016/j.orgel .2020 .105845. 
50.  Hu J,Wang C,Qiu S,Zhao Y,Gu E,Zeng L,Yang Y,Li C,Liu X,Forberich K,Li J,Nazeeruddin MK,Mai Y,Guo F.Spontaneously Self-Assembly of a 2D/3D Heterostructure Enhances the Efficiency and Stability in Printed Perovskite Solar Cells.Adv Energy Mater. 2020;10(17):1–10. https://doi.org/10.1002/aenm.202000173. 
51.  Li J,Bua T,Lina Z,Mo Y,Cha N,Gaoc X,Jia M,Li Z,Cheng Y,Huang F.Efficient and stable perovskite solar cells via surface passivation of an ultrathin hydrophobic organic molecular layer.Chem Eng J. 2021;405:126712. https://doi.org/10 .1016/j.cej .2020 .126712.
52.  Mohammadian J, Haratizade H, Arabi AM, qaranjig K, Hoseinnezhad M. A Review of the Effect of Metal Doped Titanium Dioxide on the Dye-Sensitized Solar Cells. J Stud Color World. 2022;11(4):63-75. https://dorl.net/20.1001 .1.22517278.1400.11.4.5.9 (In Persian).
53.  Wang R, Mujahid M, Duan Y, Wang ZK, Xue J,Yang Y. A Review of Perovskites Solar Cell Stability. Adv Funct Mater. 2019;29(47).
 https://doi.org/10.1002/adfm .201808843.
54.  Mathies F, List-Kratochvil EJW, Unger EL. Advances in Inkjet-Printed Metal Halide Perovskite Photovoltaic and Optoelectronic Devices. Energy Technol. 2020;8(4). https://doi.org/10.1002/ente .201900991. 
55.  Leng X.Recent progress and challenges of electron transport layers in organic inorganic perovskite solar cells.Adv Mater. 2019. https://doi.org/10 .1002/adma .201805708. 
56.  Li S,Cao YL,Li WH,Bo ZS.A brief review of hole transporting materials commonly used in perovskite solar cells.Rare Met. 2021;10:2712–2729. https://doi.org/10 .1007/s12598-020-01691-z. 
57.  Chen C,Cheng Y,Dai Q,Song H.Radio Frequency Magnetron Sputtering Deposition of TiO2 Thin Films and Their Perovskite Solar Cell Applications.Sci Rep. 2015;5:1–12. https://doi.org/10 .1038/srep17684. 
58.  Kim T,Lim J,Song S.Recent progress and challenges of electron transport layers in organic inorganic perovskite solar cells.Energies. 2020;13(21):1–16. https://doi.org/10 .3390/en13215572. 
59.  Krishna A,Grimsdale AC.Hole transporting materials for mesoscopic perovskite solar cells-towards a rational design?.J Mater Chem A. 2017;5(32):16446–16466 . https://doi.org/10 .1039/c7ta01258f. 
60.  Yan J,Savenije TJ,Mazzarella L,Isabella O.Progress and challenges on scaling up of perovskite solar cell technology.Sustain Energy Fuels. 2022;6(2):243–266 . https://doi.org/10 .1039/d1se01045j. 
61.  Liu C,Zhang L,Li Y,Zhou X,She S,Wang X,Tian Y,Jen AKY,Xu B.Highly Stable and Efficient Perovskite Solar Cells with 22.0% Efficiency Based on Inorganic–Organic Dopant-Free Double Hole Transporting Layers.Adv Funct Mater. 2020;30(28):1–8. https://doi.org/10 .1002/adfm .201908462. 
62.  Pitchaiya S,Natarajan M,Santhanam A,Asokan V,Yuvapragasam A,Ramakrishnan VM,Palanisamy SE.A review on the classification of organic/inorganic/carbonaceous hole transporting materials for perovskite solar cell application. Arab J Chem. 2020;13(1):2526–2557. https://doi.org/10.1016/j.arabjc.2018. 06.006. 
63.  Li S, Cao YL, Li WH, Bo ZS. A brief review of hole transporting materials commonly used in perovskite solar cells. Rare Met. 2021;10:2712–2729. https://doi.org/10.1007/s12598-020-01691-z.
64.  Yang D. High efficiency planar-type perovskite solar cells with negligible hysteresis using EDTA-complexed SnO2. Nat Commun. 2018;1. https://doi.org/10.1038/s41467-018-05760-x.
65.  Ašmonta S. Photoelectric Properties of Planar and Mesoporous Structured Perovskite Solar Cells. Materials (Basel). 2022;15(12).
https://doi.org/oi: 10.3390/ma15124300.
66.  Gong C, Tong K, Huang K, Li H, Huang H, Zhang J, Yang J. Flexible Planar Heterojunction Perovskite Solar Cells Fabricated via Sequential Roll-to-Roll Microgravure Printing and Slot-Die Coating Deposition. Sol RRL. 2020;4(2):1–9. https://doi.org/10.1002/solr .201900204.
67.  Lemercier T, Perrin L. Materials Advances 17 % efficiency : processing and characterization. 2021;3:7907–7921. https://doi.org/10.1039/d1ma00819f. 
68.  Hosseinnezhad M.Review on Dye-sensitized Solar Cells Performance Contain Transparent Polymers.J Stud Col World . 2020;10(1):1-10. https://dorl.net/20 .1001 .1 .22517278 .1399 .10 .1 .2 .3 (In Persian). 
69.  Shariatinia Z.Recent progress in development of diverse kinds of hole transport materials for the perovskite solar cells: A review.Renew Sustain Energy Rev.  2020;119:109608. https://doi.org/10.1016/j.rser.2019.109 608. 
70.  Ibn-Mohammed T.Perovskite solar cells: An integrated hybrid lifecycle assessment and review in comparison with other photovoltaic technologies.Renew Sustain Energy Rev. 2017;80:1321–1344. https://doi.org/10 .1016/j.rser .2017 .05 .095. 
71.  Collavini S,Cabrera-espinoza A,Delgado JL.Organic Polymers as Additives in Perovskite Solar Cells.2021. https://doi.org/10 .1021/acs.macromol .1c00665. 
72.  Zhao Y. polymer scaffold for self-healing perovskite solar cells.Nat Commun. 2016;1–9. https://doi.org/10 .1038/ ncomms10228. 
73.  Jung HI,Zhang F,Song J,Hu R,Xiang Y,He J,Hao Y,Lian J,Zhang B,Zeng P,Qu J.interfacial Passivation of the p-Doped Hole-Transporting.Small . 2018;1–10. https://doi.org/10 .1002/smll .201704007. 
74.  Rao H,Ye S,Sun W,Yan W,Li Y,Peng H.19 % efficiency achieved in CuO x -based inverted CH3 NH3 PbI3-x Cl x solar cells by an effective Cl doping method.Nano Energy . 2016;0–23. https://doi.org/10.1016/j.nanoen .2016.06.044. 
75.  Liu X. Highly Efficient and Stable Carbon-Based Planar Perovskite Solar Cells Employing Ni-doped Rutile TiO2 as Electron Transport Layer.Nano Energy . 2018;50:201–211. https://doi.org/10 .1016/j.nanoen .2018 .05 .031. 
76.  Zhang F.perovskiet solar cells and its dopping.Adv Mater . 2018;30(38):1–9. https://doi.org/10.1002/adma.2018 03244. 
77.  Cao J,Wu B,Peng J,Feng X,Li C,Tang Y.Copper-copper iodide hybrid nanostructure as hole transport material for efficient and stable inverted perovskite solar cells.Sci China Chem. 2019;62(3):363–369. https://doi.org/10 .1007/s11426-018-9386-5. 
78.  Zheng X,Hou Y,Bao C,Yin J,Yuan F,Huang Z,Song K,Liu J,Troughton J,Gasparini N,Zhou C,Lin Y,Xue D,Chen B,Johnston AK,Wei N,Hedhili MN,Wei M,Alsalloum AY,Maity P,Turedi B,Yang C,Baran D,Anthopoulos TD. Managing grains and interfaces via ligand anchoring enables 22.3%-efficiency inverted perovskite solar cells.Nat Energy. 2020;5(2):131–140. https://doi.org/10 .1038/s41560-019-0538-4. 
79.  Feleki BT,Bouwer RKM,Zardetto V,Wienk MM, Janssen RAJ. Perovskite Solar Cells on Steel Substrates.2022. https://doi.org/10 .1021/acsaem .2c00291. 
80.  Zhang Y,Elawad M,Yu Z,Jiang X,Lai J,Sun L.Enhanced performance of perovskite solar cells with P3HT hole-transporting materials: Via molecular p-type doping.RSC Adv. 2016;6(110):108888–108895. 
https://doi.org/10 .1039/c6ra21
81.  Yang WS, Park B, Jung E, Jeon NJ, Kim Y, Lee DU, Shin SS, Seo J, Kim E, Noh JH, Seok SI. Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science. 2017;356(6345):1376–1379. https://doi.org/10.1126/science.aan2301.
82.  Seo JY, Kim H, Akin S, Stojanovic M, Simon E, Fleischer M, Hagfeldt A, Zakeeruddin SM, Gra¨tzel M. Novel p-dopant toward highly efficient and stable perovskite solar cells. Energy Environ Sci. 2018;11(10):2985–2992. https://doi.org/10.1039/c8ee01500g.
83.  Liu C, Zhou X, Chen S, Zhao X, Dai S, Xu B. Hydrophobic Cu2O Quantum Dots Enabled by Surfactant Modification as Top Hole-Transport Materials for Efficient Perovskite Solar Cells. Adv Sci. 2019;7:1–9. 
https://doi.org/10.1002/advs .201801169. 
84.  Gao J,Liao C,Guo Y,Zhou D,Zeng Z,Cai C.The effect of methyl ammonium chloride doping for perovskite solar cells on structure, crystallization and power conversion efficiency.Mod Phys Lett. 2021;35(5):1–11.
https://doi.org/10 .1142/S0217984921500962. 
85.  Zhu XD,Ma X,Wang Y,Li Y,Gao C,Wang Z,Jiang Z,Liao LS.Hole-Transporting Materials Incorporating Carbazole into Spiro-Core for Highly Efficient Perovskite Solar Cells.Adv Funct Mater . 2019;29(5):1–8. https://doi.org/10 .1002/adfm .201807094. 
86.  Jiang Q.Surface passivation of perovskite film for efficient solar cells.Nat Photonics. 2019;13(7):460–466.  https://doi.org/10 .1038/s41566-019-0398-2. 
87.  Han Y,Zhao H,Duan C,Yang S,Yang Z,Liu Z,Liu S.Controlled n-Doping in Air-Stable CsPbI2Br Perovskite Solar Cells with a Record Efficiency of 16.79%.Adv Funct Mater . 2020;30(12):1–8 . https://doi.org/10 .1002/adfm .201909972. 
88.  Kajal P,Ghosh K,Powar S.Manufacturing Techniques of Perovskite Solar Cells Manufacturing Techniques of Perovskite Solar Cells.2018;10:720. https://doi.org/10 .1007/978-981-10-7206-2. 
89.  Han GS,Kim J,Bae S,Han S,Kim YJ,Gong Y,Lee P,Ko MJ,Jung HS.Spin-Coating Process for 10 cm × 10 cm Perovskite Solar Modules Enabled by Self- Assembly of SnO2 Nanocolloids.ACS Energy Lett. 2019;10:953. https://doi.org/10 .1021/acsenergylett .9b00953. 
90.  Peng E.with doctor-bladed active layers Energy & Environmental Science trihalide perovskite solar cells with doctor-bladed.Energy Environ Sci. 2015;390.
https://doi.org/10 .1039/C4EE03907F. 
91.  Lau CJ,Deng X,Ma Q,Zheng J,Yun JS,Green MA,Huang S,Ho-Baillie AWY.CsPbIBr2 Perovskite Solar Cell by Spray Assisted Deposition.ChemPhysChem. 2016;33. https://doi.org/10 .1021/acsenergylett .6b00341. 
92.  Kim YY,Yang TY,Suhonen R,Kemppainen A,Hwang K,Jeon NJ,Seo J.Roll-to-roll gravure-printed flexible perovskite solar cells using eco-friendly antisolvent bathing with wide processing window.Nat Commun . 2020;1:1–12 . https://doi.org/10 .1038/s41467-020-18940-5. 
93.  Patidar R,Burkitt D,Hooper K,Richards D,Watson T.Slot-die coating of perovskite solar cells: An overview.Mater Today Commun. 2020;22:100808. https://doi.org/10 .1016/j.mtcomm .2019 .100808. 
94.  Jeon NJ,Noh JH,Kim YC,Yang WS,Ryu S,Seok SI.inorganic– organic hybrid perovskite solar cells.2014;1–7. https://doi.org/10 .1038/NMAT4014.
95.  Yang S, Fu W, Zhang Z, Chen H, Li C. efficiency , stability and lead-free perovskite. 2017;11462–11482. https://doi.org/10.1039/c7ta00366h.
96.  Docampo P, Ball JM, Darwich M, Eperon GE, Snaith HJ. Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates. Nat Commun. 2013;4:1–6.
https://doi.org/10.1038/ncomms3761.
97.  Jeng JY. CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells. Adv Mater. 2013;25(27):3727–3732. 
https://doi.org/10.1002/adma .201301327. 
98.  Chang CY,Huang YC,Tsao CS,Su WF.Formation Mechanism and Control of Perovskite Films from Solution to Crystalline Phase Studied by in Situ Synchrotron Scattering.ACS Appl Mater Interfaces. 2016;8(40):26712–26721 . https://doi.org/10 .1021/acsami .6b07468. 
99.  Mei A.A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability.Science. 2014;345(6194):295–298. https://doi.org/10 .1126/science .1254763. 
100. Niu G,Guo X,Wang L.Review of recent progress in chemical stability of perovskite solar cells.J Mater Chem A . 2015;17:8970–8980 . https://doi.org/10 .1039/c4ta04994b. 
101. Li D,Zhang D,Lim KS,Hu Y,Rong Y,Mei A,Park NG,Han H.A review on Scaling Up Perovskite Solar Cells.Adv Funct Mater. 2021;31(12):1–27. 
https://doi.org/10 .1002/adfm .202008621. 
102. Razz S,Giakomo F.Perovskite solar cells and large area modules (100 cm2) based on an air flow-assisted PbI2 blade coating deposition process.J Power Sources . 2015;277:286–291 . https://doi.org/10 .1016/j.jpowsour .2014 .12 .008
103. .Chang JH,Liu K,Lin SY,Yuan YB,Zhou CH,Yang JL.Solution-processed perovskite solar cells.J Cent South Univ. 2020;27(4):1104–1133. 
https://doi.org/10.1021/acssuschemeng .0c04289. 
104. Whitaker JB,Kim DH,Larson BW,Zhang F,Berry JJ,van Hest MF,Zhu K.Scalable slot-die coating of high performance perovskite solar cells.Sustain Energy Fuels . 2018;2(11):2442–2449. 
https://doi.org/10 .1039/c8se00368h. 
105. Liu X,Xia X,Cai Q,Cai F,Yang L.Efficient planar heterojunction perovskite solar cells with weak hysteresis fabricated via bar coating.Sol Energy Mater Sol Cells . 2017;159:412–417 . https://doi.org/10 .1016/j.solmat .2016 .09 .046.
106.  Yang J,Vak D,Clark N,Subbia J.Organic photovoltaic modules fabricated by an industrial gravure printing proofer.Sol Energy Mater Sol Cell. 2013;109:47–55. https://doi.org/10 .1016/j.solmat .2012 .10 .018. 
107. Hu Q,Wu H,Sun J,Yan D,Gao Y,Yang J.Large-area perovskite nanowire arrays fabricated by large-scale roll-to-roll micro-gravure printing and doctor blading.Nanoscale. 2016;8(9):5350–5357.
https://doi.org/10 .1039/c5nr08277c.
108.  Yang P,Fan HJ.Inkjet and Extrusion Printing for Electrochemical Energy Storage: A Minireview.Adv Mater Technol . 2020;5(10):1–11. https://doi.org/10 .1002/admt .202000217. 
109. Wei Z,Chen H,Yan K,Yang S.Inkjet Printing and Instant Chemical Transformation of a CH 3 NH 3 PbI 3 /Nanocarbon Electrode and Interface for Planar Perovskite Solar Cells.Angew Chemie. 2014;126(48):13455–13459. https://doi.org/10 .1002/ange .201408638. 
110. Wang Y,Duan C,Lv P,Ku Z,Lu J,Huang F,Cheng Y.Printing strategies for scaling-up perovskite solar cells.Natl Sci Rev. 2021. 
https://doi.org/10 .1093/nsr/nwab075.
111. Bruening K, Dou B, Simonaitis J, Lin YY, van Hest MFAM, Tassone CJ. Scalable Fabrication of Perovskite Solar Cells to Meet Climate Targets. Joule. 2018;2(11):2464–2476. https://doi.org/10.1016/j.joule.2018.09.014.
112. Cheng ZY, Wang HF, Quan ZW, Lin CK, Lin J, Han YC. Layered organic-inorganic perovskite-type hybrid materials fabricated by spray pyrolysis route. J Cryst Growth. 2005;285(3):352–357. https://doi.org/10.1016/j.jcrysgro.2005.08.031.
113. Barrows AT, Pearson AJ, Kwak CK, Dunbar ADF, Buckley AR, Lidzey DG. Efficient planar heterojunction mixed-halide perovskite solar cells deposited via spray-deposition. Energy Environ Sci. 2014;7(9):2944–2950. https://doi.org/10.1039/c4ee01546k. 
114. Sansoni S,Bastiani MD,Aydin E,Ugur E,Isikgor FH,Zahrani A,Lamberti F,Laquai F,Meneghetti M,De Wolf S.Eco-Friendly Spray Deposition of Perovskite Films on Macroscale Textured Surfaces.Adv Mater Technol. 2020;5(2):1–6 . https://doi.org/10 .1002/admt .201901009. 
115. Alanazi TI.Current spray-coating approaches to manufacture perovskite solar cells.Results Phys . 2023;106144. https://doi.org/10 .1016/j.rinp .2022 .106144. 
116. Jamal MS,Bashar MS,Hassan AKM,Almutairi ZA,Karim MR.Fabrication techniques and morphological analysis of perovskite absorber layer for high-efficiency perovskite solar cell: A review.Renew Sustain Energy Rev. 2018;98:469–488 . https://doi.org/10 .1016/j.rser .2018 .09 .016. 
117. Zhang T,Yang M,Zhao Y,Zhu K.Controllable Sequential Deposition of Planar CH3NH3PbI3 Perovskite Films via Adjustable Volume Expansion. Nano Lett. 2015;15(6) :3959–3963.
https://doi.org/10 .1021/acs.nanolett .5b00843. 
118. Liu M,Johnston MB,Snaith HJ.Efficient planar heterojunction perovskite solar cells by vapour deposition.Nature.2013;501(7467):395–398. https://doi.org/10 .1038/nature12509. 
119. Chen CW,Kang HW,Hsiao SY,Yang PF,Chiang KM,Lin HW.Efficient and Uniform Planar-Type Perovskite Solar Cells by Simple Sequential Vacuum Deposition.Adv Mater .2014;38:6647–6652. 
https://doi.org/10.1002/adma .201402461. 
120. Wilkinson B, Chang NL, Green MA, Ho-Baillie AWY. Scaling limits to large area perovskite solar cell efficiency.Prog Photovoltaics Res Appl . 2018;26(8):659–674. https://doi.org/10 .1002/pip .3035. 
121. Galagan Y,Coenen EWC,Verhees WJH,Andriessen R.Towards the scaling up of perovskite solar cells and modules. J Mater Chem A. 2016;15:5700–5705. https://doi.org/10 .1039/c6ta01134a. 
122. Qiu L, He S, Jiang Y, Qi Y. Chemical vapor deposition.2021;22759–22780. 
https://doi.org/10 .1039/d1ta06459b. 
123. Tian C,Kochiss K,Castro E,Betancourt-Solis G,Han H,Echegoyen L.A dimeric fullerene derivative for efficient inverted planar perovskite solar cells with improved stability. J Mater Chem A. 2017;5(16):7326–7332. https://doi.org/10 .1039/c7ta00362e.
124. Li K, Xiao J, Yu X, Bu T, Li T, Deng X, Liu S, Wang J, Ku Z, Zhong J, Huang F, zhong Z, Peng Y, Li W, Cheng YB. Influence of Hot Spot Heating on Stability of Large Size Perovskite Solar Module with a Power Conversion Efficiency of 4%. ACS Appl Energy Mater. 2018;1(8):3565–3570. https://doi.org/10.1021/acsaem.8b00803.
125. Liu Q, Zhao Y, Ma Y, Sun X, Ge W, Fang Z, Bai H, Tian Q, Fan B, Zhang T. A mixed solvent for rapid fabrication of large-area methylammonium lead iodide layers by one-step coating at room temperature. J Mater Chem A. 2019;7(31):18275–18284. https://doi.org/10.1039/c9ta06084g.
126. Wu WQ, Yang Z, Rudd PN, Shao Y, Dai X, Wei H, Zhao J, Fang Y, Wang Q, Liu Y, Deng Y, Xiao X, Feng Y, Huang J. Bilateral alkylamine for suppressing charge recombination and improving stability in blade-coated perovskite solar cells. Sci Adv. 2019;5(3):1–10. https://doi.org/10.1126/sciadv.aav8925. 
127. Küffner J,Hanisch J,Wahl T,Zillner J,Ahlswede E,Powalla M.One-Step Blade Coating of Inverted Double-Cation Perovskite Solar Cells from a Green Precursor Solvent.ACS Appl Energy Mater. 2021;4:11700–11710 . https://doi.org/10 .1021/acsaem .1c02425. 
128. Bi Z,Xu X,Chen X,Zhu Y,Liu C,Yu H,Zheng Y,Troshin PA,Guerrero A,Xu G.High-performance large-area blade-coated perovskite solar cells with low ohmic loss for low lighting indoor applications.Chem Eng J . 2022;446:137164. 
https://doi.org/10.1016/j.cej.2022 .137164. 
129. Di Giacomo F.Up-scalable sheet-to-sheet production of high efficiency perovskite module and solar cells on 6-in. substrate using slot die coating.Sol Energy Mater Sol Cells . 2018;10:59 . https://doi.org/10 .1016/j.solmat .2017 .11 .010. 
130. Kim JE,Kim SS,Zuo C,Gao M,Vak D,Kim DY.Humidity-Tolerant Roll-to-Roll Fabrication of Perovskite Solar Cells via Polymer-Additive-Assisted Hot Slot Die Deposition.Adv Funct Mater. 2019;29(26):1–9. https://doi.org/10 .1002/adfm .201809194. 
131. zhang A,Fang G.microscopic perovskite solar mini-modules fabricated with slot-die coating.Nano Energy . 2020;74:1–8. https://doi.org/10 .1016/j.nanoen .2020 .104842. 
132. Fievez M.Slot -die coated methylammonium-free perovskite solar cells with 18% efficiency.Sol Energy Mater Sol Cells. 2021;230. 
https://doi.org/10 .1016/j.solmat .2021 .111189. 
133. Xu K,Ashouri A,Peng A,Köhnen ZW,Hempel E,Akhundova H,Marquez F,Tockhorn JA,Shargaieva P,Ruske O,Zhang F,Dagar J,Stannowski R,Unold B,van Abou-Ras T,Unger D,Korte E,Liu S.Albrecht S.Slot-Die Coated Triple-Halide Perovskites for Efficient and Scalable Perovskite/Silicon Tandem Solar Cells.ACS Energy Lett . 2022;7(10):3600–3611.
https://doi.org/10 .1021/acsenergylett .2c01506. 
134. Remeika M, Raga SR, Zhang S, Qi Y. Transferrable optimization of spray-coated PbI2 films for perovskite solar cell fabrication.J Mater Chem A. 2017;5(12):5709–5718. https://doi.org/10 .1039/c6ta09922j. 
135. Leijtens T,Ro Prasanna,Bush KA,Eperon GE,Raiford JA,Parker AG,Wolf EJ,Swifter SA ,Boyd CC,Wang HP,Toney MF,Bent SF,McGehee MD.Free -lead halide perovskites with improved thermal and air stability for efficient all-perovskite tandem solar cells.Sustain Energy Fuels. 2018;2(11):2450–2459.
https://doi.org/10 .1039/c8se00314a. 
136. Park M,Cho W,Lee G,Hong SC,Kim M.Highly Reproducible Large-Area Perovskite Solar Cell Fabrication via Continuous Megasonic Spray Coating.2019;4:1–7. https://doi.org/10 .1002/smll .201804005. 
137. Kristensen F,Sverre J,Bustad S.a Cost-Utility Analysis of Insulin Glargine (Lantus) in the Treatment of Patients With Type 1 Diabetes.Value Health. 2003;6(6):682. https://doi.org/10 .1016/s1098-3015(10)61744-5. 
138. Hamukwaya SL, Hao H, Zhao Z, Xing J, Li H, Mashingaidze MM. A Review of Recent Developments in Preparation Methods for Large-Area Perovskite Solar Cells. Coatings. 2022;12(2). 
https://doi.org/10.3390/coatings12020252.
139. Karunakaran SK, Arumugam GM, Yang W, Ge S, Khan SN, Lin X, Yang G. Recent progress in inkjet-printed solar cells. J Mater Chem A. 2019;7(23):13873–13902. https://doi.org/10.1039/c9ta03155c.
140. Pendyala NK, Magdassi S, Etgar L. Fabrication of Perovskite Solar Cells with Digital Control of Transparency by Inkjet Printing. ACS Appl Mater Interfaces. 2021. https://doi.org/10.1021/acsami.1c04407. 
141. Näsström H,Shargaieva O,Becker P,Mathies F,Zizak I,Schr¨oder VR,List-Kratochvil EJW, Unold T,Unger E.Combinatorial inkjet printing for compositional tuning of metal-halide perovskite thin films. J Mater Chem A . 2022;8588–8596 . https://doi.org/10 .1039/d1ta08841f. 
142. Bae SR,Heo DY,Kim SY.Recent progress of perovskite devices fabricated using thermal evaporation method: Perspective and outlook.Mater Today Adv . 2022;100-232 . https://doi.org/10 .1016/j.mtadv .2022 .100232. 
143. Jiang Y, Remeika M, Zhao Y, Juarez-Perez EJ, Qiu L,Liu Z,Kim T, et al.Large-Area Perovskite Solar Modules: Combination of Hybrid CVD and Cation Exchange for Upscaling Cs-Substituted Mixed Cation Perovskite Solar Cells with High Efficiency and Stability.Adv Funct Mater . 2018;28(1):187-197. 
https://doi.org/10 .1002/adfm .201870007. 
144. Jiang Y,Remeika M,Hu Z,Juarez-Perez EJ,Qiu L,Liu Z,Kim T,Ono LK,Son D,Hawash Z,Leyden MR,Wu Z,Meng L,Hu J,Qi Y.Negligible-Pb-Waste and Upscalable Perovskite Deposition Technology for High-Operational-Stability Perovskite Solar Modules.Adv Energy Mater . 2019;9(13):1–12. 
https://doi.org/10 .1002/aenm .201803047. 
145. Zuo C,Vak D,Angmo D,Ding L,Gao M.One-Step Roll-to-Roll Air Processed High Efficiency Perovskite Solar.Nano Energy. 2018;18:30045-4. https://doi.org/10 .1016/j.nanoen .2018 .01 .037. 
146. Richards D, Burkitt D, Patidar R, Beynon D, Watson T. Predicting a process window for the roll-to-roll deposition of solvent-engineered SnO2 in perovskite solar cells. Mater Adv. 2022;8588–8596. 
https://doi.org/10 .1039/d2ma00841f.
147.  Chandrasekhar PS,Chapagain S,Blake M,Armstrong PJ,Grapperhaus C,Druffel TL.Rapid scalable fabrication of roll-to-roll slot-die coated flexible perovskite solar cells using intense pulse light annealing.Sustain Energy Fuels. 2022;5316–5323. https://doi.org/10 .1039/d2se00911k.